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Abstract: The stability analysis of logistic growth model is a norm in plantation and eco-biological environment. It can be 

ecologically stable and sustained in a long run. However, any additional variation to the model may fluctuate the economy 

over time. An optimal control felling rate model was successfully created for palm oil plantation based on the logistic growth 

model. The model can do well in representing the plantation but the stability is not yet analysed, mainly due to the presence 

of felling rate as the new added criterion. This study analysed the stability of equilibrium point of the optimal control felling 

rate model. The equilibrium points were identified and the small perturbation around the equilibrium points was 

geometrically computed. The analysis of small perturbation of felling rate showing equilibrium point decay exponentially 

indicates that the model was ecologically stable with the presence of control felling rate. The trajectories of palm oil biomass 

versus time verified the stability of equilibrium points with the presence of felling rate. 

 

Keywords: Stability Analysis; Logistic Equation; Palm Oil Plantation; Ordinary Differential Equation; Optimal Control 

Model.   

I. INTRODUCTION 

The stability analysis of logistic growth model is a norm in 

plantation and eco-biological environment. The stability of 

population dynamics, equilibrium states and the stability of 

its function have been traditionally analysed using [1, 2, 3, 

4]. Normally, the interests in population models are the 

equilibrium states and convergences towards it states. This 

paper emphasizes on the stability of palm oil model with 

the presence of felling effect. The model is developed 

based on the logistic growth model and the theory of 

optimal control model. Historically, following the original 

of population growth model of 
𝑑𝑃

𝑑𝑡
= 𝑎𝑃 , the logistic 

growth model is invented by Malthus [5]. The 𝑃 is denoted 

as the initial population while 𝑎  represents the growth 

constant. Later on Verhulst [6] modified the model of 

Malthus by considering carrying capacity into the new 

model. This is to make a population size proportionate to a 

new term 
𝑎−𝑏𝑃(𝑡)

𝑎
, which does not only depend on the 

population size, but also distance of the size from the 

upper limit. To date, most successful predictive models are 

made based on extended forms of the classical Verhulst 

logistic growth equation. This logistic equation anticipates 

a limit on population growth as such 

 
𝑑𝑃

𝑑𝑡
= 𝑎𝑃(1 −

𝑃

𝐾
)
(1) 
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where 𝑃0 = 𝑃(0) at 𝑡 = 0, 𝐾 =
𝑎

𝑏
 is the carrying capacity 

and 𝑏 =
𝑎

𝐾
 is a constant 

𝑑𝑃

𝑑𝑡
= 𝑎𝑃 −

𝑎𝑃2

𝐾

=
𝑎𝐾𝑃 − 𝑎𝑃2

𝐾
= 𝑏𝐾𝑃 − 𝑏𝑃2

= 𝑎𝑃 − 𝑏𝑃2

= 𝑃(𝑎 − 𝑏𝑃)
𝑑𝑃

𝑃(𝑎 − 𝑏𝑃)
= 𝑑𝑡

1

𝑃(𝑎 − 𝑏𝑃)
. 𝑑𝑃 = 𝑑𝑡

 

 

to simplify 
1

𝑃(𝑎−𝑏𝑃)
, the partial fractions is used as follows 

 

 
1

𝑃(𝑎−𝑏𝑃)
=
𝐴

𝑃
+

𝐵

(𝑎−𝑏𝑃)(2) 

          1 = 𝐴(𝑎 − 𝑏𝑃) + 𝐵𝑃

𝐴(𝑎 − 𝑏𝑃) + 𝐵𝑃 = 1
𝐴𝑎 − 𝐴𝑏𝑃 + 𝐵𝑃 = 1

 

 

 if 𝑃 = 0, 𝐴𝑎 = 1 and 𝐴 =
1

𝑎
, while  

 if 𝑃 = 1, 𝐵 =
𝑏

𝑎
 

 replace 𝐴 =
1

𝑎
 and 𝐵 =

𝑏

𝑎
 into the equation 2 

 
1

𝑃(𝑎 − 𝑏𝑃)
=

1

𝑎𝑃
+

𝑏

𝑎(𝑎 − 𝑏𝑃)

