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Abstract: In this paper, we present the preliminary study of the formulation of fractional explicit group (FEG) and 

fractional explicit de-coupled group (FEDG) iterative methods in solving the two dimensional second order diffusion wave 

equation of fractional order. Both FEG and FEDG iterative methods are derived from the fractional standard and fractional 

rotated five points Crank-Nicolson discretizations respectively. Their computational complexity is presented and numerical 

experiments are conducted to demonstrate the efficiency and adeptness of the newly developed explicit group formulations 

in terms of CPU timings and total number of operations. AMS Subject Classification: 65N14 

 

Keywords and Phrases: FSP, FRP, FEG, FEDG, time-fractional diffusion-wave equation, Caputo's fractional derivative. 

I. INTRODUCTION 

Fractional differential equation (FDE) which is the 

generalization of the integer ordered differential equation 

have gained considerable significance in the field of 

engineering [6], [20], quantum mechanics [15], 

hydrology [10], visco-elasticity [5], [21] bio science [19], 

control system [1] and other sciences [29]. Due to non-

local property and more realistic natural phenomena, 

several mathematical problems can be solved in these 

_led of studies by utilizing the FDE in terms of time-

fractional, space-fractional and time-space- fractional 

differential equations. But to discover the exact analytic 

solutions of FDE is complex task. Therefore, it is 

essential to develop the stable, precise and well-

organized numerical approximations to the exact analytic 

solutions [22]. Several scholars efficiently solved the 

time-fractional, space-fractional and time-space-

fractional for FDE using many proficient methods such 

as Galerkin spectral method [24], [25], homotopy 

perturbation method [27], compact alternating direct 

implicit method [28], singular boundary method [4], local 

radial point interpolation method [26] and fourth order 

finite difference method [16]. In both cases whether 

equations is discretized fractionally or non-fractionally 

(positive integer ordered), the numerical solution of the 

discretized equation along with the usage of finite 

difference approximation generates system of linear 

equations. This system of linear equations impelled the 

development of significant number of iterative methods 

to achieve the convergence. In case both cases, many 

iterative methods have been suggested by the different 

scholars such as Evans [14] proposed the group explicit 

iterative method in the solution of large linear systems. 

Othman and Abdullah [23] utilized the modified explicit 

group iterative method to solve the Poisson differential 

equation while Evans and Sahimi [11] recommended the 

alternative group explicit (AGE) iterative method to 

solve one and two dimensional parabolic problems and 

they also utilized the same method for hyperbolic partial 

differential equations. Evans and Changjun [12] used 

AGE iterative method in linear algebra, Evans and 

Yousif [13] utilized the explicit group iterative methods 
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for spare system of linear equation in the solution of 

elliptic partial differential equation. Ali and Ng [3] 

developed modified explicit de-coupled group iterative 

method in the solution of 2-D elliptic equation. 

Meanwhile, Ali and Kew [2] considered the concept of 

modified explicit de-coupled group iterative method in 

the solution of 2-D telegraph PDEs. The new explicit 

group iterative method in the solution of three 

dimensional hyperbolic telegraph equations was also 

formulated by Kew and Ali [17]. Recently, Balasim and 

Ali [7], [8], [9] utilized fractional standard point (FSP), 

fractional rotated point (FRP), fractional explicit group 

(FEG), fractional modified explicit group 

(FMEG), fractional explicit de-coupled group (FEDG) 

and fractional modified explicit de-coupled 

group(FMEDG) iterative methods for the solution of 

diffusion differential equation of fractional order and find 

significant results in terms of execution of time, number 

of iterations and total number of operations in solving the 

time-fractional diffusion equation. 

II. METHODOLOGY 

In this paper, we proposed the formulation of explicit 

group methods in solving the two dimensional second 

order time-fractional diffusion-wave equations, 
𝜕𝛼𝑢

𝜕𝑡𝛼

= 𝑎 x, y, t 
𝜕2𝑢

𝜕𝑥2
+ b x, y, t 

𝜕2𝑢

𝜕𝑦2

+ f x, y, t ………………………………………… . . (1) 

 

where1 < 𝛼 <  2, 𝑎(𝑥, 𝑦, 𝑡) and 𝑏(𝑥, 𝑦, 𝑡) are the 

variable co-efficients and 𝑥, 𝑦 and 𝑡 represent the spatial 

and temporal characterizations respectively and 𝑓(𝑥, 𝑦, 𝑡) 

is the source term with initial and boundary conditions: 

