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Abstract: In this study, we proposed to study the mathematical analysis of a Leslie Gower type predator prey model. The 

model considers the dynamics of a predator and prey populations with constant-effort harvesting applied in the predator 

population. We then computed and identified the existence of different equilibrium points of the model and investigated 

local stabilities of those points. We then proved that the system undergoes transcritical bifurcation.  
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I. INTRODUCTION 

In 1920, Lotka proposed a simple predator prey model of 

herbivores feeding on plants. Several years later, Volterra 

proposed the same model in fish population. Their model 

has become wide known for the name Lotka-Volterra 

model, or simply the predator prey model [1, 12]. Later a 

large number of literature and researches on the effect of 

predation, harvesting and competition on the ecological 

state have been made [14, 8, 3]. 

Modeling the dynamics of a predator prey has been 

greatly used in the management and exploitation of 

biological resources, specifically in the marine life. 

Marine life is a biological resource that provides 

important ecosystem services like food, medicine and 

livelihood [5, 18, 16, 6]. According to [2, 7], dynamics of 

predator prey model with harvesting plays a special role 

in the management of renewable resources. Due to 

human different background and community awareness, 

humans practice different ways of harvesting on animal 

predators that directly affects the prey population in a 

given available area. Appropriate harvesting method can 

result to an optimal resource management approach that 

may result to better co-existence of the predator and the 

prey population.  

There are two kinds of harvesting regimes according to 

[13]: harvesting of constant-effort, and harvesting from 

constant-yield. Constant-effort harvesting is performed 

when proportion to a given population size is harvested, 

and harvested population using constant-yield harvesting 

is independent to the size of population.   

In the study of May et al. [13], the authors describe the 

interaction between the predator and prey population 

where a different harvesting regime are considered and is 

illustrated by the given system: 

 

x = r1x  1−
x

K
 − axy − H1 ,

y = r2y  1−
y

ab
 − H2

 (1) 

where x t  and y t are variables that are assumed to be 

positive, in which x is the population density of the prey 

population and yis the population density of the predators 

for any non-negative value of t. H1 - harvested density in 

the prey population and H2- represent the harvested 
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density in the predator population. r1 - represents the 

intrinsic growth rate of the prey population while 

r2represents the population intrinsic growth rate of 

predators. In the absence of predators, K then is 

considered the carrying capacity of the prey population. a 

is the parameter that represent the maximum amount the 

per capita reduction rate of the prey x(t) can obtain. b is 

the parameter value that represents the property of food 

for predators, whereas ab represents a prey-dependent 

carrying capacity for predators [13].  

In a study of [11], the authors considered a case when 

independent harvesting are performed on predator-prey 

with prey-refuge, while in [20] did a study that considers 

a ratio dependent dynamics on the predator-prey when 

harvesting is introduced on the predator population.  

Several studies [19,21]considered different cases in using 

the Leslie Gower type predator prey model with different 

types of harvesting performed on either the predator or 

prey populations.  

If we set H1 = H2 = 0, then system (1) is reduced to the 

model of a Leslie Gower predator prey. Analysis of 

Leslie Gower Model is shown in [8]. In 1980, 

Beddington and May considered the model of May et al. 

where constant effort of harvesting are considered, that is  

x = r1x  1−
x

K
 − axy − r1h1x,

y = r2y  1−
y

ab
 − r2h2y

 (2) 

Where h1 and h2 are the harvesting efforts in the prey 

and predator populations respectively.  

In the study of Bedding and Cooke [2], two cases were 

considered where the first case was on constant-yield 

harvesting applied in both the prey and predator 

populations, and the second was applying a type of on 

constant-yield harvesting on the prey and a different type 

of harvesting on the predators which was constant-effort. 

In the paper of Huang and Gong, the authors considered 

only the type of harvesting with constant-yield on 

predator population only.  For [23] the authors only 

considered the constant-yield rate of harvesting 

performed on the prey population,  

In this study, we look into the dynamics of a predator 

prey model in which we apply a constant-effort 

harvesting on the predator population only. We then 

consider the system (2) where h1 = 0, that is,   

x = r1x  1 −
x

K
 − axy,       

y = r2y  1 −
y

ab
 − r2h2y

 
.   

