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Abstract: A substantial issue in modern risk management is the measurement of risks. Specify, the requirement to quantify risk 

discovers in many different contexts. For instance, a regulator measures the risk exposure of a government institution in order 

determining the maximum value from any phenomenon occurred as a tool against unexpected losses. Particularly attention will 

be given to Value-at-Risk (V@R). Mostly, implementation of V@R is in financial cases, as potential alarm of institution to 

anticipate the magnitude of risk. Combining V@R with the forecast function of AR-ARCH processes, this paper proposes a new 

implementation of estimative-V@R and improved-V@R to compute heavy rain as representation of worst weather, which has 

the same future goal providing funds to anticipate financial losses. There are limited researches related to heavy rain forecast 

based on constructing a process by considering risk of with modifying some mathematics equations. We consider an overview of 

the existing approaches to measure V@R of weather data involving time series process and some stochastic expansion. We 

present V@R using AR and heteroscedastic processes ARCH considering the changes of data volatility. We consider an 

estimative prediction limit to determine an improved prediction limit with better conditional coverage properties. The parameter 

estimator of AR-ARCH is assumed to have the same asymptotic distribution as the conditional maximum likelihood estimator. 

This paper deals with calculation coverage probability to validate α-V@R performance. 
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I. INTRODUCTION 

When dealing with random variables, one of the 

characteristics that has to be considered is the maximum 

value observed. In many cases the maximum value is 

related to a loss or a risky condition. A risk measurement 

becomes an important study in data analysis, since it is 

often associated with investment and is not uncommonly 

associated with public (society) funding. A general 

viewpoint of risk is a risk mostly proportional to profit, the 

truly greatest risk happens when the company or a 

government or even individual does not dare to take risks. 

And risk management will never be effective if it is not 

accompanied by the ability to measure a risk itself. One of 

measuring tools that used to quantify the risk condition is 

Value-at-Risk (V@R). This is very clear that V@R 

represents as a maximum value can be tolerated at some 

confidence levels (𝛼).  

Independently of any context, risk relates strongly to 

uncertainty, and hence to the notion of randomness. As the 

observation data is used a rainfall data from Bandung 

regency to calculate prediction and measure the 

performance of V@R. In 2017, there are many issues of 

disasters occurred in Indonesia related to the bad weather, 
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some of the concerns during 2017-2018 are flood and 

landslide disasters. Natural disasters such as floods are one 

of event related to risk due to high levels of unanticipated 

heavy rain.  It should be clear from the outset that good risk 

measurement is a must.  

 

Suppose 𝑌 = 𝑌1 , 𝑌2 , … , 𝑌𝑛 , 𝑛 ∈ 𝑁+the observable random 

rainfall vector, the future Value-at-Risk (V@R) of rainfall 

follows a cumulative distribution 𝐹𝑦  depending on the 

unknown parameter 𝜔. An 𝛼-prediction interval for V@R 

(henceforth quantile V@R), in particularly, an𝛼-prediction 

limit 𝑞𝑛+1
𝛼 , exactly or approximately, 

𝑃𝜔 𝑌𝑛+1 ≤ 𝑞𝑛+1
𝛼  𝜔|𝑌1 , 𝑌2, … , 𝑌𝑛  = 𝛼 

Some researchers concern to introduce volatility-time 

series processes and stochastics expansions using Taylor 

and Maclaurin series as a part of the process of managing 

risk [1]. 

Researchers and practitioners have started to forecast 

weather using Soft Computing and Data mining approach: 

see, for example the previous research point out that a 

comparative study of grammatical evolution and adaptive 

neuro-fuzzy inferences system for forecasting rainfall in 

Bandung [2]. Then, some researcher implemented a local 

regression smoothing and Fuzzy-grammatical evolution for 

rainfall forecasting [3].  There are limited researches 

related to rainfall forecast based on constructing a time 

series models by considering risks (heavy rain) forecast 

with modifying some mathematics equations. 