𝑢 𝑥, 𝑦, 0 =  𝜙 𝑥, 𝑦 ,   𝑢𝑡(𝑥, 𝑦, 0)  =  0 
𝑢 0, 𝑦, 𝑡 =  𝑔1 𝑦, 𝑡 , 𝑢(𝐿, 𝑦, 𝑡)  = 𝑔2(𝑦, 𝑡) 
𝑢 𝑥, 0, 𝑡 = 𝑔3 𝑥, 𝑡 , 𝑢(𝑥, 𝐿, 𝑡)  =  𝑔4(𝑥, 𝑡) 
Where 

𝜔 = { 𝑥, 𝑦, 𝑡  /       0  < 𝑥, 𝑦 < 𝐿, 0 ≤ 𝑡 ≤ 𝑇} 

The discrete derivation of Caputo's time-fractional 

derivative of order  𝛼 is defined as, 
𝜕𝛼𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡𝛼

=
1

𝛤 𝑚 − 𝛼 
 

𝜕𝑢𝑚 (𝑥, 𝑦, 𝑡)

𝜕𝑢𝜉𝑚
𝑑𝜉

(𝑡 − 𝜉)𝛼+1−𝑚
…………… . (2)

𝑡

0

 

Where 𝑚–1 < 𝛼 < 𝑚. 
Discretize the solution domain by defining𝑡𝑘 = 𝑘𝜏, 𝑘 =
0,1,2…𝑁,𝑥𝑖 = 𝑖∆𝑥, 𝑖 = 0,1,2…𝑀𝑥 ,𝑦𝑗 = 𝑗∆𝑦, 𝑗 =

0,1,2…𝑀𝑦  

where 𝜏 =
𝑇

𝑁
, ∆𝑥 =

𝐿

𝑀𝑥
 and ∆𝑦 =

𝐿

𝑀𝑦
.  

Let 𝑈𝑖 ,𝑗
𝑘  be the exact solution and 𝑢𝑖,𝑗

𝑘  be the approximate 

solution of FDE (1) at the grid point 

(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘+1, ).Consider,𝑓(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘 , ) = 𝑓𝑖,𝑗
𝑘 , 

𝑎(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘) = 𝑎𝑖 ,𝑗
𝑘 , 𝑏(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘) = 𝑏𝑖 ,𝑗

𝑘  

Utilizing the second order time differential operator in 

equation (2), we get the following 𝛼 order time-fractional 

approximation [18] at the point(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘+1, ), 

𝜕𝛼𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘+1, )

𝜕𝑡𝛼
=

𝜏−𝛼

𝛤(3 − 𝛼)
 𝑏𝑠 𝑢𝑖,𝑗

𝑘−𝑠+1 − 2𝑢𝑖,𝑗
𝑘−𝑠

𝑘

𝑠=0

+ 𝑢𝑖,𝑗
𝑘−𝑠−1 ………………………… . . (3) 

Where 𝑏𝑠 = (𝑠 + 1) 2−𝛼 −  𝑠  2−𝛼 ,   𝑠 = 0,1,2, … . 𝑛 

Fractional Standard Point (FSP) Iterative Scheme 

By using Caputo's fractional derivative of order 𝛼 in 

equation (3) and standard Crank-Nicolson finite 

difference approximation in equation (1), the following 

fractional standard point (FSP) Crank-Nicolson scheme 

is obtained, 

𝑢𝑖,𝑗
𝑘+1

=
1

 1 + 𝑟1 + 𝑟2 
 
𝑟1

2
 𝑢𝑖−1,𝑗

𝑘+1 + 𝑢𝑖+1,𝑗
𝑘+1  

+
𝑟2

2
 𝑢𝑖,𝑗−1

𝑘+1 + 𝑢𝑖 ,𝑗+1
𝑘+1  +

𝑟1

2
 𝑢𝑖−1,𝑗

𝑘 + 𝑢𝑖+1,𝑗
𝑘  

+
𝑟2

2
 𝑢𝑖,𝑗−1

𝑘 + 𝑢𝑖 ,𝑗+1
𝑘  +  2 − 𝑟1 − 𝑟2 − 𝑏1 𝑢𝑖,𝑗

𝑘

+  2𝑏𝑘 − 𝑏𝑘−1 𝑢𝑖,𝑗
0

− 𝑏𝑘𝑢𝑖,𝑗
1 −  (𝑏𝑠−1 + 2𝑏𝑠 + 𝑏𝑠+1)𝑢𝑖,𝑗

𝑘−𝑠

𝑘−1

𝑠=1

+ 𝜏𝛼𝛤 3

− 𝛼 𝑓𝑖,𝑗
𝑘  ………………………………………………… . (4) 

