Available online at: https://ijact.in

ANALYSIS OF HARMONIC IN DISTRIBUTION SYSTEM USING DSTATCOM BASED ON UNIT VECTOR TEMPLATE CONTROL ALGORITHM

Amit Pandey

Global Institute of Technology, Jaipur (Raj.) India

Abstract: Harmonics plays important role in the function of the power system network. Hence, the harmonics improvement will increase the performance of power system equipment's. This paper presents the design and implementation of distribution static compensator (DSTATCOM) with the star-delta transformer for analysis of Harmonics in three-phase four wire distribution system in the presence of three-phase Nonlinear-load in the events of single phase, two-phase and three phase tripping. The unit vector template method based control algorithm has been implemented for the control of the proposed DSTATCOM. The proposed test model has been simulated in SIMULINK/MATLAB environment. The simulations results show the effectiveness of proposed algorithm.

Keywords: Distribution static compensator, power quality, Analysis of Harmonics, star-delta transformer, unit vector template method.

I. INTRODUCTION

Distribution systems are facing severe powerquality (PQ) problems, such as poor voltage regulation, high reactive power and harmonics current burden, load unbalancing, excessive neutral current etc. The source voltages in the distribution systems are also experiencing PQ problems, such as harmonics, unbalance, flicker, sag, swell, etc. [1]. The poor harmonic is also a power quality problem and needs necessary correction. Mahmudet al.[2], described the power quality issues, abnormalities such as voltage sag, voltage swell, harmonics and capacitor switching which are destruct sinusoidal waveforms and decrease power quality as well as network reliability. These are abnormalities which affect the consumer as well as equipment. DSTATCOM is used to compensate, power quality problem such as voltage fluctuation, unbalanced load, harmonics in distribution system. A DVR is proposed for voltage sag and swell

protection, voltage balancing and compensating for voltage harmonic distortions while UPOC is applied for compensating load current harmonic. reactive power compensation, harmonic correction, correcting non-load current and regulating DC circuit voltage. Bhim Singh et al. [3] presented the various type of custom power devices developed and successfully implemented to compensate various power quality problems in a distribution system. They presented a complete review on the power quality issues. In [5], authors proposed that a method for neutral current compensation including Scott transformer, T connected transformer, star hexagon transformer and star polygon transformer designed for MMF (magneto motive force) balance. Bhim Singh et al.[6] have discussed the new topology for power quality improvement with contribution of DSTATCOM is integrated for the Improvement of reactive power for voltage regulation or for harmonic correction with load balancing and

compensation neutral current along with elimination of harmonics at the point of common coupling. In [7] authors have proposed for power quality Improvement based on 3P4W DSTACOM star/delta transformer connection to mitigates the neutral current, power quality, balance the unbalance load, reactive power, and harmonics. Three single phase transformers are connected as star/delta transformer for interfacing to a three phase four-wire power distribution system and the required rating of the VSC is reduced. The star/delta transformer has been found effective for compensating the zero sequence fundamental and harmonics currents and kVA rating of the star/delta transformer has been verified by simulation. It is observed that the kVA rating of the transformer is about 40% of the load kVA and the reactive power to be compensated. In [8], authors has proposed that a neural network (NN)-controlled distribution static compensator (DSTATCOM) using a d-SPACE processor is implemented for power quality improvement in a three-phase four wire distribution system. With a Zig-zag transformer is used for the compensation of reactive power, for voltage regulation, for load balancing along with balancing the unbalance load elimination of harmonic currents, and neutral current compensation at the point of common coupling. In [9], authors proposed a three-phase four wire power filter comprising a three-phase three-wire APF and a Zig-Zag transformer is developed. Bhim Singhet al. [10] has proposed a new topology for power quality improvement in a three-phase four wire distribution system consisting of an H-bridge VSC and a star/delta transformer. In [11], authors have proposed a technique for power quality improvement in three-phase four-wire distribution systems. A three-leg VSC is integrated with a star/hexagon transformer for the compensation of reactive power for voltage regulation or for harmonic correction along with load balancing, elimination of harmonics currents and neutral current compensation. Bhim Singh et al. [12] described a new topology for voltage regulation or harmonic correction by reactive power compensation along with harmonics elimination or neutral current compensation in three-phase fourwire distribution system with star/delta transformer. The transformer has star connected primary and delta connected secondary and the load neutral point is connected to the neutral of star winding so that it provides a path to the zero sequence fundamental as well as harmonics neutral currents. Bhim Singh et al. [13], described two leg VSC and a Zig-Zag transformer for power quality in 3P4W Distribution system. In [14], authors have presented the Improvement of PQ with a T-connected transformer for the compensation of reactive power for voltage regulation or elimination of neutral