(3) 

In this study, we compute to show the existence of 

different equilibrium points, then analyze the stability of 

those points in a neighborhood. We then show several 

theorems to describe the dynamics of the proposed 

model. The paper ends by showing the occurrence of a 

transcritial bifurcation and by summarizing the effect of 

constant-effort harvesting in the predator population.   

II. METHODOLOGY 

We consider system (3) where x(t) and y(t) represent the 

prey and predator population at time t and h2 is the 

harvesting effort in the predator population. 

We simplify system (3) by the transformation in [10, 9], 

that is, 

t  → r1t,    x →
x

K
,    y →

ay

r1

 

⇒ t =
t  

r1

,    x = x K,    y =
r1y 

a
 

⇒ dt =
dt  

r1

,    
dx

dt
= x =

Kr1dx 

dt
,   

dy

dt
= y =

r1
2dy 

adt
. 

Substituting the above in the first equation of 

system (3), we get 
kr1dx 

dt  
= r1 x K  1 −

x K

K
 − ax K  

r1y 

a
  

⇒
dx 

dt  
=

r1Kx  1 − x  − Kx r1y 

r1K
 

⇒
dx 

dt  
= x  1 − x  − x y . 

Similarly, the second equation of system (3) 

becomes 

r1
2dy 

adt  
= r2  

r1y 

a
  1 −

r1y 

abKx 
 − r2h2  

r1y 

a
  

⇒
dy 

dt  
=  

a

r1
2  

r1r2y 

a
 1 −

r1y 

abKx 
 −

r2h2r1y 

a
  

⇒
dy 

dt  
= y  

r2

r1

−
r2y 

abKx 
 −

r2h2y 

r1

. 

For simplicity of notations, we then remove the 

bars, to have the system 

x = x 1 − x − xy,             

y = y  
r2

r1
−

r2y

abKx
 −

r2h2y

r1
.
    

     (4) 

Let δ =
r2

r1
, β =

r2

abK
  be positive constants, then 

system (4) becomes 
x = x 1 − x − xy,        

y = y  δ −
βy

x
 − h2δy.

    

     (5) 

We now state some relevant theorems that will be used in 

this paper. The stability of system (5) depends directly on 

the values of its eigen values. In line with this, we state 

the results in [4] which is used to determine the stability 

of system (5) using their eigen values. 

We consider eigen values λ1 and λ2 of the linear system 

corresponding to the locally linear system.  

(a) If λ1 > λ2 > 0, then the locally linear system is 

an unstable node. 

(b) If λ1 < λ2 < 0, then the locally linear system is 

asymptotically stable node. 

(c) If λ1 < 0 < λ2, then the locally linear system is 

an unstable saddle point. 

(d) If λ1 , λ2 = r ± iu where r > 0, then the locally 

linear system is an unstable spiral point. 

(e) If λ1 , λ2 = r ± iu where r < 0, then the locally 

linear system is an asymptotically stable spiral point. 

(f) If λ1 = iu, λ2 = −iu, then the locally linear 

system is center or spiral point. 

Another theorem which will be used in our 

discussion is from [22] which is re--stated below: 

Suppose, we assume that E(0,0) is an isolated 

equilibrium point of x  = P2(x, y), y = y + Q2(x, y) and 
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P2, Q2are analytic functions in Sδ(E) of orders no less 

than 2. Thus for δ sufficiently small, there exist an 

analytic function ϕ(x) satisfying ϕ x + Q2 x,ϕ x  =

0 in  x < δ. Let ψ x = P2 x,ϕ x  = am xm +
 x m+1where  x m+1 represents the sum of those in ψ(x) 

and am ≠ 0, m ≥ 2. Then the following properties are 

satisfied: 

(a) If m is odd and am > 0, then E 0,0  is an 

unstable node. 

(b) If m is odd and am < 0, then E(0,0) is a saddle 

point with its foru separatrices tending to E(0,0). 

(c) If m is even, then E(0,0) is a saddle node. That 

is, Sδ E  is divided into two different parts by 

separatrices that approach E(0,0) along the positive and 

negative y-axes. The first part is a parabolic sector and 

second part is composed of two hyperbolic sectors. 