For all 𝑖 = 1,2…𝑀𝑥𝑦𝑗 , 𝑗 = 1,2…𝑀𝑦  and 𝑘 = 0,1,2…𝑁 

Where µ
1

=
𝜏𝛼

(∆𝑥)2,    µ
1

=
𝜏𝛼

(∆𝑦)2 ,    𝑟1 = µ
1
𝜏𝛼𝛤(3 −

𝛼)𝑎𝑖 ,𝑗
𝑘  ,𝑟2 = µ

2
𝜏𝛼𝛤(3 − 𝛼)𝑏𝑖 ,𝑗

𝑘  

Fractional Rotated Point (FRP) Iterative Scheme 

Utilizing the Caputo’s fractional derivative of order 𝛼 in 

(3) and rotated Crank-Nicolson finite difference 

approximation at an angle 45𝑜  to the standard mesh in 

equation (1), the following fractional rotated point (FRP) 

Crank-Nicolson scheme is obtained, 

𝑢𝑖,𝑗
𝑘+1 =

1

 1 + 𝑟1/2 + 𝑟2/2 
 
𝑟1

4
 𝑢𝑖−1,𝑗+1

𝑘+1 + 𝑢𝑖+1,𝑗−1
𝑘+1  

+
𝑟2

4
 𝑢𝑖−1,𝑗−1

𝑘+1 + 𝑢𝑖+1,𝑗+1
𝑘+1  

+
𝑟1

4
 𝑢𝑖−1,𝑗+1

𝑘 + 𝑢𝑖+1,𝑗−1
𝑘  

+
𝑟2

4
 𝑢𝑖−1,𝑗−1

𝑘 + 𝑢𝑖+1,𝑗+1
𝑘  

+  2 −
𝑟1

2
−
𝑟2

2
− 𝑏1 𝑢𝑖,𝑗

𝑘

+  2𝑏𝑘 − 𝑏𝑘−1 𝑢𝑖,𝑗
0

− 𝑏𝑘𝑢𝑖,𝑗
1 −  (𝑏𝑠−1 + 2𝑏𝑠

𝑘−1

𝑠=1

+ 𝑏𝑠+1)𝑢𝑖,𝑗
𝑘−𝑠

+ 𝜏𝛼𝛤 3

− 𝛼 𝑓𝑖,𝑗
𝑘  ……………………………(5) 

For all 𝑖 = 1,2…𝑀𝑥𝑦𝑗 , 𝑗 = 1,2…𝑀𝑦  and 𝑘 = 0,1,2…𝑁 

Fractional Explicit Group (FEG) Iterative Scheme 
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In developing the FEG iterative scheme, we divide the 

whole solution domain into groups of four points. In 

doing so the group of points will be treated as single 

point like the standard or rotated point finite difference 

approximations by reducing the arithmetic operations and 

lapse time per iteration. 

Apply equation (4) on a group of four points will result 4 

x 4 system of equations, 

 

𝑘1 𝑘2 𝑘3 𝑘4

𝑘2 𝑘1 𝑘4 𝑘3

𝑘3 𝑘4 𝑘1 𝑘2

𝑘4 𝑘3 𝑘2 𝑘1

 

 

 
 

𝑢𝑖,𝑗
𝑘+1

𝑢𝑖+1,𝑗
𝑘+1

𝑢𝑖+1,𝑗+1
𝑘+1

𝑢𝑖,𝑗+1
𝑘+1

 

 
 

=

 

 
 

𝑟𝑕𝑠𝑖 ,𝑗
𝑟𝑕𝑠𝑖+1,𝑗

𝑟𝑕𝑠𝑖+1,𝑗+1

𝑟𝑕𝑠𝑖 ,𝑗+1  

 
 

 