current. In [15], authors presented a comprehensive review of neutral current compensation technique.

This paper presents the harmonic improvement in the distribution system using DSTATCOM with star-delta transformer. A unit vector template method based control of the DSTATCOM has been proposed in this paper for harmonic improvement.

This paper is organized into five Sections. Starting with an introduction in the Section I, the Section II describes the proposed test system. The proposed control algorithm has been described in the Section III. The simulation results and their discussions for harmonic improvement are presented in the Section IV. Finally, the conclusions are presented in the Section V.

II. PROPOSED TEST SYSTEM

The basic circuit diagram of the proposed DSTATCOM connected to the 3-phase four wire distribution systems supplying the power to a three phase four wire loads is shown in Fig. 1. The stardelta transformer gives the path to the neutral current of load. The DTSTATCOM is voltage source converter (VSC) made by using six Insulated Gate Bipolar Transistors (IGBTs) switches with anti-parallel diodes and a DC capacitor. The DC link capacitor helps in improving the ripples by continuously charging and For reducing discharging. the ripples in compensating currents with interfacing inductors are place to connect the VSC to the supply system. RC filter is used to reduce the switching ripples in the PCC voltage injected by the fast switching of DSTATCOM. The DSTATCOM is used to control and compensate the reactive and harmonic currents of the load. This helps in the voltage regulation at PCC. In harmonic correction (PFC) mode the supply currents have zero phase shifts with respect to PCC voltages. DSTATCOM inject the currents in zero voltage regulation (ZVR) mode to regulate the PCC voltage at the desired reference value of voltage. In this case, the supply currents may be leading or lagging currents depending on the harmonic of load and reference PCC voltage. The supply voltage of the system is 415 V. 50 Hz. Supply impedance is 0.1+j0.628. DC link capacitor is 8000µF and operated on voltage of 800 V. Interfacing inductor has the value 2.3 mH & switching frequency 10 kHz. For ripple filter resistance is 2Ω and capacitance 20 μ F. The star connected transformer has the rating 7.5 kVA, 415 V. A detailed study of DSTATCOM topologies and control strategies has been reported in [16].

Fig. 1: Single line diagram of the proposed test model

III. PROPOSED CONTROL ALGORITHM

The schematic diagram for the proposed control is shown in Figure 2. For generating the switching pulses for the IGBTs of the VSC a fixed frequency carrier based sinusoidal PWM is used. This algorithm is based on the unit vector template method. In this method there is two PI controllers are use. One PI controller is use for the regulation of DC link voltage and the second PI controller is used for the regulation of AC terminal voltage The parameters used in the control theory are detailed in the Fig. 2 along with all types of signals used for the control of DSTATCOM.

Fig. 2: Proposed control algorithm

IV. SIMULATION RESULTS AND DISCUSSION

This section details the simulation results related to the harmonic improvement using DSTATCOM with star-delta transformer. The results without compensation using DSTATCOM, with compensation using DSTATCOM are detailed in the following subsections.