Further, if am > 0(or < 0) then the parabolic sector is 

on the right (or left) halfplane. 

The following theorem is from [17, 15] which 

we use to prove the existence of bifurcation in system 

(5). 

Consider the system  

x = f  x, y , μ ,

y = g  x, y , μ 
     

                                (6) 

Suppose that  

f  x0, y0 , μ0 = 0

g  x0, y0 , μ0 = 0
 

and that the 2 × 2 matrix 

A ≡  
Dx f x, y, μ  Dy f x, y, μ  

Dx g x, y, μ  Dy g x, y, μ  
 

( x0 ,y0 ,μ0)

 

can be shown to have a simple eigenvalueλ = 0 

with the corresponding computed eigenvector given 

by𝐯 =  
v1

v2
 and thatAThas a corresponding 

eigenvector𝐰 =  
w1

w2
 for a given eigenvalueλ = 0. 

Assume also that matrixA hasa number kof eigen values 

with the real parts being negative, and(n − k−
1)eigenvalues whose real parts being positive, such that: 

𝐰T  
Dμ f  x, y , μ  

Dμ g  x, y , μ  
 

( x0 ,y0 ,μ0)

= 0 

𝐰T  
Dx  Dμ f  x, y ,μ   v1 + Dy  Dμ f  x, y , μ   v2

Dx  Dμ g  x, y ,μ   v1 + Dy  Dμ g  x, y , μ   v2

 

( x0 ,y0 ,μ0)

≠ 0 

𝐰T

 

 
 

∂2f  x, y , μ 

∂x2
v1

2 + 2
∂2f  x, y , μ 

∂x ∂y
v1v2 +

∂2f  x, y , μ 

∂y2
v2

2

∂2f  x, y , μ 

∂x2
v1

2 + 2
∂2f  x, y , μ 

∂x ∂y
v1v2 +

∂2f  x, y , μ 

∂y2
v2

2

 

 
 

( x0 ,y0 ,μ0)

≠ 0

 

Then system (6) can then be shown to illustrate 

a transcritical bifurcation at the equilibrium point (x0 , y0) 

as the parameter μ varies through the bifurcation value 

μ = μ0. 

III. RESULTS 

A. Existence of Equilibria 

From the biological viewpoint, we are only interested in 

the values of predator population density, that is, 

y(t) ≥ 0. Similarly, we consider the positive values of 

the prey population density, that is, x(t) > 0. We denote 

this domain as Ω = x(t) > 0, y(t) ≥ 0}. 

To get the equilibrium points, we compute the 

system  
x = x 1 − x − xy = 0,        

y = y  δ −
βy

x
 − h2δy = 0.

   

    (7) 

For values of x and y in Ω. Computing for x and 

y, we obtain the following theorem: 

Theorem 1 

For all parameters assumed to be positive, the 

equilibrium points of system (5) are as follows: 

(a) There is a unique boundary equilibrium point 

E0 = (1,0) in Ω. 

(b) If h2 > 1, there is no positive equilibrium point 

in Ω. 

(c) If h2 < 1, there is a unique equilibrium point 

E1 =  
β

δ 1−h2 +β
,
δ 1−h2 

δ 1−h2 +β
  in Ω. 

Proof. It is easy to see that E0(1,0) is an equilibrium 

point of the system. For possible positive equilibrium1 −

x − y = 0 and δ − h2δ −
βy

x
= 0. This implies that 

y = 1− x. We substitute this in δ − h2δ −
βy

x
= 0 and 

have δ − h2δ −
β(1−x)

x
= 0. Solving for x and y, we have 

 x1, y1 =  
β

δ 1−h2 +β
,
δ 1−h2 

δ 1−h2 +β
 . If h2 > 1, then there 

are three scenarios in the values of x1 and y1. First if 

δ 1 − h2 > β, then x1 < 0. If δ 1 − h2 < β, then 

y1 < 0. Also, if δ 1 − h2 = β, then β < 0 which is a 

contradiction to our assumption that β is a positive 

constant. Hence, this implies that if h2 > 1 we cannot 

have (x1, y1) in Ω. Suppose now that h2 < 1, then there 

is a unique positive equilibrium point E1 = (x1, y1) in Ω. 

This completes the proof.   