Where𝑘1 = 1 + 𝑟1 + 𝑟2, 𝑘2 = −𝑟1/2, 𝑘3 = 0 and 

𝑘4 = −𝑟2/2 
 

𝑟𝑕𝑠𝑖 ,𝑗 =
𝑟1

2
𝑢𝑖−1,𝑗
𝑘+1 +

𝑟2

2
𝑢𝑖 ,𝑗−1
𝑘+1 +

𝑟1

2
 𝑢𝑖−1,𝑗

𝑘 + 𝑢𝑖+1,𝑗
𝑘  

+
𝑟2

2
 𝑢𝑖,𝑗−1

𝑘 + 𝑢𝑖 ,𝑗+1
𝑘  

+  2 − 𝑟1 − 𝑟2 − 𝑏1 𝑢𝑖,𝑗
𝑘

+  2𝑏𝑘 − 𝑏𝑘−1 𝑢𝑖,𝑗
0

− 𝑏𝑘𝑢𝑖,𝑗
1 −  (𝑏𝑠−1 + 2𝑏𝑠

𝑘−1

𝑠=1

+ 𝑏𝑠+1)𝑢𝑖,𝑗
𝑘−𝑠 + 𝜏𝛼𝛤(3 − 𝛼)𝑓𝑖 ,𝑗

𝑘 ] 

𝑟𝑕𝑠𝑖+1,𝑗 =
𝑟1

2
𝑢𝑖 ,𝑗
𝑘+1 +

𝑟2

2
𝑢𝑖+1,𝑗−1
𝑘+1 +

𝑟1

2
 𝑢𝑖,𝑗

𝑘 + 𝑢𝑖+2,𝑗
𝑘  

+
𝑟2

2
 𝑢𝑖+1,𝑗−1

𝑘 + 𝑢𝑖+1,𝑗+1
𝑘  

+  2 − 𝑟1 − 𝑟2 − 𝑏1 𝑢𝑖+1,𝑗
𝑘

+  2𝑏𝑘 − 𝑏𝑘−1 𝑢𝑖+1,𝑗
0

− 𝑏𝑘𝑢𝑖+1,𝑗
1 −  (𝑏𝑠−1 + 2𝑏𝑠

𝑘−1

𝑠=1

+ 𝑏𝑠+1)𝑢𝑖+1,𝑗
𝑘−𝑠 + 𝜏𝛼𝛤(3 − 𝛼)𝑓𝑖+1,𝑗

𝑘 ] 

𝑟𝑕𝑠𝑖+1,𝑗+1 =
𝑟1

2
𝑢𝑖,𝑗+1
𝑘+1 +

𝑟2

2
𝑢𝑖+1,𝑗
𝑘+1 +

𝑟1

2
 𝑢𝑖 ,𝑗+1

𝑘 + 𝑢𝑖+2,𝑗+1
𝑘  

+
𝑟2

2
 𝑢𝑖+1,𝑗

𝑘 + 𝑢𝑖+1,𝑗+2
𝑘  

+  2 − 𝑟1 − 𝑟2 − 𝑏1 𝑢𝑖+1,𝑗+1
𝑘

+  2𝑏𝑘 − 𝑏𝑘−1 𝑢𝑖+1,𝑗+1
0

− 𝑏𝑘𝑢𝑖+1,𝑗+1
1 −  (𝑏𝑠−1 + 2𝑏𝑠

𝑘−1

𝑠=1

+ 𝑏𝑠+1)𝑢𝑖+1,𝑗+1
𝑘−𝑠  

+𝜏𝛼𝛤(3 − 𝛼)𝑓𝑖+1,𝑗+1
𝑘 ] 

𝑟𝑕𝑠𝑖 ,𝑗+1 =
𝑟1

2
𝑢𝑖−1,𝑗+1
𝑘+1 +

𝑟2

2
𝑢𝑖,𝑗
𝑘+1

+
𝑟1

2
 𝑢𝑖−1,𝑗+1

𝑘 + 𝑢𝑖+1,𝑗+1
𝑘  

+
𝑟2

2
 𝑢𝑖,𝑗

𝑘 + 𝑢𝑖,𝑗+2
𝑘  

+  2 − 𝑟1 − 𝑟2 − 𝑏1 𝑢𝑖,𝑗+1
𝑘

+  2𝑏𝑘 − 𝑏𝑘−1 𝑢𝑖,𝑗+1
0

− 𝑏𝑘𝑢𝑖,𝑗+1
1 −  (𝑏𝑠−1 + 2𝑏𝑠

𝑘−1

𝑠=1

+ 𝑏𝑠+1)𝑢𝑖,𝑗+1
𝑘−𝑠 + 𝜏𝛼𝛤(3 − 𝛼)𝑓𝑖 ,𝑗+1

𝑘 ] 