A. Harmonic Correction with Unbalanced Load

The pole of circuit breaker corresponding to the phase A has been opened at 45th cycles and reclosed at 50th cycles to simulate the unbalanced load in the absence of the DSTATCOM. The harmonic of all the three phases is shown in the Fig. 3. It can be observed that the harmonic corresponding to the phase A (shown by red colour) increases drastically without the presence of the any type compensation in the network. The harmonic of other phases is also changed but the change in these phases is same as compared to the phase A. Hence, the without the compensation, the harmonic is changed drastically which may affect the efficiency of the system.

Fig. 3: Harmonic of all the phases (Source Voltage) without DSTATCOM and with unbalanced load.

The pole of circuit breaker corresponding to the phase A has been opened at 45^{th} cycles and reclosed at 50^{th} cycles to simulate the unbalanced load in the presence of the DSTATCOM. The harmonic of all the three phases is shown in the

Fig. 4. It can be observed that the harmonic corresponding to all the three has been improved significantly in the presence of DTSTACOM in the network. Hence, the use DSTATCOM significantly improves the harmonic in the presence of unbalanced load.

Fig. 4: Harmonic of all the phases (Source voltage) with DSTATCOM and with nonlinear load.

B. Harmonic Correction with Tripping of Three Phase Load

The circuit breaker connecting the load to the system has been opened at 45th cycles and reclosed at 50th cycles to simulate the tripping of three-phase balanced load in the absence of the DSTATCOM. The harmonic of all the three phases is shown in the Fig.4. It can be observed that the harmonic without the compensation are more and with the compensation of DSTATCOM and star delta transformer. During the transient period harmonic is drastically changed. At the time of transients the harmonic increase drastically up to the value of 8.83%. The similar phenomenon is also observed at the time of reclosing the circuit breaker. Hence, in the absence of compensation, the harmonic is changed drastically which may affect the efficiency of the system.

Fig. 5: Harmonic of all the phases (Source current) without DSTATCOM and with nonlinear load.

The circuit breaker connecting the load to the system has been opened at 45th cycles and reclosed at 50th cycles to simulate the tripping of three-phase balanced load in the presence of DSTATCOM. The harmonic of all the three phases is shown in Fig. 5. It can be observed that the harmonic in the absence of DSTATCOM is 8.83%. We can observe from the given waveform that the source voltage and current are same in magnitude and disturbed presence Hence, in the harmonics. of compensation, the harmonic is maintained at the desired level.

Fig. 6: Harmonic of all the phases during tripping of three-phase load with DSTATCOM.

C. Harmonic Correction with Tripping of Two Phases of a Three Phase Load

Two poles (phases A and B) of the circuit breaker connecting the load to the system has been opened at 45th cycle and reclosed at 50th cycle to simulate the unbalanced tripping of three-phase balanced load in the absence of the DSTATCOM. The harmonic of Current (Source) for all the three phases is shown in the Fig. 6. It can be observed that the harmonic without the compensation is high and is not maintained. During the transient period harmonic is drastically changed in the phases which have been disconnected from the system. At the time of transients the harmonic is decreased drastically and reduce to the value during the transient period. The harmonic of the other faulty phase (phase B) is also reduced to the value of 0.5. The harmonic of the healthy phase also changes but this change is less as compared to the case study I.

V. CONCLUSION

This research work presents harmonic analysis in using the three-phase distribution system DSTATCOM with star-delta transformer. The unit vector based control of the DSTATCOM has been proposed for finding the total harmonics distortion. It has been observed that with the application of the star-delta transformer, the harmonic improvement has been achieved with the help of DSTATCOM successfully. The harmonic correction has been achieved in all the cases of study such as opening and closing of single pole of the circuit breaker, two poles of the circuit breaker and all the three phases of the circuit breaker connecting the three phase load. In all the condition, we find with and without DSTATCOM harmonics present in Source voltage and source current as shown in fig. The results have been simulated in the MATLAB/Simulink environment.