 ‍𝑑𝑡 =  ‍
1

𝑎𝑃
𝑑𝑃 + ‍

𝑏

𝑎(𝑎 − 𝑏𝑃)
𝑑𝑃

 ‍𝑑𝑡 =
1

𝑎
 ‍

1

𝑃
𝑑𝑃 +

1

𝑎
 ‍

𝑏

(𝑎 − 𝑏𝑃)
𝑑𝑃

 

let 𝑢 = 𝑎 − 𝑏𝑃 , 
𝑑𝑢

𝑑𝑃
= −𝑏 and 𝑑𝑢 = −𝑏𝑑𝑃 thus 

1

𝑎
 ‍

1

𝑃
𝑑𝑃 +

1

𝑎
 ‍

(
−𝑑𝑢

𝑑𝑃
)

𝑢
𝑑𝑃 =  ‍𝑑𝑡 

 

1

𝑎
ln|𝑃| −

1

𝑎
ln(𝑎 − 𝑏𝑃) = 𝑡 + 𝐶

1

𝑎
ln|𝑃| + (−

1

𝑎
ln|𝑢|) = 𝑡 + 𝐶

1

𝑎
ln|𝑃| −

1

𝑎
ln|𝑎 − 𝑏𝑃| = 𝑡 + 𝐶

ln
𝑃

𝑎 − 𝑏𝑃
= 𝑎𝑡 + 𝑎𝐶

𝑃

𝑎 − 𝑏𝑃
= 𝐶𝑒𝑎𝑡

𝑃 = 𝐶𝑒𝑎𝑡 (𝑎 − 𝑏𝑃)

𝑃 = 𝑎𝐶𝑒𝑎𝑡 − 𝑏𝐶𝑒𝑎𝑡𝑃
𝑃 + 𝑏𝐶𝑒𝑎𝑡𝑃 = 𝑎𝐶𝑒𝑎𝑡

𝑃(1 + 𝑏𝐶𝑒𝑎𝑡 ) = 𝑎𝐶𝑒𝑎𝑡

𝑃 =
𝑎𝐶𝑒𝑎𝑡

(1 + 𝑏𝐶𝑒𝑎𝑡 )

𝑃 =
𝑎𝐶

𝑏𝐶 + 𝑒−𝑎𝑡

 

 

if 𝑃(0) = 𝑃0 , 𝑃0 ≠
𝑎

𝑏
, 𝐾 =

𝑎

𝑏
, 𝐶 =

𝑃0

𝑎−𝑏𝑃
and 𝑃0 = 𝐶(𝑎 −

𝑏𝑃), thus 

 

𝑃(𝑡) =
𝐾𝑃0

𝑃0+(
𝑒−𝑎𝑡 (𝑎−𝑏𝑃0)

𝑎
𝐾

)                          (4) 

 

simplifying 
𝑒−𝑎𝑡 (𝑎−𝑏𝑃0)

𝑎

𝐾

= (𝐾 − 𝑃0)𝑒−𝑎𝑡 and after 

substituting and simplifying the final 𝑃(𝑡) is as followed 

𝑃(𝑡) =
𝑃0𝐾

𝑃0+(𝐾−𝑃)𝑒−𝑎𝑡                             (5) 

A.Obtaining Equilibrium Points 

By setting the left-hand side of equation (1) to zero, the 

following system is in the form of steady state. Thus, it 

leads to the equilibrium points of the model. The trivial 

case is by substituting P = 0 and P = K. The equation (5) is 

then linearized in the neighborhood of its equilibrium point. 

Let assume 𝑃(𝑡) = 𝑃∗ + 𝜀(𝑡) , where 𝜀(𝑡)  is a small 

perturbation. Thus 
𝑑𝜀

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑃 − 𝑃∗). By performing Taylor 

series expansion 
𝑑𝑃

𝑑𝑡
= 𝑓(𝑃) = 𝑓(𝑃∗ + 𝜀)  the following 

power series is obtained 

𝑓(𝑃∗ + 𝜀) = 𝑓(𝑃∗) + 𝜀
𝑑𝑓

𝑑𝑡
|𝑃=𝑃∗(6) 

since 𝑓(𝑃∗) is equal to zero and higher terms are assumed 

negligible, thus the approximate equation is 𝑓(𝑃∗ + 𝜀) =

𝜀
𝑑𝑓

𝑑𝑡
|𝑃=𝑃∗ 
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𝑑𝑓 (𝑃)

𝑑𝑃
= 𝑎𝑃(1 −

𝑃

𝐾
)

= 𝑎𝑃 −
𝑎𝑃2

𝐾

= 𝑎 −
2𝑎𝑃

𝐾

                              (7) 

substitute 𝑃∗ = 0 and 𝑃∗ = 𝐾 in 
𝑑𝜀

𝑑𝑡
 obtained 

 
𝑑𝜀

𝑑𝑡
= 𝜀(𝑎 −

2𝑎𝑃

𝐾
)|𝑃=0 = 𝑎𝜀

𝑑𝜀

𝑑𝑡
= 𝜀(𝑎 −

2𝑎𝑃

𝐾
)|𝑃=𝐾 = 𝜀(𝑎 − 2𝑎) = −𝑎𝜀.