Banrndoff et al. interpret the upper prediction limit 

approach that achieve third – order accuracy [4]. Related to 

Huang et al, V@R is managed by using heteroscedastic 

time series GARCH process and Copula approach. To 

determine the performance of V@R – based on 

heteroscedastic process is calculated by the coverage 

probability, as noted by Vidoni [5-6]. The previous 

research considers an alternative measure using Expected 

Shortfall over V@R, due to its capability to handle 

magnitude risk under the result of coverage probability [7]. 

As noted that rainfall observation follows time series 

observation. According to McNeil et al, ARCH is a time 

series process that can accommodate for changing volatility 

behavior on data observation [8]. A volatility describes the 

amount of data change, in this case of rainfall data, 

expressed by a conditional standard deviation. 

Therefore, in this paper we consider time series processes 

AR-ARCH with stochastic expansion for calculating heavy 

rainfall V@R-factor change data. We begin by looking 

more systematically at the description properties of V@R 

in Section II. In Section III, we review essential concept of 

volatility in the analysis of time series, such as AR-ARCH 

processes. We then devote section IV to simulate modified 

V@R based on AR-ARCH processes including a summary 

of the V@R-coverage probability. 

II. DESCRIPTION OF V@R-BASED MODIFIED 

UPPER PREDICTION LIMIT 

Suppose the observable random rainfall vector 𝑌 =
(𝑌1, 𝑌2 , … , 𝑌𝑛 ), 𝑛 ∈ 𝑁+, the future Value-at-Risk (V@R), 

𝑞𝑛+1
𝛼  𝜔|𝑌1 , 𝑌2 , … , 𝑌𝑛 , follows a cumulative distribution 𝐹𝑦  

depending on the unknown parameter 𝜔. Firstly, our aim is 

to find an upper limit 𝑞𝑛+1
𝛼  𝜔|𝑌1 , 𝑌2 , … , 𝑌𝑛 , for 𝑌𝑛+1, such 

that it has coverage probability equal to 𝛼 and refers to the 

joint distribution of (𝑌𝑛 , 𝑌𝑛+1). Based on Eq. 1, we 

consider an 𝛼 as a coverage probability of the magnitude of 

heavy rainfall equal and or less than V@R. In case to 

anticipate a heavy rainfall, we examine calculating V@R, 

𝑞𝑛+1
𝛼 . 

𝑃𝜔 𝑌𝑛+1 ≤ 𝑞𝑛+1
𝛼  𝜔|𝑌1 , 𝑌2, … , 𝑌𝑛  = 𝛼                      (1) 

where 𝛼 ∈ (0,1) is fixed for all 𝜔. While 𝜔 is unknown, 

we consider for estimate solutions and the simplest 

approach requires the estimative predictive density 

𝑓(𝑞; 𝜔|𝑦), an estimator of the right conditional density 

obtained by replacing 𝜔 with an asymptotically efficient 

estimator 𝜔 . Thus, we noted the argument (due to 

Barndorffet al.) presenting that the coverage probability of 

𝑞𝑛+1
𝛼  that is 𝛼 + 𝑂(𝑛−1) [4]. It is well known that 

unconditional and the 𝛼-conditional coverage probability of 

𝑞 𝑛+1
𝛼 differ from 𝛼 by a term usulaly of order 𝑂(𝑛−1) and 

prediction statements may be rather inaccurate for small. 

This section deals with calculation coverage probability of 

the estimative prediction limit 𝑞 𝑛+1
𝛼 , it is possible to rewrite 

Eq. 1 as, 

𝑃𝜔 𝑌𝑛+1 ≤ 𝑞𝑛+1
𝛼  𝜔|𝑌1 , 𝑌2 , … , 𝑌𝑛  = 𝐸𝜔  𝐹 𝑞𝑛+1

𝛼  𝜔|𝑌1 , 𝑌2 , … , 𝑌𝑛    

With the above formulations, given an estimation statistic 

expressed, 

𝐺𝛼 (𝜔 ) = 𝐹(𝑞𝑛+1
𝛼  𝜔 |𝑌1 , 𝑌2 , … , 𝑌𝑛 ) 

