
COMPUSOFT, An international journal of advanced computer technology, 7(10), October-2018 (Volume-VII, Issue-X)

2831

This work is licensed under Creative Commons Attribution 4.0 International License.

IMPROVEMENT, OPTIMIZATION AND COMPARISON OF A

REMOTE MONITORING ARCHITECTURE BASED ON WSN

APPLICATION TO THE CROSSBOW PLATFORM

1
Ayoub Marzak,

2
Mohamed Hamraoui

1, 2
RITM Laboratory, CED Engineering Sciences, Ecole Supérieure de Technologie, Hassan II

University of Casablanca, Morocco
1
ay.marzak@gmail.com,

2
hamraoui@hotmail.com

Abstract: Recently, wireless sensor networks have moved to the concept of hybrid networks. This new concept which merged

into Machine To Machine systems, has allowed the wireless sensor networks, to integrate common platforms and exploitable

integrals in several types of monitoring and information gathering applications.

In this article, we suggest, in an experimental setting, a remote monitoring architecture with high availability and resilience. It

allows one to sense, to process and provide real-time data via hybrid communications technologies.

Several scenarios for data processing and routing of sensed data by the wireless sensor network (ZigBee Technology) were

tested and compared in real time in two different environments.

Keywords: Wireless Sensor Networks, Hybrid Architecture, Supervision, Fault Tolerance, Availability, Reliability, Raspberry Pi 3.

I. INTRODUCTION

A Wireless Sensor Network "WSN" is an ad hoc network of
many micro-sensor nodes. One can extend their use to
hostile or unreachable regions. They can detect, evaluate
and connect to different devices in order to collect
environment's data. The collected information will be used
and taken into account in making decision strategies on an
under-surveillance environment. A structural and dynamic
model of sensor nodes via UML was approached in [1].
More globally, in [2] the authors were interested in the
whole WSN model.
The WSN guarantees an innovative services' set and a better
representation of a specific environment. As an example, the
evolution of the remote monitoring architecture QoS offers a
strategy of acquisition, and continuous sending of
measurements to a data processing machine. This is

occurring while guaranteeing security by restricting access
to authorized users [3].
Among others, various studies have been dedicated to all the
questions related to hybrid networks [3], [4], [5], [6], [7],
[8], [9], [10]. According to this, the authors of [9] and [10]
have implemented a hybrid remote monitoring architecture
offering a highly acceptable QoS in terms of availability and
resilience. This scheme is based on an architecture model
dedicated to Distributed Hypermedia Systems (REST:
Representational State Transfer), created by Roy Fielding
[11]. REST is a hybrid architecture style based on several
models and network concepts, combined with additional
specifications.
In this work, firstly, we have improved and optimized a
hybrid remote monitoring architecture [9], based on the
WSN and various information technologies. In a second

Available online at: https://ijact.in

Date of Submission

Date of Acceptance

11/10/2018

24/10/2018

Date of Publication 31/10/2018

Page numbers 2831-2837 (7 Pages)

ISSN:2320-0790

https://ijact.in/index.php/ijact/issue/view/80

COMPUSOFT, An international journal of advanced computer technology, 7(10), October-2018 (Volume-VII, Issue-X)

2832

step, we compared the results obtained from its
implementation by a standard computer and a Nano-
computer (Raspberry Pi 3).
In this paper, the work is organized as follows. After a
general introduction, Section II illustrates the improvement
of the hybrid remote monitoring architecture. Section III
details the implementation of the hybrid architecture in two
different environments, and the experimental results
followed by a conclusion.

II. IMPROVEMENT OF THE HYBRID REMOTE MONITORING

ARCHITECTURE

The objective of this work is to improve the robustness of

some existing architectures [9], [10]. We implemented a

new version, both in a computer and a nano-computer, to

compare the behavior of our algorithms over time

(validation of data routing in real time on different

systems).

A. Proposed Hybrid Architecture

In this work, we are interested in Zigbee technology [12],

[13] (also known as IEEE 802.15.4 [14], [15]), which

provides wireless links with low energy consumption.

Let's review the main elements constituting our platform:

 Zigbee [12], [13]: it is a wireless network

protocol, like Wi-Fi or Bluetooth, which is

suitable for control-and-command´s devices over

networks, and other applications requiring low

debit but high reliability.

 MQTT [16]: (Message Queuing Telemetry

Transport) it is a publish-subscribe messaging

service based on the simple and extremely light

TCP / IP protocol. It works on the client / server

principle. The server, named as the broker,

collects the information transmitted by the

publishers (Communicating objects).