 

According to Vikas and Shankar [7], if 𝑓(𝑃∗) > 0 , the 

equilibrium point 𝑃 

 1.  is unstable if small perturbation 𝜀(𝑡)  grows 

exponentially  

2.  and stable if small perturbation 𝜀(𝑡) decays 

exponentially.  

Since 𝑎 is a growth constant and 𝑎 > 0, it indicates that 

the equilibrium point 𝑃∗ = 0  is unstable as the 

perturbation 𝜀(𝑡)  grows exponentially while the 

equilibrium point 𝑃∗ = 𝐾 is stable as the perturbation 𝜀(𝑡) 

decays exponentially. This technique was applied to the 

palm oil optimal control model with the details shown by 

the following section. 

II. STABILITY ANALYSIS OF PALM OIL 

MODEL 

The dynamics between palm oil biomass and felling effect 

has a reciprocal relationship. Nasir et al.[9] has shown that 

if trees felled without control, less oil will be produced 

with less carbon to be absorbed. The stability of palm oil 

model with the presence of felling effect has been rarely 

discussed. Thus, following Vikas and Shankar [7] ideas 

and considering Gaoue et al. [8] and Chaudhary et al. [10] 

models. The optimal palm oil’s control model with felling 

effect was examined for stability and analysed as follows. 

A.Model 1 

Model 1 has been previously developed, which 

considering biomass in representing the entire palm oil 

plantation. The underlying assumption of the model is that 

the biomass growth is influenced by logistic function. The 

logistic model was adjusted, which includes the felling 

activity that affects the production of fruit and carbon 

absorption. The model was created to help increasing the 

production of fresh fruit bunch. For the purpose of model 

analysis, the growth and felling rate are assumed to be 

constant. The model can be described as 
𝑑𝐵

𝑑𝑡
= 𝑎𝐵(1 −

𝐵

𝐾
) − 𝑐𝐵

                                   (8) 

where 𝐵 is defined as biomass plantation, 𝑎 is denoted as 

growth rate and 𝑐 represents as felling rate. The carrying 

capacity is denoted by 𝐾 =
𝑎

𝑏
. Solving for 𝐵(𝑡) =

𝑏𝐵[(𝐾 −
𝑐

𝑏
) − 𝐵. The equilibrium points were obtained by 

finding all values of B that satisfy equation 8, 
𝑑𝐵

𝑑𝑡
= 0 

𝑏𝐵[(𝐾 −
𝑐

𝑏
) − 𝐵] = 0

𝑏𝐵[(𝐾 −
𝑐

𝑏
) − 𝑏𝐵2] = 0

𝑏𝐵(𝐾 −
𝑐

𝑏
) = 𝑏𝐵2

(𝐾 −
𝑐

𝑏
) =

𝑏𝐵2

𝑏𝐵

𝐵 = (𝐾 −
𝑐

𝑏
)

𝐵 =
𝑎 − 𝑐

𝑏
.

 

Thus, the two equilibrium points are 𝐵 = 0 and 𝐵 =
𝑎−𝑐

𝑏
. 

To examine the stability of equilibrium point, consider a 

small perturbation around equilibrium point 𝐵(𝑡) = 𝐵∗ +
𝜀(𝑡)  where 𝜀  is a first order small quantity, such that 
𝑑𝜀

𝑑𝑡
=

𝑑

𝑑𝑡
(𝐵 − 𝐵∗) 

𝑑𝐵

𝑑𝑡
= 𝑓(𝐵∗ + 𝜀).