(2) 

where 𝐸𝜔 is carried out, numerically, using the parametric 

bootstrap. Now, by applying a Taylor expansion for Eq. 2, 

considered as function of 𝜔 , may be shown that, 

𝐺𝛼 𝜔  = 𝐺𝛼 𝜔 +  𝜕𝐺𝛼 𝜔  

𝜕𝜔𝑖 
 
𝜔 =𝜔

 𝜔𝑖 − 𝜔𝑖 

+  
𝜕2𝐺𝛼 𝜔  

𝜕𝜔𝑝 𝜕𝜔𝑞 
 
𝜔 =𝜔

 𝜔𝑝 − 𝜔𝑝  𝜔𝑞 − 𝜔𝑞 + ⋯ 

where 𝜔𝑖  denotes the-ith component of parameter vector 𝜔, 

around 𝜔 = 𝜔 and the taking the mean with respect to 

probability density 𝑔 𝜔 ; 𝜔, 𝛼 , we establish an 

approximation for the 𝛼-conditional coverage probability 

of 𝑞 𝑛+1
𝛼  

𝑃𝜔 𝑌𝑛+1 ≤ 𝑞𝑛+1
𝛼  𝜔 |𝑌1 , 𝑌2 , … , 𝑌𝑛  

= 𝛼 +  
𝜕𝐺𝛼 𝜔  

𝜕𝜔𝑖 
 
𝜔 =𝜔

𝐸 𝜔𝑖 − 𝜔𝑖 

+
1

2
 𝜕

2𝐺𝛼 𝜔  

𝜕𝜔𝑝 𝜕𝜔𝑞 
 
𝜔 =𝜔

 

𝐸   𝜔𝑝 − 𝜔𝑝  𝜔𝑞 − 𝜔𝑞  + ⋯ 

since exactly 𝐺𝛼 𝜔 = 𝛼 and we have 𝑑𝛼 𝜔 𝑛−1 + ⋯ as 

correction factor of 𝛼. Thus, 
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𝑃𝜔 𝑌𝑛+1 ≤ 𝑞𝑛+1
𝛼  𝜔|𝑌1 , 𝑌2 , … , 𝑌𝑛   = 𝛼 + 𝑑𝛼 𝜔 𝑛−1 + ⋯ (3) 

The 𝑂(𝑛−1) term 𝑑𝛼 𝜔 𝑛−1 is noted by Barndorff et al. 

and Vidoni, they reported two equivalent modifications 

[4][6], 

𝐸𝜔  𝜔 − 𝜔 𝑌1 , 𝑌2 , … , 𝑌𝑛 = 𝑏 𝜔 𝑛−1 + ⋯ 

𝐸𝜔 ( 𝜔 − 𝜔) 𝜔 − 𝜔 𝑇 𝑌1 , 𝑌2, … , 𝑌𝑛 = 𝑖−1(𝜔) + ⋯ 

Then, 𝑑𝛼 𝜔 𝑛−1 leads to 

 𝜕𝐺𝛼 𝜔  

𝜕𝜔𝑖 
 
𝜔 =𝜔

𝑏 𝜔 𝑛−1 +  1

2

𝜕2𝐺𝛼 𝜔  

𝜕𝜔𝑝 𝜕𝜔𝑞 
 
𝜔 =𝜔

𝑖𝑝𝑞 + ⋯ 

Some improvement for obtaining prediction limits with 

better asymptotic coverage properties have been shown by 

Kabaila-Syuhada [9], 

𝑞𝛼,𝑛+1
+  𝜔|𝑌1 , 𝑌2 , … , 𝑌𝑛 = 𝑞𝑛+1

𝛼  𝜔 − 𝑐𝛼 𝜔 𝑛−1 (4) 

It is possible to obtain an approximate correct to order 

𝑂  𝑛−
3

2  expressed as modification of the estimative 

prediction limit of Eq. 1, 

𝑐𝛼 𝜔 =
𝑑𝛼 𝜔 

𝑓(𝑞𝑛+1
𝛼 (𝜔))

 
 