Stability of the Equilibrium Points 

Stability of E0 

Theorem 2 

For all positive parameters, system (5) has unique 

boundary equilibrium E0 = (1,0) in Ω and 
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(a) If h2 < 1, then E0 is a hyperbolic unstable 

saddle point. 

(b) If h2 < 1, then E0 is a hyperbolic stable node. 

(c) If h2 = 1, then E0 is a saddle node, that is, a 

neighborhood of E0 is divided into two parts by two 

saparatrices that tend to E0 along the upside and 

underneath of E0. The lower half plane consists of the 

parabolic sector and the upper half plane consist two 

hyperbolic sectors.  

Proof. The Jacobian matrix of system (5) is given by 

J x, y =  

1 − 2x − y −x

βy2

x2
δ − h2δ −

2βy

x

  . 

At E0, the Jacobian matrix becomesJ E0 =

 
−1 −1
0 δ − h2δ

 . By simple calculations, then 

eigenvalues are λ = −1 and λ = δ − h2δ. By [4] if 

δ − h2δ > 0, that is, h2 < 1, then E0 is a hyperbolic 

saddle. If δ − h2δ < 0, that is, h2 > 1, then E0 is a 

hyperbolic stable node. 

If h2 = 1, then one eigenvalue is negative and 

the other is zero. The preceding argument is the same 

from [9] and [10]. First, we transform E0 to the origin by 

the translation  X, Y =  x − 1, y , that is, X = x− 1 ⇒
x = X + 1 and Y = y . System (5) becomes 

X =  X + 1  1 −  X + 1  −  X + 1  Y,

Y = Y  δ −
βY

X + 1
 − h2δY.                            

 

Simplifying, we have, 

X = −X − Y − X2 − XY,

Y = δY − h2δY −
βY2

X+1
.    

(8) 

Note that 
1

1−(−x)
= 1 − x + x2 − x3 + x4 −⋯ is 

the power series expansion of 
1

x+1
. Expanding system (8) 

above in power series up to the 4
th

 order, we obtain 

X = −X − Y − X2 − XY,                                                                    

Y = δY − h2δY − βY2 1 − X + X2 − X3 + X4 + Q1(X, Y)    
 

which implies that 

X = −X − Y − X2 − XY,                                                                           

Y = Y δ − h2δ + Y2 −β + XY2 β + X2Y2 −β + Q1 X, Y .  
 

Recall that δ = h2δ, hence we have 

X = −X − Y − X2 − XY,                                                                           

Y = −βY2 + βXY2 − βX2Y2 + Q1 X, Y .                                            
(9) 

where Q1(X, Y) is a series of order greater than 

4.   

We now find the matrix T that makes system (9) 

into normal form. If λ = −1, we get  
0 −1
0 1

  
X
Y
 =  

0
0
  

which implies that Y = 0. This means that if λ = −1, one 

eigenvector is  
1
0
 . If λ = 0, we get  

−1 −1
0 1

  
X
Y
 =

 
0
0
  which implies that X + Y = 0. Hence an eigenvector 

for the system if λ = 0 is  
−1
1
 . Let T =  

1 −1
0 1

  be the 

matrix that transform system (9) into normal form. 

Accordingly, we have 

 
X
Y
 =  

1 −1
0 1

  
x
y ⇒ X = x− y,   Y = y  and X =

x ,   Y = y . 
System (9) becomes 

x = −x − x2 + xy − βy2 + βy2x − βy3 − βy2x2

+ 2βy3x− βy4 + P2 x, y , 
y = −βy2 + βy2x− βy3 − βy2x2 + 2βy3x − βy4

+ Q2(x, y) 

where P2(x, y) and Q2(x, y) are series of order 

greater than 4. We then introduce a a new time variable 

τ = −t, we have 

x = x + x2 − xy + βy2 − βy2x + βy3 + βy2x2 − 2βy3x + βy4 + P3 x, y ,

y = βy2 − βy2x + βy3 + βy2x2 − 2βy3x + βy4 + Q3 x, y 
 (10) 

where P3(x, y) and Q3(x, y) are series of order 

greater than four.  