VI. REFERENCES

- Bhim Singh, P. Jayaprakash, T. R. Somayajulu, and D. P. Kothari, "Reduced rating VSC with a Zig-Zag transformer for current compensation in a three-phase four-wire distribution system,"IEEE Transactions on Power Delivery, Vol. 24, No. 1, January 2009, 249-259.
- [2] Mahmoud zadehbagheri, Naziha Ahmad Azli, Askar bagherinasab, Shahrin bin Md Ayob, " Performance evaluation of custom power devices in power distribution networks to power quality improvement: a review," International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013.
- [3] Bhim Singh, Sabha Raj Arya "Design and control of a DSTATCOM for power quality improvement using cross correlation function approach" International Journal of Engineering, Science and Technology, Vol. 4, No. 1, 2012, pp. 74-86.
- [4] B. Singh, G.Bhuvaneswari, S.R. Arya "Review on power quality solution technology," Asian Power Electronics Journal, Vol. 6, No. 2, Dec 2012.
- [5] Bhim Singh, P. Jayaprakash, and D. P. Kothari "Magnetics for neutral current compensation in three-phase four-wire distribution system,"IEEE International Conference, 2010.
- [6] Bhim Singh, P Jayaprakash, T. R. Somayajulu, D. P. Kothari, Ambrish Chandra, and Kamal-Al-Haddad, "Integrated three-leg VSC with a Zig-Zag transformer based three-phase fourwire DSTATCOM for power quality improvement," IEEE International Conference, 2008.
- [7] Bhim Singh, P. Jayaprakash and D. P. Kothari." Three-leg VSC and a transformer based three-phase four-wire DSTATCOM for distribution systems, "Fifteenth National Power Systems Conference (NPSC), IIT Bombay, India, December 2008.
- [8] Bhim Singh, P. Jayaprakash, Sunil Kumar, and D. P. Kothari 'Implementation of neuralnetwork-controlled three-leg VSC and a transformer as three-phase four-wire DSTATCOM," IEEE Transactions on Industry Applications, Vol. 47, No. 4, July/August 2011.
- [9] Hurng-Liahng Jou, Kuen-Der Wu, Jinn-Chang Wu, and Wen-Jung Chiang "A three-phase four-wire power filter comprising three-phase three-wire active power filter and a Zig–Zag transformer" IEEE Transactions on Power Electronics, Vol. 23, No. 1, January 2008.
- [10] Bhim Singh. Jayaprakash, D. P. Kothari, " Isolated H-bridge VSC based 3-phase 4-wire DSTATCOM for power quality improvement" 2008 IEEE International conference on sustainable energy Technology, Singapore, 2008, pp. 366-377.
- [11] Bhim Singh, Jayaprakash Pychadathil, and Dwarkadas Pralhaddas Kothari, "Star/hexagon transformer based three-phase four-wire DSTATCOM for power quality

improvement,"International Journal of Emerging Electric Power Systems, Volume 9, Issue 6, 2008.

- [12] Bhim Singh, Jayaprakash Pychadathil, and Dwarkadas Pralhaddas Kothari, "Three-phase four-wire DSTATCOM with H-bridge VSC and star/delta transformer for power quality improvement" 2008 IEEE India conference, Kanpur, India, pp 412-417.
- [13] Bhim Singh, P Jayaprakash, and D.P Kothari, "DSTATCOM with reduced switches using two leg VSC and a zig-zag transformer for power quality improvement in three-phase four-wire distribution system" 2008 IEEE Region 10 Conference, Hyderabad, India, 2008,pp. 1-6
- [14] Bhim Singh, P. Jayaprakash, and D. P. Kothari, "Three-leg voltage source converter integrated with T-connected transformer as three-phase four-wire distribution static compensator for power quality improvement" Electric Power Components and Systems, pp. 817-831.
- [15] D. Sreenivasarao, Pramod Agarwal, and Biswarup Das "Neutral current compensation inthreephase, fourwiresystems: A review,"Electr ic Power Systems Research Journal, Vol. 86, pp. 170–180, 2008.
- [16] Om PrakashMahela, AbdulGafoorShaik, "A review of distribution static compensator," RenewableandSustainableEnergyReviews50(2 015)531–546.