The prediction limit Eq. 4 is defined to keep the additional 

𝑂(𝑛−1) term in Eq. 3, so that both the unconditional and 

the conditional coverage probability, is 𝛼 + 𝑂(𝑛−
3

2). A bias 

𝑏 𝜔 𝑛−1 of estimator 𝜔  is surely affecting on calculation 

the correction 𝑐𝛼 𝜔 . Thus, the 𝛼-quantile to third-order 

accuracy is 

𝑃𝜔  𝑌𝑛+1 ≤ 𝑞𝛼,𝑛+1
+  𝜔|𝑌1, 𝑌2 , … , 𝑌𝑛  

= 𝛼 + 𝑐𝛼 𝜔 𝑛−1 + 𝑂  𝑛−
3

2 + ⋯ 

We recap the argument (due to Ueki-Fueda) showing the 

improvement prediction limit 𝑞𝛼,𝑛+1
+  may be calculated as 

[10], 

𝑞𝑛+1
𝛼 +  𝜕𝑞𝛼 𝜔  

𝜕𝜔𝑖 
 
𝜔 =𝜔

 𝜔𝑖 − 𝜔𝑖 

+  
1

2
 𝜕

2𝑞𝛼 𝜔  

𝜕𝜔𝑝 𝜕𝜔𝑞 
 
𝜔 =𝜔

 𝜔𝑝 − 𝜔𝑝  𝜔𝑞 

− 𝜔𝑞 +  𝑐𝛼 𝜔 + ⋯ 

III. COMPUTATION OF V@R COVERAGE-BASED 

CORRECTED FOR AR(1) PROCESS 

We first consider  𝑌𝑡 𝑡≥1 is the observed time series 

following Autoregressive (AR) process. The AR(1) process 

represents the combination of present and past observation 

at 1-th order and satisfies, 

𝑌𝑡 = 𝑏𝑌𝑡−1 + 𝜖𝑡  

The 𝜖𝑡  are „innovation‟ term that independent and 

identically distribution. Suppose that {𝑌(𝑡)} is a Markov 

process, where the observable data are 𝑌1 , 𝑌2 , … , 𝑌𝑡 . Notice 

the implication of variance AR(1) process that  𝑏 < 1. Fix 

𝛼 ∈ (0,1), we can calculate 𝛼-estimative V@R for 𝑌𝑡+1, 

refers to Eq.2, 

𝑃𝑏  𝑌𝑡+1 ≤ 𝑞𝑡+1
𝛼  𝑏|𝑌(𝑡)  

= 𝑃𝑏 𝜖𝑡+1 ≤ 𝑞𝑡+1
𝛼  𝑏|𝑌 𝑡  − 𝑏 𝑦𝑡  

𝛼 = Φϵ 𝑞𝑡+1
𝛼  𝑏|𝑌 𝑡  − 𝑏 𝑦𝑡  

Using Φ−1, the 𝛼-estimative V@R for 𝑌𝑡+1 satisfies, 

𝑞𝑡+1
𝛼  𝑏 |𝑌(𝑡) = −𝑏 𝑦𝑡 + Φϵ

−1 𝛼  𝜎  (5) 

Since, Φ denotes the non-negative distribution function and 

𝑏  is obtained by implementing conditional maximum 

likelihood, the result in Table 1. Then, we calculate 𝜎  as, 

  𝑦𝑡 + 𝑏 𝑦𝑡−1 
2𝑛

𝑡=2

𝑛 − 1
 

 
TABLE I: PARAMETERS ESTIMATION OF AR AND ARCH 

 
Process Parameters Value 

AR(1) 
𝑏  0.6392 

𝜎  2.3 × 104 

ARCH(1) 
𝑎 0 3.9 × 104 

𝑎 1 0.3348 

 

Now, we calculate the coverage probability of estimative 

V@R for AR(1) process respectively in Eq. 2 and Eq. 5, 

𝑃𝑏  𝑌𝑡+1 ≤ 𝑞𝑡+1
𝛼  𝑏 |𝑌 𝑡   

= 𝑃𝑏   𝜖𝑡+1

≤ (𝑏 − 𝑏 )
𝑦𝑡

𝜎
+ Φϵ

−1 𝛼  
𝜎 

𝜎
 𝑌(𝑡)