(9) 

Performing Taylor series expansion on equation (9) 

𝑓(𝐵∗ + 𝜀) = 𝑓(𝐵∗) + 𝜀
𝑑𝑓

𝑑𝑡
|𝐵=𝐵∗

𝑓(𝐵∗ + 𝜀) = 𝑓(𝐵∗) + 𝜀
𝑑𝑓

𝑑𝑡
|𝐵=𝐵∗

                     (10) 

since 𝑓(𝐵∗) is equal to zero and higher terms are assumed 

negligible, thus the approximate equation is 

𝑓(𝐵∗ + 𝜀) = 𝜀
𝑑𝑓

𝑑𝑡
|𝐵=𝐵∗ 

𝑑𝑓(𝐵)

𝑑𝐵
= 𝑎𝐵(1 −

𝐵

𝐾
) − 𝑐𝐵

 ‍
𝑑𝑓(𝐵)

𝑑𝐵
=  ‍[𝑎𝐵 −

𝑎𝐵2

𝐾
− 𝑐𝐵]𝑑𝑡

= 𝑎 −
2𝑎𝐵

𝐾
− 𝑐

(11) 

substitute 𝐵∗ = 0  and 𝐵∗ =
𝑎−𝑐

𝑏
 in 

𝑑𝜀

𝑑𝑡
 obtained 𝜀 =

𝜀0𝑒
(𝑎−𝑐)𝑡  and 𝜀 = 𝜀0𝑒

(2𝑐−𝑎)𝑡  respectively 
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Figure 1: Graphs of biomass growth at different values of 

C 

Plotting the biomass growth, 𝐵(𝑡) =
𝐵0𝐾

𝐵0+(𝐾−𝐵0)𝑒−𝑎𝑡
 as a 

function of time shows that B is approaching K. Since 𝑎 is 

a growth constant and 𝑎 > 0 , it indicates that the 

equilibrium point 𝐵∗ =
𝑎−𝑐

𝑏
 is stable as the perturbation 

𝜀(𝑡)  decays exponentially while the equilibrium point 

𝐵∗ = 0  is unstable as the perturbation 𝜀(𝑡)  grows 

exponentially . The result is illustrated in Figure 1 and 2 

respectively. 

B. Model 2 

Model 2 is a continuous work of model 1, which is 

separating biomass into two parts, which are a young tree 

and mature tree. Similar to model 1, felling is the main 

contributor to increase the palm oil productivity. Besides 

felling rate, this model consider the important of re-

planting new trees into the palm oil plantation.  

This consideration is because the felling and planting give 

impact to the production of fresh fruit bunch and the 

absorption of carbon from the atmosphere. The model was 

seen able to increase the production of fresh fruit bunch 

and good in absorbing carbon from the atmosphere. 

 
 

Figure 2: Graph of small perturbation of the equilibrium 

point 

The analysis of stability was done to improve the 

performance of the model. The model is described as 
𝑑𝑌

𝑑𝑡
= 𝑎𝑌(1 −

𝑌

𝐾
) − 𝑐𝑌 + 𝑛𝑃

𝑑𝑃

𝑑𝑡
= 𝑐𝑌 − 𝑓𝑃 + 𝑚𝑃                    (12) 

where 𝑌  is defined as young tree, 𝑃  is mature tree, 𝑎 

represent growth rate, 𝑐  represent transition rate from 

young to mature tree, 𝑛 represent planting rate, 𝑓 represent 

felling rate and 𝑚 represent depletion rate. The carrying 

capacity is denotes by 𝐾 =
𝑎

𝑏
. At the long-term scale, it is 

assume that the dynamics of 𝑃 are at a quasi steady state in 

which 
𝑑𝑃

𝑑𝑡
= 0, thus 

𝑐𝑌 − 𝑓𝑃 + 𝑚𝑃 = 0

𝑐𝑌 = 𝑓𝑃 − 𝑚𝑃
𝑃(𝑓 − 𝑚) = 𝑐𝑌

𝑃 =
𝑐𝑌

𝑓−𝑚

                   (13) 

Simplifying equations (12) and (13) into the following 

single equation 
𝑑𝑌

𝑑𝑡
= 𝑎𝑌(1 −

𝑌

𝐾
) − 𝑐𝑌 + 𝑛[

𝑐𝑌

𝑓−𝑚
]

= 𝑎𝑌(1 −
𝑌

𝐾
) − 𝑐𝑌 +

𝑛𝑐𝑌

𝑓−𝑚

= 𝑎𝑌 −
𝑎𝑌2

𝐾
− 𝑐𝑌 +

𝑛𝑐𝑌

𝑓−𝑚

               (14) 

the equilibrium points were obtained by finding all values 

of 𝑌 that satisfy equation 14 when 
𝑑𝑌

𝑑𝑡
= 0 

𝑎𝑌 −
𝑎𝑌2

𝐾
− 𝑐𝑌 + (

𝑛𝑐𝑌

𝑓 − 𝑚
) = 0

𝐾𝑏𝑌 − 𝑏𝑌2 = 𝑐𝑌 − (
𝑛𝑐𝑌

𝑓 − 𝑚
)