Applying the Theorem from [22] to system (10) and 

noting that m = 2 which is even, we have E0 a saddle 

node. Also, β > 0 which implies that the parabolic sector 

is in the upper half plane where the orbit of time going 

into the opposite direction.  

Stability of E1 

We then show the stability of E1. 

Theorem 3 

For all parameters assumed to be positive and  h2 < 1, 

system (5) has a unique positive equilibrium E1 =

 
β

δ 1−h2 +β
,
δ 1−h2 

δ 1−h2 +β
  in Ω. Moreover, E1 is locally 

asymptotically stable and  

(a) If TR2 − 4δ 1 − h2 ≥ 0, then E1 is a 

hyperbolic node 

(b) IfTR2 − 4δ 1 − h2 < 0, then E1 is a 

hyperbolic spiral point 

where TR is the trace of the Jacobian matrix of 

system (5). 

Proof. Recall that the Jacobian matrix of system 

(5) is given by 

J x, y =  
1 − 2x − y −x

βy2

x2 δ − h2δ −
2βy

x

 . 

At E1, we have  

J E1 =  
−x −x
βy2

x2 −
βy

x

 =  
−x −x

(δ−h2δ)2

β
−(δ − h2δ) . 

We compute the determinant of this Jacobian 

matrix, and have 

Det J E1  = x δ − h2δ +
x δ−h2δ 

2

β
=  

β

δ−h2δ+β
  δ −

h2δ+βδ−h2+βδ−h2δ2β 

⇒Det J E1  =  
δ−h2δ

δ−h2δ+β
  β + δ − h2δ = δ − h2δ =

δ 1 − h2 > 0. 

Similarly, we compute for the trace (TR) of the 

Jacobian matrix and we have 

TR J E1  = −x −
βy

x
=

−β

δ−h2δ+β
− β  

δ−h2δ

β
 =

−β

δ−h2δ+β
−  δ − h2δ < 0. 

Note that the eigenvalues of J E1  are 
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λ1,2 =
TR  J E1  ±  TR  J E1   

2
−4δ 1−h2 

2
. 

From a theorem in [4] it is easy to see that since 

TR J E1  < 0, then E1 is either a stable node or stable 

spiral node. This can be determined by computing the 

value of TR2 − 4δ(1− h2). Hence this ends the proof of 

the theorem. 

Bifurcation Analysis 

The next theorem states the existence of 

transcritical bifurcation in system (5). 

Theorem 4 

System (5) undergoes transcritical bifurcation at E0(1,0) 

as h2 changes through h2 = 1. 

Proof. Note that as the parameter h2 passes through 

h2 = 1, the stability of the equilibrium points E0 changes 

from unstable to stable in system (5). Hence this implies 

that h2 = 1 is a bifurcation values of the system. Using 

Sotomayor’s theorem into system (5), we suppose that 

A

=  

Dx x 1 − x − xy Dy x 1 − x − xy 

Dx  y  δ −
βy

x
 − h2δy Dy  y  δ −

βy

x
 − h2δy 

 

(E0 ,1)

 

⇒ 𝐴 =  

1 − 2𝑥 − 𝑦 −𝑥

𝛽𝑦2

𝑥2
𝛿 − ℎ2𝛿 −

2𝛽𝑦

𝑥

 

(𝐸0 ,1)

=  
−1 −1
0 0

  

We can easily see from the above previous statement that 

𝜆 = 0 is an eigenvalue of 𝐴 and its corresponding 

computed eigenvector is 𝒗 =  
𝑣1

𝑣2
 =  

−1
1
 . Similarly, 

𝐴𝑇 =  
−1 0
−1 0

  can easily be shown to have an 

eigenvalue 𝜆 = 0 with the computed corresponding 

eigenvector 𝒘 =  
0
1
 . Computing we have 

𝒘𝑇  
𝐷ℎ 2

 𝑥 1 − 𝑥 − 𝑥𝑦 

𝐷ℎ 2
 𝑦  𝛿 −

𝛽𝑦

𝑥
 − ℎ2𝛿𝑦 

 

(𝐸0 ,1)

=

 0  1  
0
−𝛿𝑦

 
(𝐸0 ,1)

=  0  1  
0
0
 = 0, 

𝒘𝑇

 

 