= 𝑦(𝑡)  

 

= 𝐸𝑏  Φϵ   (𝑏 − 𝑏 )
𝑦𝑡

𝜎
+ Φϵ

−1 𝛼  
𝜎 

𝜎
 𝑌(𝑡) = 𝑦(𝑡)   

 

(6) 

Then, the 𝛼-improved V@R following Eq. 4 for AR(1) 

process may be calculated as, 

𝑞𝛼,𝑡+1
+  𝑏 |𝑌 𝑡  = 𝑞𝑡+1

𝛼 − 𝑐𝛼 𝑏  

We follow Kabaila-Syuhada to compute improved V@R 

for Autoregressive processes reducing the coverage error to 

𝑂(𝑛−
3

2) [11], 

𝑃𝑏  𝑌𝑡+1 ≤ 𝑞𝛼,𝑡+1
+  𝑏 |𝑌 𝑡   

= 𝑃𝑏   𝜖𝑡+1

≤ 𝑏
𝑦𝑡

𝜎
+

𝑞𝑡+1
𝛼  𝑏 |𝑌(𝑡) 

𝜎
 𝑌(𝑡)

= 𝑦(𝑡)  

 

                                                

= 𝐸𝑏  Φϵ   𝑏
𝑦𝑡

𝜎

+
𝑞𝑡+1

𝛼  𝑏 |𝑌(𝑡) 

𝜎
 𝑌(𝑡) = 𝑦(𝑡)   

 

(7) 

Fig.  1 shows the autocorrelation among data at lag 1-100, 

which is cut off in lag 2, then we consider to put orde-1 in 

time series processes, AR(1). It refers to the present 
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observation only depends on the past (𝑡 − 1) observation. 

From Fig.  2, the V@R with 99% level of confidence is 

located above the rainfall data and describe the expectation 

maximum level of rainfall, with 108 limited observable 

rainfall. In this Fig. 2 that trends estimative V@R-AR not 

reflecting the maximum value with time-varying. 

 
 

Figure 1: Plot rainfall autocorrelation (ACF) until lag 100 

 
 

Figure 2: Estimated and improved V@R using AR(1) process 

 

Thus, we can see improved V@R-AR approaching the 

extreme (maximum) value, but not precisely. The V@R 

performance present in Table 2, the coverage probability 

V@R-AR is quite different with level of confidence that 

given (𝛼). 

IV. COMPUTATION V@R COVERAGE-BASED 

CORRECTED FOR ARCH(1) PROCESS 

We devote this section to univariate ARCH (Autoregressive 

Conditional Heteroscedastic) process for capturing the 

phenomenon of changing volatility. Volatility is often 

formally called as the conditional standard deviation of 

financial returns given historical information [8]. Suppose 

the observable random rainfall vector 𝑌 = 𝑌1 , 𝑌2 , … , 𝑌𝑡  

follow ARCH(1), may be written as, 

𝑌𝑡 = 𝜎𝑡𝜖𝑡   

A𝜎𝑡  well known as volatility and𝜖𝑡  be strict white noise. 

The process  𝑌𝑡  is an ARCH(1) process if it is strictly 

stationary and if it is satisfies, 

𝜎𝑡
2 = 𝑎0 + 𝑎1𝑌𝑡−1

2  (8) 

Let some confidence level 𝛼 ∈ (0,1), the estimative V@R-

ARCH(1) of rainfall data, formally,  

𝑃𝑎  𝑌𝑡+1 ≤ 𝑞𝑡+1
𝛼  𝑎|𝑌(𝑡)   = 𝑃𝑎  𝜖𝑡+1 ≤

𝑞𝑡+1
𝛼  𝑎|𝑌(𝑡) 

𝜎𝑡+1

  

𝛼 = Φ𝜖  
𝑞𝑡+1

𝛼  𝑎|𝑌 𝑡  

𝜎𝑡+1

  

Thus, 

𝑞𝑡+1
𝛼  𝑎 |𝑌 𝑡  = 𝜎𝑡+1Φ

𝜖
−1 𝛼 =  𝑎 0 + 𝑎 1𝑦𝑡

2Φ𝜖
−1 𝛼  (9) 

where Φ is non-negative cumulative distribution of 𝜖𝑡 ,  

𝑎𝑖 , 𝑖 = 0, 1 denotes the parameters of ARCH(1) that carried 

out using conditional maximum likelihood in Table 1.  