Rewrite the above matrix equation as, 

 

 
 

𝑢𝑖,𝑗
𝑘+1

𝑢𝑖+1,𝑗
𝑘+1

𝑢𝑖+1,𝑗+1
𝑘+1

𝑢𝑖 ,𝑗+1
𝑘+1

 

 
 

=
1

𝐴
 

𝑚1 𝑚2 𝑚3 𝑚4

𝑚2 𝑚1 𝑚4 𝑚3

𝑚3 𝑚4 𝑚1 𝑚2

𝑚4 𝑚3 𝑚2 𝑚1

 

 

 
 

𝑟𝑕𝑠𝑖 ,𝑗
𝑟𝑕𝑠𝑖+1,𝑗

𝑟𝑕𝑠𝑖+1,𝑗+1

𝑟𝑕𝑠𝑖 ,𝑗+1  

 
 
…………… (6) 

Where  

𝐴 = (1 + 𝑟1 + 𝑟2)4 −
1

2
 1 + 𝑟1 + 𝑟2 

2(𝑟1
2 + 𝑟2

2)

+
1

16
(𝑟1

2 − 𝑟2
2)2 

𝑚1 =  1 + 𝑟1 + 𝑟2 { 1 + 𝑟1 + 𝑟2 
2 −

𝑟1
2

4
+
𝑟2

2

4
} 

𝑚2 = −
𝑟1

2
{ 1 + 𝑟1 + 𝑟2 

2 −
𝑟1

2

4
+
𝑟2

2

4
} 

𝑚3 =
1

2
(1 + +𝑟1 + 𝑟2)𝑟1𝑟2 

𝑚4 = −
1

2
𝑟2{ 1 + 𝑟1 + 𝑟2 

2 +
𝑟1

2

4
−
𝑟2

2

4
} 

The scheme described in (6) generate an iterative process 

on a group of four points over the entire spatial domain. 

This process continues on a group of four points until 

certain convergence criterion is achieved. The converged 

solutions are then utilized as initial guess for the next 

time level. 

Fractional Explicit De-coupled Group (FEDG) Iterative 

Scheme 

To derive the FEDG iterative scheme, similar to FEG 

method, we apply equation (5) on group of four points 

will result 4 x 4 system of equations, 

 

𝑘1 𝑘4 𝑘3 𝑘3

𝑘4 𝑘1 𝑘3 𝑘3

𝑘3 𝑘3 𝑘1 𝑘2

𝑘3 𝑘3 𝑘2 𝑘1

 

 

 
 

𝑢𝑖,𝑗
𝑘+1

𝑢𝑖+1,𝑗+1
𝑘+1

𝑢𝑖+1,𝑗
𝑘+1

𝑢𝑖,𝑗+1
𝑘+1

 

 
 

=

 

 
 

𝑟𝑕𝑠∗𝑖,𝑗
𝑟𝑕𝑠∗𝑖+1,𝑗+1

𝑟𝑕𝑠∗𝑖+1,𝑗

𝑟𝑕𝑠∗𝑖,𝑗+1  

 
 

 