𝐷𝑥  𝐷ℎ 2
 𝑥 1 − 𝑥 − 𝑥𝑦  𝑣1 + 𝐷𝑦  𝐷ℎ 2

 𝑥 1 − 𝑥 − 𝑥𝑦  𝑣2

𝐷𝑥  𝐷ℎ2
 𝑦  𝛿 −

𝛽𝑦

𝑥
 − ℎ2𝛿𝑦  𝑣1 + 𝐷𝑦  𝐷ℎ2

 𝑦  𝛿 −
𝛽𝑦

𝑥
 − ℎ2𝛿𝑦  𝑣2

 

 

(𝐸0 ,1)

 
=  0  1  

0𝑣1 + 0𝑣2

0𝑣1 +  −𝛿𝑣2 
 =  0  1  

0
−𝛿
 = −𝛿 ≠ 0 

𝑤𝑇

 

 
 

𝜕2 𝑥 1 − 𝑥 − 𝑥𝑦 

𝜕𝑥2
𝑣1

2 + 2
𝜕2 𝑥 1 − 𝑥 − 𝑥𝑦 

𝜕𝑥𝜕𝑦
𝑣1𝑣2 +

𝜕2 𝑥 1 − 𝑥 − 𝑥𝑦 

𝜕𝑦2
𝑣2

2

𝜕2  𝑦  𝛿 −
𝛽𝑦

𝑥
 − ℎ2𝛿𝑦 

𝜕𝑥2
𝑣1

2 + 2
𝜕2  𝑦  𝛿 −

𝛽𝑦

𝑥
 − ℎ2𝛿𝑦 

𝜕𝑥𝜕𝑦
𝑣1𝑣2 +

𝜕2  𝑦  𝛿 −
𝛽𝑦

𝑥
 − ℎ2𝛿𝑦 

𝜕𝑦
𝑣2

2

 

 
 

(𝐸0 ,1)

 

=  0  1  

−2𝑣1
2 + 2 −1 𝑣1𝑣2 + 0𝑣2

2

−
2𝛽𝑦2𝑥

𝑥4
𝑣1

2 + 2
2𝛽𝑦

𝑥2
𝑣1𝑣2 −

2𝛽

𝑥
𝑣2

2
 

(𝐸0 ,1)

=  0  1  
0

−2𝛽
 = −2𝛽 ≠ 0 

Hence, by Sotomayor’s Theorem [17, 15], 

system  (5) undergoes a transcritical bifurcation. 

IV. CONCLUSIONS 

The considered system (5) is shown to have a unique 

boundary equilibrium 𝐸0(1,0). Theorem 1 states that if 

ℎ2 > 1, then we see that there is no positive equilibrium 

point, hence the only equilibrium point is the boundary 

equilibrium 𝐸0. Using the parameters of the original 

system (3) we get 𝐸0 = (𝐾, 0). As shown in Theorem 2, 

if ℎ2 > 1 then 𝐸0 is a hyperbolic stable node which 

means that if the harvesting effort in the predator 

population is greater than 1 then the predator population 

will approach extinction and the prey population and 

tends to approach the carrying capacity𝐾. 

Similarly, if ℎ2 = 1, then the only equilibrium point is 

𝐸0. As shown in Theorem 2, if ℎ2 = 1, then 𝐸0 is a 

saddle node. This implies that if the harvesting effort 

ℎ2in the predator population is equal to one then the 

predator population will go extinct and the prey 

population approaches 𝐾. 

In Theorem 1, ifℎ2 < 1, we have shown the existence of 

a positive equilibriumE1 = (
β

δ 1−h2 +β
,
δ 1−h2 

δ 1−h2 +β
). Using 

the same parameters used in system (3), we then have 

E1 =  
r1K

r1+abK−abK h2
,

r1bK−r1bK h2

r1+abK−abK h2
 . From Theorem 3, 

E1is a stable equilibrium point. Hence if the harvesting 

effort h2 is less than one then there exist coexistence 

between the predator and prey population. 

Furthermore, we have shown the existence of transcritical 

bifurcation using Sotomayor's theorem. The existence of 

this bifurcation will lead to changes in the dynamics of 

the system, specifically, this shows that too much 

exploitation of available resources can lead to extinction. 
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