 HTTPS [17]: (Hypertext Transfer Protocol

Secure) it is an Internet communication protocol

that protects the integrity and confidentiality of

data while transferring information between the

client and the server.

 Sockets [18]: it is a model for inter-process

communication (IPC) that allows various

processes to communicate on the same machine

through a TCP / IP network. These sockets will

allow managing incoming and outgoing flows to

ensure communication between the client and the

server.

The architecture proposed by the authors of [9] (Fig. 1) is

composed mainly of WSN, a processing server and the

users (clients). The processing server is composed of two

parts. The first part, reserved for the configuration (web

services), allows the platform to receive the hardware and

protocol configuration of each connected client in order to

generate a polling program. The second part deals with the

polling, real-time monitoring of the environment and

access to the database in order to visualize the archive of

the collected data. This last part is done between the

various protocols (MQTT [16], HTTP / HTTPS [17],

Sockets [18]), and the communication channels (Wifi [19],

Ethernet [20], Bluetooth with low consumption [21], the

Internet [22], GSM / GPRS [23]).

Fig. 1. Hybrid Remote Monitoring Architecture

B. Improvement of the proposed hybrid architecture

The proposed architecture consists of ensuring the local or

remote connection of several users to sensors´ network

upon different interconnection technologies. It must meet

an acceptable level of requirements in terms of availability,

reliability and security according to the study case

considered.

We approached several issues related to the design of this

architecture. We can first mention the adaptation and

identification of data from the sensor network before

storing it in a data server. The fault tolerance due to a

random error is handled in case of emergency (critical

values, abnormal overshooting, failures…). The

information is routed according, to a priority procedure

(passing through an emergency channel), to the appropriate

users. Finally, to strengthen the security of the data sent, we

are implementing solutions in this regard.

Based on the points cited above, we previously developed

an architecture under JAVA, supporting, on the one hand,

multiple types of clients (Smartphone, Tablet, Computer,

Data Server…) and, on the other hand, several WSN. In

this work, we have improved, optimized and evaluated this

approach by calculating the packets transmission time as

well as its implementation in a Nano-computer (Raspberry

Pi 3 Model B [24]). This will give rise to a comparison of

our approach on different systems (powerful or limited in

terms of the machine resources).

The improved architecture (Fig. 2) is based on:

(i) a modification of fault tolerance

strategies, and therefore of the polling

algorithm;

COMPUSOFT, An international journal of advanced computer technology, 7(10), October-2018 (Volume-VII, Issue-X)

2833

(ii) the decomposition of the platform into

three distinct servers (processing, storage

and configuration).

Fig. 2. Enhanced Remote Monitoring Architecture

The configuration server implements the configuration part,

the processing server deals with both the data acquisition

and the polling part, while the data server is dedicated to

storing the data. Our new architecture has been

implemented in Raspberry pi 3 Model B with the

integration of the low energy Bluetooth channel [21].

The configuration algorithm shown in algorithm 1,

describes our configuration sending technique which is

done by the connected client, via an interface, and send his

physical and protocol configurations. This allows him to

generate a program related to our polling strategy

(algorithm 2). Thus, the client retrieves, through another

interface, the physical values from the WSN.

The polling algorithm (algorithm 2) below, is established in

order to better represent our method for the tolerance to the

technical breakdowns.

ALGORITHM 1: CONFIGURATION ALGORITHM

Type MQTT = Structure
 URL : String
 TOPIC : String
 End

Type RES = Structure
 URL : String
 PORT : String
 End

Data M [3] : MQTT
 R [6] : RES
 GSM1, GSM2 : Integer
 Choice : Boolean
Begin
 For i from 1 to 3
 Read (Choice)
 If Choice = True then
 Read (M [i] . URL)
 Read (M [i] . TOPIC)
 End If
 End For

 For i from 1 to 6
 Read (Choice)
 If Choice = True Then
 Read (R [i] . URL)
 Read (R [i] . PORT)
 End If
 End For

 Read (GSM1)
 Read (GSM2)
 Send (M, R, GSM1, GSM2)
End

COMPUSOFT, An international journal of advanced computer technology, 7(10), October-2018 (Volume-VII, Issue-X)

2834

ALGORITHM 2: POLLING ALGORITHM

Data Packet : Digit
 Data [] : Digital Vector
 Channel : Digital Couple
 Channel_Ref : Digital Couple
Begin
 Packet  Collect ()
 Data []  Process (Packet)
 For i from 1 to 6
 If Urgent (Data [i]) Then
 Send on UrgentChannel (Data [i])
 Else
 Canal  InitiationSendCycle ()
 Channel_Ref  Channel
 SendCycle  0
 While (Send (Data [i], Channel) = False) Do
 If TestChannels () = True Then
 Channel  SearchChannel ()
 Else
 SendCycle  SendCycle + 1
 If SendCycle > 5 Then
 Send UrgentChannel (Data [i])
 Send ErrorLog ()
 Else
 Canal  Channel_Ref
 End If
 End If
 End While
 End IF
 End For
End

WSN allows the collection of physical quantities

(Temperature, Pressure…) from the sensor nodes deployed

on the field to the base station. These data packets are sent

to the registered clients according to the polling algorithm.