Where  

𝑘1 = 1 + 𝑟1/2 + 𝑟2/2, 𝑘2 = −𝑟1/4, 𝑘3 = 0 and 𝑘4 =
−𝑟2/4 

𝑟𝑕𝑠∗𝑖,𝑗 =
𝑟2

4
𝑢𝑖−1,𝑗−1
𝑘+1 +

𝑟1

4
 𝑢𝑖−1,𝑗+1

𝑘+1 + 𝑢𝑖+1,𝑗−1
𝑘+1  

+
𝑟1

4
 𝑢𝑖−1,𝑗+1

𝑘 + 𝑢𝑖+1,𝑗−1
𝑘  

+
𝑟2

4
 𝑢𝑖−1,𝑗−1

𝑘 + 𝑢𝑖+1,𝑗+1
𝑘  

+  2 − 𝑟1/2 − 𝑟2/2 − 𝑏1 𝑢𝑖,𝑗
𝑘

+  2𝑏𝑘 − 𝑏𝑘−1 𝑢𝑖,𝑗
0

− 𝑏𝑘𝑢𝑖,𝑗
1 −  (𝑏𝑠−1 + 2𝑏𝑠

𝑘−1

𝑠=1

+ 𝑏𝑠+1)𝑢𝑖,𝑗
𝑘−𝑠 + 𝜏𝛼𝛤(3 − 𝛼)𝑓𝑖 ,𝑗

𝑘  
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𝑟𝑕𝑠∗𝑖+1,𝑗+1 =
𝑟2

4
𝑢𝑖,𝑗
𝑘+1 +

𝑟1

4
 𝑢𝑖,𝑗 +2

𝑘+1 + 𝑢𝑖+2,𝑗
𝑘+1  

+
𝑟1

4
 𝑢𝑖,𝑗+2

𝑘 + 𝑢𝑖+2,𝑗
𝑘  

+
𝑟2

4
 𝑢𝑖,𝑗

𝑘 + 𝑢𝑖+2,𝑗+2
𝑘  

+  2 − 𝑟1/2 − 𝑟2/2 − 𝑏1 𝑢𝑖+1,𝑗+1
𝑘

+  2𝑏𝑘 − 𝑏𝑘−1 𝑢𝑖+1,𝑗+1
0

− 𝑏𝑘𝑢𝑖+1,𝑗+1
1 −  (𝑏𝑠−1 + 2𝑏𝑠

𝑘−1

𝑠=1

+ 𝑏𝑠+1)𝑢𝑖+1,𝑗+1
𝑘−𝑠 + 𝜏𝛼𝛤(3 − 𝛼)𝑓𝑖+1,𝑗+1

𝑘  

𝑟𝑕𝑠∗𝑖+1,𝑗 =
𝑟2

4
𝑢𝑖,𝑗−1
𝑘+1 +

𝑟1

4
 𝑢𝑖,𝑗+1

𝑘+1 + 𝑢𝑖+2,𝑗−1
𝑘+1  

+
𝑟1

4
 𝑢𝑖,𝑗+1

𝑘 + 𝑢𝑖+2,𝑗−1
𝑘  

+
𝑟2

4
 𝑢𝑖,𝑗−1

𝑘 + 𝑢𝑖+2,𝑗+1
𝑘  

+  2 − 𝑟1/2 − 𝑟2/2 − 𝑏1 𝑢𝑖+1,𝑗
𝑘

+  2𝑏𝑘 − 𝑏𝑘−1 𝑢𝑖+1,𝑗
0

− 𝑏𝑘𝑢𝑖+1,𝑗
1 −  (𝑏𝑠−1 + 2𝑏𝑠

𝑘−1

𝑠=1

+ 𝑏𝑠+1)𝑢𝑖+1,𝑗
𝑘−𝑠 + 𝜏𝛼𝛤(3 − 𝛼)𝑓𝑖+1,𝑗

𝑘  

𝑟𝑕𝑠∗𝑖,𝑗+1 =
𝑟2

4
𝑢𝑖−1,𝑗
𝑘+1 +

𝑟1

4
 𝑢𝑖−1,𝑗+2

𝑘+1 + 𝑢𝑖+1,𝑗
𝑘+1  

+
𝑟1

4
 𝑢𝑖−1,𝑗+2

𝑘 + 𝑢𝑖+1,𝑗
𝑘  

+
𝑟2

4
 𝑢𝑖−1,𝑗

𝑘 + 𝑢𝑖+1,𝑗+2
𝑘  

+  2 − 𝑟1/2 − 𝑟2/2 − 𝑏1 𝑢𝑖,𝑗+1
𝑘

+  2𝑏𝑘 − 𝑏𝑘−1 𝑢𝑖,𝑗+1
0

− 𝑏𝑘𝑢𝑖,𝑗+1
1 −  (𝑏𝑠−1 + 2𝑏𝑠

𝑘−1

𝑠=1

+ 𝑏𝑠+1)𝑢𝑖,𝑗+1
𝑘−𝑠 + 𝜏𝛼𝛤(3 − 𝛼)𝑓𝑖 ,𝑗+1

𝑘  

The above matrix equation of this section can be written 

as pair of matrix equations, 

 
𝑢𝑖,𝑗
𝑘+1

𝑢𝑖+1,𝑗+1
𝑘+1

 