 
 

Figure3: Estimated and improved V@R using ARCH(1) process 

 

Moreover, to calculate V@R-based on improved prediction 

limit, we have to discover 𝑐𝛼 𝜔  in Eq. 4, which may be 

expressed as, 

𝑃𝑎  𝑌𝑡+1 ≤ 𝑞𝛼,𝑡+1
+  𝑎 |𝑌 𝑡   = 𝑃𝑎   𝜖𝑡+1 ≤  

 𝑎0 + 𝑎1 𝑦𝑡
2

𝑎0 + 𝑎1𝑦𝑡
2 Φ𝜖

−1(𝛼) 𝑌(𝑡) = 𝑦(𝑡)  

= 𝐸𝑎  Φϵ    
 𝑎0 + 𝑎1 𝑦𝑡

2

𝑎0 + 𝑎1𝑦𝑡
2 Φ𝜖

−1 𝛼  𝑌 𝑡 = 𝑦 𝑡     

(10) 

We simulate this conditional expectation using the method 

of Kabaila-Syuhada [5]. From Fig.3, the V@R data with a 

99% confidence is surely higher than that with a 95% level 
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of confidence. We can see, comparing with V@R-AR(1), 

estimative and improved V@R-ARCH(1) describes the 

high level of rainfall data series quite well following the 

time-varying of data. Then, we compute coverage 

probability from estimative and improved V@R involving 

AR(1) and ARCH(1), based on Eq. 10. Then, we assess 

coverage probability as an𝛼-realization to measure the 

V@R performance. The following is the comparison a 

coverage probability between AR and ARCH based on a 

given level of confidence (𝛼). 

 
TABLE II: COVERAGE PROBABILITY BASED ON VARIOUS LEVELS OF 

CONFIDENCE 

 
 𝜶 𝜶 -estimated 𝜶 -improved 

AR(1) 

0.90 0.843 0.997 

0.95 0.898 0.997 

0.99 0.963 0.991 

ARCH(1) 

0.90 0.878 0.910 

0.95 0.941 0.951 

0.99 0.970 0.992 

 

We show that in Table 2, implementation of coverage 

probability to rainfall data, both with an estimative an 

improved V@R, ARCH(1) better than AR(1) due its 

closeness of coverage probability (𝛼 ) to a given level of 

confidence (𝛼). 

V. CONCLUSIONS 

Value-at-risk (V@R) represents a methodology describing 

the maximum value of random variable and has become 

one of the most confidence tools to handle risk factors. We 

deal with an 𝛼as the coverage probability of the magnitude 

of heavy rainfall equal and or less than V@R. An 𝛼 upper 

prediction limit for future value 𝑌𝑛+1is such that exactly,  

𝑃𝜔 𝑌𝑛+1 ≤ 𝑞𝑛+1
𝛼  𝜔|𝑌1 , 𝑌2, … , 𝑌𝑛  = 𝛼 

In case to anticipate a heavy rainfall, we examine 

calculating V@R, 𝑞𝑛+1
𝛼 . Combining V@R with the forecast 

function of AR-ARCH processes, this paper proposes a 

new implementation of estimative-V@R and improved-

V@R to estimate heavy rain representing worst weather 

(specified rainfall data in Indonesia). The empirical results 

show that, comparing between AR and ARCH processes, 

the ARCH process captures the V@R more successfully, 

considering coverage probability for each level of 

confidence. The coverage probability is discovered by 

calculating bias parameters estimation, using maximum 

likelihood and Taylor expansions (see Barndorffet al. and 

Vidoni) [4][6]. In addition, estimative and improved V@R-

ARCH(1) describes the heavy rain of rainfall data series 

quite well. 
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