When collecting a new packet, the system automatically

triggers its transmission. This packet is usually processed

by a processing interval of priority packets that we set

according to the application. If, for example, the

temperature detected exceeds the maximum set, the system

automatically sends it to the relevant users via the

emergency channel (SMS messaging). Otherwise, it

initializes and resumes the normal sending cycle via the last

reference channel which is always used as long as the data

arrives successfully at its destination. In the case of a

failure, the channel test procedure is triggered in order to

select a new functional channel. If after five attempts, no

channel is detected, the system uses the emergency channel

which handles both the sending of the data and the report

on the failures that have occurred. All packets are

transmitted with receipt acknowledgment.

III. IMPLEMENTATION, EXPERIMENTAL TEST RESULTS

AND COMPARISON

Our hybrid architecture based on WSN and interconnection

means was realized under JAVA.

A. Implemetation

We have implemented a ZigBee WSN platform

(CrossbowMicaZ) [25] consisting of 40 sensor nodes based

on the microcontroller « MPR2400 » based on « Atmel

ATmega128L » from ZigBee-Alliances [12]. The sensor

nodes (« MDA 100 » & « MTS 420 ») are connected to the

base station in a mesh topology.

First, we collect physical quantities, including temperature,

humidity, geo-position of the node relative to the base

station and the energy consumed by each node. These data

are stored in a server. Then, we perform various tests by a

computer and Raspberry Pi 3 with interfaces designed

under JAVA (Figs. 3, 4, 5) and a smartphone (Android

application). Sending SMS is handled by a GSM / GPRS

module [23].

One can access the various services offered by our system

(Supervision, History…) by means of set up interfaces. The

«Client-Authentication» interface (Fig. 3) allows the user

to authenticate and select the desired service. On the other

hand, the «Client-Configuration» interface (Fig. 4) makes it

possible to insert the desired configuration detailed in

algorithm 1. Thus, the polling server generates a program

related to the client's request and consequently the data is

displayed in the protocol’s interfaces. Figures 5 and 6 show

the client interface specific to the MQTT protocol and the

visualization of the history and statistics of our application.

Fig. 3. Client-Authentication Interface

COMPUSOFT, An international journal of advanced computer technology, 7(10), October-2018 (Volume-VII, Issue-X)

2835

Fig. 4. Client-Configuration Interface

Fig. 5. Client-Protocol MQTT Interface

Fig. 6. Access Interface to the Database

B. Results of experimental tests

In this work, we evaluate and validate our algorithm by the

time calculation T of information processing (T = packet

sending time + acknowledgment time) under both

environments (Computer and Raspberry pi 3). For each

device, we calculated the information processing time, the

average, the minimum and the maximum time of the packet

transmission. These results are based on actual

measurements of the experimental tests that we performed

on our platform.

The results of the calculation of T are recorded in our

database as well as the sensors measurements and their

archiving. This allowed us to study and establish graphs

(Figs. 6 to 11) for different possible cases of our

information processing strategy (algorithm 2).

For the calculation of T we experimentally tested our

system on three possible scenarios:

1) 1st Scenario: Normal transmission of packets
using the reference channel

Figures 7 and 8 illustrate the evolution of T calculated

according to the transmitted packets. This case study

corresponds to the processing of information through the

reference channel.

On a set of packages:

For the computer environment: the time T varies between

22 ms and 96 ms and the TAverage is 44.35 ms;

For the Raspberry environment: the time T varies between

50 ms and 256 ms the TAverage is 101.62 ms.