=
4

𝐵1

 
𝑛1 𝑛2

𝑛2 𝑛1
  

𝑟𝑕𝑠∗𝑖,𝑗
𝑟𝑕𝑠∗𝑖+1,𝑗+1

 ………………………… . (7) 

 
𝑢𝑖+1,𝑗
𝑘+1

𝑢𝑖,𝑗+1
𝑘+1  

=
4

𝐵2

 
𝑛∗1 𝑛∗2

𝑛∗2 𝑛∗1
  

𝑟𝑕𝑠∗𝑖+1,𝑗

𝑟𝑕𝑠∗𝑖,𝑗+1
 …………………………(8) 

𝐵1 = 4𝑟1
2 + 8𝑟1 2 + 𝑟2 + 3𝑟2

2 + 16𝑟2 + 16 

𝐵2 = 3𝑟1
2 + 8𝑟1 2 + 𝑟2 + 3𝑟2

2 + 4(𝑟2 + 2)2 

𝑛1 = 𝑛∗1 = 2 𝑟1 + 𝑟2 + 2  
𝑛2 = 𝑟2, 𝑛∗2 = 𝑟1 

The FEDG iterative scheme comprises the two sets of 

group points represented by the matrix equations (7) and 

(8). The scheme can be constructed by iterating on either 

(7) or (8). Suppose the iterations are generated using (7) 

until a certain criteria is met. Once the convergence is 

attained the values on the remaining points of the 

solution domain can be evaluated using FSP formula as 

described in (4). Similarly, the scheme can be 

implemented if (8) is chosen for iteration process. 

III. NUMERICAL EXPERIMENT AND RESULTS 

Two numerical experiments were performed to test the 

viability of the proposed methods in solving the two 

dimensional time-fractional diffusion-wave equation 

(2.1). The numerical experiments were carried out on a 

PC with Core 2 Duo 2.8 GHz, 2GB of RAM with 

Window XP SP3 operating system using Cygwin C and 

Mathematica 11 software. In both experiments, we 

assume that the step sizes in both x and y directions are 

the same. i.e. h = ∆x = ∆y. Various mesh sizes of 10 , 16 

, 22 and 28 were considered for different time steps of 

1/10 , 1/16 , 1/22 and 1/28 in example 3.1 and mesh sizes 

of 10 , 20 , 30 and 40 were considered for different time 

steps of 1/10 , 1/20 , 1/30 and 1/40 in example 3.2. Gauss 

Seidel method with relaxation factor 𝜔𝑒  equal to 1 were 

selected for both examples and for convergence criteria 

𝑙∞norm was used with tolerance factor  𝜀 = 10−5 

 
 

TABLE I: COMPUTATIONAL COMPLEXITY ANALYSIS FOR FSP, FRP, FEG AND FEDG METHODS 
 

 
 

Table 1 summarizes the computational complexity per 

iteration for FSP, FRP, FEG and FEDG iterative methods 

in which 𝑘denote the time level and 𝜆 =  𝑛 − 1 where n  

 

is the mesh size of discretized solution domain whereas 

Table 2 describes the computational complexity of the 

four methods after convergence.  
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TABLE II: COMPUTATIONAL COMPLEXITY ANALYSIS FOR FSP, FRP, FEG AND FEDG METHODS 

 

 
Table 3 sums up the total number of arithmetic operations of each iterative method with 𝐼𝑡𝑒. indicating the number of 

iterations.  

TABLE III: TOTAL NUMBER OF ARITHMETIC OPERATIONS FOR FSP, FRP, FEG AND FEDG METHODS 

 

 
Example 1:Consider the following time-fractional 

diffusion-wave together with the source term given by 

the relation [24], 

 

 

𝜕𝛼𝑢

𝜕𝑡𝛼
=
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+

1

5
sin 𝑥 sin 𝑦 [

𝑡2−𝛼

𝛤(3 − 𝛼)
+ 𝑡2] 

The initial and boundary conditions are given by 

𝑢 𝑥, 𝑦, 0 = 𝜙 𝑥, 𝑦 = 0, 𝑢𝑡  (𝑥, 𝑦, 0) =  0  
𝑢 0, 𝑦, 𝑡 = 𝑔1 𝑦, 𝑡 = 0,

𝑢 1, 𝑦, 𝑡 = 𝑔2 1, 𝑦, 𝑡 

=
1

10
𝑡2 sin 1 sin⁡(𝑦)  