𝑏𝑌(𝐾 − 𝑏𝑌) = 𝑐𝑌[1 − (
𝑛

𝑓 − 𝑚
)]

=
𝑐𝑌

𝑏𝑌
[1 − (

𝑛

𝑓 − 𝑚
)]

=
𝑐

𝑏
[1 − (

𝑛

𝑓 − 𝑚
)]

𝑏𝑌 = 𝐾 −
𝑐

𝑏
[1 − (

𝑛

𝑓 − 𝑚
)]

𝑌 =
𝐾 −

𝑐

𝑏
[1 − (

𝑛

𝑓−𝑚
)]

𝑏

𝑌 = [
𝑎

𝑏2
−
𝑐

𝑏2
[1 − (

𝑛

𝑓 − 𝑚
)]]

 

Thus, the two equilibrium points are 𝑌 = 0 and 𝑌 = [
𝑎

𝑏2 −
𝑐

𝑏2 [1 − (
𝑛

𝑓−𝑚
)]]. To examine the stability of equilibrium 

point, consider a small perturbation around equilibrium 

point 𝑌(𝑡) = 𝑌∗ + 𝜀(𝑡)  where 𝜀  is a first order small 

quantity, 
𝑑𝜀

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑌 − 𝑌∗)  such that 

𝑑𝑌

𝑑𝑡
= 𝑓(𝑌∗ + 𝜀) . 

Performing Taylor series expansion on 
𝑑𝑌

𝑑𝑡
 and assumed 

that the higher terms are negligible, thus the approximate 

equation is 𝑓(𝑌∗ + 𝜀) = 𝜀
𝑑𝑓

𝑑𝑡
|𝑌=𝑌∗ , substitute 𝑌∗ = 0  and 

𝑌∗ = [
𝑎

𝑏2 −
𝑐

𝑏2 [1 − (
𝑛

𝑓−𝑚
)]]  into 

𝑑𝜀

𝑑𝑡
, obtained solution of 

𝜀 = 𝜀0𝑒
(𝑎−𝑐)𝑡  and 𝜀 = 𝜀0𝑒

(𝑎−([
2𝑎

𝑏
−

2𝑐

𝑏
[1−(

𝑛

𝑓−𝑚
)]]−𝑐)𝑡

 

respectively.  

Plotting 𝑌(𝑡) =
𝑌0𝑌

∗

𝑌0+(𝑌∗−𝑌0)𝑒−𝑎𝑡
 as a function of time shows 

that Y is approaching K. Since 𝑎 is a growth constant and 

𝑎 > 0 , it indicates that the equilibrium point 𝑌∗ = 0  is 

unstable as the perturbation 𝜀(𝑡)  grows exponentially 
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while the equilibrium point 𝑌∗ = [
2𝑎

𝑏
−

2𝑐

𝑏
[1 − (

𝑛

𝑓−𝑚
)]] is 

stable as the perturbation 𝜀(𝑡) decays exponentially. The 

result is illustrated in figure 3 and 4 respectively. 

 
 

Figure  3: Graphs of biomass with different transition rate 

 

Figure 4: Graph of Small Perturbation (𝑌∗) 

III. CONCLUSION 

The analysis of system stability for palm oil plantation 

model has shown a positive result. Both models 1 and 2 

have been analyzed using small perturbation in the 

neighborhood of equilibrium points. The equilibrium 

points of model 1 are 𝐵^ ∗= 0  and 𝐵^ ∗= (𝑎 − 𝑐)/𝑏 

while the equilibrium point of model 2 are 𝑌^ ∗= 0 and 

𝑌^ ∗= [2𝑎/𝑏 − 2𝑐/𝑏[1 − (𝑛/(𝑓 − 𝑚))]]  were identified. 

The criteria of the stability were established as the 

trajectories showed that small perturbation, 𝜀(𝑡) for points 

𝐵^ ∗= (𝑎 − 𝑐)/𝑏  and 𝑌^ ∗= [2𝑎/𝑏 − 2𝑐/𝑏[1 − (𝑛/(𝑓 −
𝑚))]]  were decays exponentially as the time ( 𝑡 ) is 

approaches infinity. The felling rate, plantation rate and 

the transition rate of young to mature tree did not affect the 

stability of the system. 
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