Fig. 7: T Calculated For the Computer Environment

Fig. 8: T Calculated For The Raspberry Pi 3 Environment

0

20

40

60

80

100

120

0 10 20 30

T
in

 "
m

s"

Packages Numbers

0

50

100

150

200

250

300

900 903 906 909 912 915 918 921 924 927

T
in

 "
m

s"

Packages Numbers

COMPUSOFT, An international journal of advanced computer technology, 7(10), October-2018 (Volume-VII, Issue-X)

2836

2) 2nd Scenario: Transmission with polling to
another channel

This scenario addresses the case of polling to another

channel following a failure in the reference channel. The

evolution of the transmission time T according to the

transmitted data is illustrated in figures 9 and 10. We

observe that, in this case, T is less than or equal to 1000 ms

on the Computer environment and between 1132 ms and

1800 ms on the Raspberry Pi 3.

Fig. 9: T Calculating For The Computer Environment

Fig. 10: T Calculating for the Raspberry Pi 3 Environment

3) 3rd Scenario: Transmission of packets using the
emergency channel

The figures 11 and 12 represent the variation of the time T

according to the packets transmitted in the case of using the

emergency channel. The latter is used for:

 Cases of urgent data transmission;

 Cases of data transmission following the failure of

all channels.

In the Computer environment: T is around 5000 ms;

In the Raspberry environment: T is between 3000 ms and

5000 ms.

Fig. 11: T calculated for the computer environment

Fig. 12: T Calculating for the Raspberry Pi 3 Environment

C. Comparison of the experimental results in both

environments

The experimental tests were performed under both

environments (Computer and a Raspberry Pi 3 Nano-

computer). For our platform, the results of T were

calculated according to 3 possible scenarios (Table 1). We

notice that for the 1st and 2nd scenarios (normal case) the

times are acceptable and the environment Computer

responds quickly to our solution compared to Raspberry Pi

3. However, for the 3rd scenario, where we handle urgent

information, Raspberry Pi 3 is faster than the computer.

TABLE 1: COMPARISON OF T ACCORDING TO THE 3

SCENARIOS BETWEEN THE 2 ENVIRONMENTS.

 Computer

Environnement

Raspberry Pi 3

Environnement

T min Tmax T moy T min T max T moy

1
st

scenario

22

ms

96

ms

44,35

ms

50

ms

256

ms

101,62

ms

2
nd

scenario

997

ms

1000

ms

1003

ms

1132

ms

1800

ms

1444,73

ms

3r
d

scenario
 5000

ms

 3000

ms

5000

ms

4000 ms

0

500

1000

1500

3
2

4
2

5
2

6
2

7
2

8
2

9
2

1
0

2

1
1

2

1
2

2

1
3

2

1
4

2

T
in

 "
m

s"

Packages Numbers

0

500

1000

1500

2000

8
5

8

8
6

9

8
8

0

8
9

1

9
0

2

9
1

3

9
2

4

9
3

5

9
4

6

9
5

7

9
6

8

T
in

 "
m

s"

Packages Numbers

0

1000

2000

3000

4000

5000

6000

1 5 9 13 17 21 25 29 33 37 41 45 49 53

T
in

 "
m

s"

Packages Numbers

0

2000

4000

6000

9
6

5

9
6

8

9
7

1

9
7

4

9
7

7

9
8

0

9
8

3

9
8

6

9
8

9

9
9

2

9
9

5

9
9

8

1
0

0
1

T
in

 "
m

s"

Packages numbers

COMPUSOFT, An international journal of advanced computer technology, 7(10), October-2018 (Volume-VII, Issue-X)

2837

IV. CONCLUSION

In this paper, we have proposed a remote monitoring

architecture based on the crossbow WSN that meets certain

requirements. It uses a WSN and three hosted servers in a

standard computer and a Nano-computer for the

acquisition, storage and dissemination of data, taking into

account our information processing strategies.

To validate its feasibility, we tested our prototype for the

two equipment according to three case studies: the

transmission of data by the reference channel, the polling

towards other channels and the prevention of failures by

using the emergency channel. Following these tests, we

compared the results obtained by the two environments.

V. REFERENCES

[1] A. Sahu, E. B. Fernandez, M. Cardei, et M. Vanhilst, “A Pattern for a
Sensor Node”, in Proceedings of the 17th Conference on Pattern
Languages of Programs, New York, NY, USA, 2010, p. 7:1–7:7.

[2] M. Cardei, E. B. Fernandez, A. Sahu, et I. Cardei, “A Pattern for
Sensor Network Architectures”, in Proceedings of the 2Nd Asian
Conference on Pattern Languages of Programs, New York, NY, USA,
2011, p. 10:1–10:8.

[3] A. Marzak, M. Hamraoui, H. Belhadaoui, “Conception et réalisation
d’une architecture hybride intégrant des réseaux de capteurs sans fil et
technologies d’information et de communication” Mediterranean
Telecommunications Journal « MTJ », Vol. 6, N° 2, June 2016.