𝑢 𝑥, 0, 𝑡 = 𝑔3 𝑥, 𝑡 = 0,      𝑢 𝑥, 1, 𝑡 = 𝑔4 𝑥, 1, 𝑡 

=
1

10
𝑡2 sin 𝑥 sin⁡(1)   

The exact analytical solution is given by 

𝑢 𝑥, 𝑦, 𝑡 =
1

10
𝑡2 sin 𝑥 sin⁡(𝑦)   

 

Example 2:Consider the following time-fractional 

diffusion-wave together with the source term given by 

the relation [24], 

𝜕𝛼𝑢

𝜕𝑡𝛼
=
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+

1

5
sin 𝜋𝑥 sin 𝜋𝑦 [

3𝑡3−𝛼

𝛤(4 − 𝛼)
+ 𝜋2𝑡3] 

The initial and boundary conditions are given by 

𝑢 𝑥, 𝑦, 0 = 𝜙 𝑥, 𝑦 = 0, 𝑢𝑡  (𝑥, 𝑦, 0) =  0  
𝑢 0, 𝑦, 𝑡 = 𝑔1 𝑦, 𝑡 = 0,

𝑢 1, 𝑦, 𝑡 = 𝑔2 1, 𝑦, 𝑡 = 0  
𝑢 𝑥, 0, 𝑡 = 𝑔3 𝑥, 𝑡 = 0,      𝑢 𝑥, 1, 𝑡 = 𝑔4 𝑥, 1, 𝑡 = 0   
The exact analytical solution is given by 

𝑢 𝑥, 𝑦, 𝑡 =
1

10
𝑡3 sin 𝜋𝑥 sin⁡(𝜋𝑦)   

In Table 4-7, the execution timings of FEDG method is 

only about (30:28104 - 33:82384)% , (86:84919 - 

90:196)% and (43:3666 - 46:00035)% of FSP, FRP and 

FEG methods and total operations of FEDG method is 

only about (28:85107-30:70429)%, (86:40948 - 

95:99756)% and (38:98463 - 39:59843)% of FSP, FRP 

and FEG methods in example 1 when 𝛼 = 1.25 . In 

Table 6-8, execution timings of FEDG method is merely 

about (29:23623- 32:86743)%, (87:03719-87:97271)% 

and (42:81756-47:47509)% of FSP, FRP and FEG 

methods and total operations of FEDG method is merely 

about (25:83004 - 26:49201)%, (80:27011 - 83:73499)%, 

(41:94131-43:06748)% of FSP, FRP and FEG methods 

in example 2 when 𝛼 = 1.25. Figures 1 and 2 represent 

the graphs of FSP, FRP, FEG and FEDG iterative 

methods of example 1 and 2 in terms of execution times, 

total operations and number of iterations when 𝛼 =
1.50when𝛼 = 1.25respectively.  

 

 

 

 

TABLE IV: COMPARISON BETWEEN FSP, FRP, FEG AND FEDG ITERATIVE METHODS FOR EXAMPLE 1 
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TABLE V: COMPARISON BETWEEN FSP, FRP, FEG AND FEDG ITERATIVE METHODS FOR EXAMPLE 1 
 

 
 

TABLE VI: COMPARISON BETWEEN FSP, FRP, FEG AND FEDG ITERATIVE METHODS FOR EXAMPLE 2 
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TABLE VII: COMPARISON BETWEEN FSP, FRP, FEG AND FEDG ITERATIVE METHODS FOR EXAMPLE 2 

 

 
 

In both figures, one can easily observed that FEDG 

iterative method requires the least number of total 

numbers of arithmetic operations and CPU timings as 

compared to other three methods state. 

 
Figure 1: Graph of FSP, FRP, FEG and FEDG when α =1.50 for Example 1 

 
Figure 2: Graph of FSP, FRP, FEG and FEDG when α =1.25 for Example 2 

IV. CONCLUSION 

In this study, we have developed two new groups 

iterative methods derived from the fractional standard 

five points and fractional rotated five point schemes in 

solving the two dimensional second order diffusion wave 

equation. The fractional rotated five point scheme is 

derived from the fractional standard five point scheme by 

rotating the clockwise at an angle of 45o  from the 

standard mesh. Consequently, FEDG iterative method is 

based on the involvement of rotation. Our findings 

indicate that FEDG requires the least computing efforts 

in terms of computational complexity and least CPU 

execution times among the other methods tested. 
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