[4] M. Cardei, A. Marcus, I. Cardei, et T. Tavtilov, “Web-based
heterogeneous WSN integration using pervasive communication”, in
Performance Computing and Communications Conference (IPCCC),

2011 IEEE 30th International, 2011, p. 1‑6.

[5] D. Barata, G. Louzada, A. Carreiro, et A. Damasceno, “System of
Acquisition, Transmission, Storage and Visualization of Pulse
Oximeter and ECG Data Using Android and MQTT”, Procedia

Technol., vol. 9, p. 1265‑1272, 2013.

[6] H. Huang, S. Xiao, X. Meng, et Y. Xiong, “A Remote Home Security
System Based on Wireless Sensor Network and GSM Technology”, in
2010 Second International Conference on Networks Security Wireless
Communications and Trusted Computing (NSWCTC), 2010, vol. 1, p.

535‑538.

[7] S. Nadir, A. Marzak, K. Lahma, H. Belhadaoui, et M. Hamraoui,
“Design and complexity analysis of algorithm treating the credibility
of the information: Application to WSN”, NNGT Int J Netw. Comput.,
vol. 2, févr. 2015.

[8] A. Marcus, M. Cardei, I. Cardei, E. Fernandez, F. Frati, et E. Damiani,
“A Pattern for Web-based WSN Monitoring (Invited Paper)”, J.
Commun., vol. 6, no 5, août 2011.

[9] A. Marzak, M. Hamraoui, H. Belhadaoui, “Heterogeneous Networks
of Remote Monitoring with High Availability and Resilience
Application to Wireless Sensor Networks” The International Journal of
Computer Science and Information Security “IJCSIS”, Vol. 15 No. 8
Aug. 2017.

[10] A. Marzak, M. Hamraoui, “Architecture de télésurveillance basée sur
les réseaux de capteurs sans fils. Application à la plateforme de
capteurs CrossBow” Mediterranean Telecommunications Journal
“MTJ”, Vol. 8, N° 2, August 2018.

[11] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures”, University of California, Irvine, 2000.

[12] « The ZigBee Alliance | Control your World ». [En ligne]. Disponible
sur: http://www.zigbee.org/.

[13] F. Shariff, N. A. Rahim, et W. P. Hew, “Zigbee-based data acquisition
system for online monitoring of grid-connected photovoltaic system”,

Expert Syst. Appl., vol. 42, no 3, p. 1730‑1742, févr. 2015.

[14] “IEEE-SA - The IEEE Standards Association – Home”. [En ligne].
Disponible sur: http://standards.ieee.org/.

[15] C. Suh, Z. H. Mir, et Y.-B. Ko, “Design and implementation of
enhanced IEEE 802.15.4 for supporting multimedia service in Wireless

Sensor Networks”, Comput. Netw., vol. 52, no 13, p. 2568‑2581, sept.
2008.

[16] “IEEE Xplore Abstract - MQTT-S — A publish/subscribe
protocol for Wireless Sensor Networks”. [En ligne]. Disponible sur:
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4554519&url=
http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnu
mber%3D4554519.

[17] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, et
T. Berners-Lee, “Hypertext transfer protocol--HTTP/1.1. RFC 2616”,
June, 1999.

[18] K. L. Calvert et M. J. Donahoo, “TCP/IP sockets in Java : practical
guide for programmers.” Morgan Kaufmann, 2011.

[19] P. Mühlethaler et O. Salvatori, “802.11 et les réseaux sans fil”.
Eyrolles, 2002.

[20] R. M. Metcalfe et D. R. Boggs, “Ethernet : distributed packet
switching for local computer networks”, Commun. ACM, vol. 19, no

7, p. 395‑404, 1976.

[21] J. Lee, Y. Su, C. Shen, “A comparative study of wireless protocols:
Bluetooth, UWB, ZigBee, and Wi-Fi”, IEEE IECONN, Nov. 2007, pp.
46-51.

[22] J. Postel, “Internet Protocol”, 1981.

[23] T. Halonen, J. Romero, et J. Melero, “GSM, GPRS and EDGE
performance : evolution towards 3G/UMTS”. John Wiley & Sons,
2004.

[24] Jain, S., Vaibhav, A., & Goyal, L. (2014, February). “Raspberry Pi
based interactive home automation system through E-mail”. In
Optimization, Reliabilty, and Information Technology (ICROIT), 2014
International Conference on (pp. 277-280). IEEE.

[25] Crossbow, W. S. N. Professional Kit: http://www. xbow. com.
Products/productdetails. aspx.

