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Abstract: In this paper, we present the preliminary study of the formulation of fractional explicit group (FEG) and
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I. INTRODUCTION

Fractional differential equation (FDE) which is the
generalization of the integer ordered differential equation
have gained considerable significance in the field of
engineering [6], [20], quantum mechanics [15],
hydrology [10], visco-elasticity [5], [21] bio science [19],
control system [1] and other sciences [29]. Due to non-
local property and more realistic natural phenomena,
several mathematical problems can be solved in these
_led of studies by utilizing the FDE in terms of time-
fractional, space-fractional and time-space- fractional
differential equations. But to discover the exact analytic
solutions of FDE is complex task. Therefore, it is
essential to develop the stable, precise and well-
organized numerical approximations to the exact analytic
solutions [22]. Several scholars efficiently solved the
time-fractional,  space-fractional and time-space-
fractional for FDE using many proficient methods such
as Galerkin spectral method [24], [25], homotopy
perturbation method [27], compact alternating direct
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implicit method [28], singular boundary method [4], local
radial point interpolation method [26] and fourth order
finite difference method [16]. In both cases whether
equations is discretized fractionally or non-fractionally
(positive integer ordered), the numerical solution of the
discretized equation along with the usage of finite
difference approximation generates system of linear
equations. This system of linear equations impelled the
development of significant number of iterative methods
to achieve the convergence. In case both cases, many
iterative methods have been suggested by the different
scholars such as Evans [14] proposed the group explicit
iterative method in the solution of large linear systems.
Othman and Abdullah [23] utilized the modified explicit
group iterative method to solve the Poisson differential
equation while Evans and Sahimi [11] recommended the
alternative group explicit (AGE) iterative method to
solve one and two dimensional parabolic problems and
they also utilized the same method for hyperbolic partial
differential equations. Evans and Changjun [12] used
AGE iterative method in linear algebra, Evans and
Yousif [13] utilized the explicit group iterative methods
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for spare system of linear equation in the solution of
elliptic partial differential equation. Ali and Ng [3]
developed modified explicit de-coupled group iterative
method in the solution of 2-D elliptic equation.
Meanwhile, Ali and Kew [2] considered the concept of
modified explicit de-coupled group iterative method in
the solution of 2-D telegraph PDEs. The new explicit
group iterative method in the solution of three
dimensional hyperbolic telegraph equations was also
formulated by Kew and Ali [17]. Recently, Balasim and
Ali [7], [8], [9] utilized fractional standard point (FSP),
fractional rotated point (FRP), fractional explicit group
(FEG), fractional modified explicit group

(FMEG), fractional explicit de-coupled group (FEDG)
and  fractional modified  explicit  de-coupled
group(FMEDG) iterative methods for the solution of
diffusion differential equation of fractional order and find
significant results in terms of execution of time, number
of iterations and total number of operations in solving the
time-fractional diffusion equation.

Il. METHODOLOGY

In this paper, we proposed the formulation of explicit
group methods in solving the two dimensional second
order time-fractional diffusion-wave equations,
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wherel < a < 2,a(x,y,t) and b(x,y,t)are the
variable co-efficients and x, y and t represent the spatial
and temporal characterizations respectively and f(x,y,t)
is the source term with initial and boundary conditions:
u(x,y,0) = ¢(x,y), ut(x,y,0) =
u,y,6) = g1:(v,0), ul,y,t) =g 1t)
u(x,0,t) = g3(x,0),  u(x,L,t) = gu(x,t)
Where
w={xyt)/ 0 <xy<lL, 0 <t<T}
The discrete derivation of Caputo's time-fractional
derivative of order « is defined as,
0%u(x,y,t)

at«

tou™(x,y,t) dé

e 2 .
Wherem-1 < a < m.
Discretize the solution domain by definingt, = k7, k =
0,1,2..N,x; = iAx,i = 0,1,2 ...Mx,yj =jAy,j =
0,1,2...M,

where T = 1 Ax = iand Ay = L
My

Let U" be the exact solutlon and u - be the approximate
squtlon of FDE (1) at the grid  point
(X1, Y, ties1, )-Consider, £ (x;, v, t,) = £,

a(xl-,yj,tk) = affj, b(xl-,yj,tk) = bik_j

Utilizing the second order time differential operator in
equation (2), we get the following a order time-fractional
approximation [18] at the point(x;, y;, tx41,),

.(2)
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Where b, = (s + 1)?™®) — (s)<2 00 s=0,1.2,.

Fractional Standard Point (FSP) Iterative Scheme

By using Caputo's fractional derivative of order «a in
equation (3) and standard Crank-Nicolson finite
difference approximation in equation (1), the following
fractional standard point (FSP) Crank-Nicolson scheme

is obtained,
ykH
ll
1 (uk+1 uk+l
(1 +r )2y Y Uirt,)

T,
+ = (uk+11 + uf‘]++11) + 71 (uf—u + utk+1,j)
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+ (Zbk - bk_l)u?‘j
k-1

D oy + 2, + byuls
s=1

+ I (3

- a)ﬁ.{;.l RN (/)

Foralli=1,2. Mxy]]—lz .M, andk =0,1,2..N
Where p, = =Wt rG3 -
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Fractional Rotated Point (FRP) Iterative Scheme

Utilizing the Caputo’s fractional derivative of order « in
(3) and rotated Crank-Nicolson finite difference
approximation at an angle 45° to the standard mesh in
equation (1), the following fractional rotated point (FRP)
Crank-Nicolson scheme is obtained,

1
k+1 _ k+1
ui,}' (1 + 7.1/2 + 1.2/2) (ul —-1,j+1 + ul+1] 1)

+—- (ulk+11} 1 + u’L+1]+1)

+ Z (ui—l,j+1 + ui+1,j—1)

r
k k
+ T (ui—l,j—l + ui+1,j+1)

+(2—r—1—r—2—b1)uf‘_}-

- a)ﬁ.{;.l Y (-
Foralli=12..M,y;,j =12..M,and k =0,1,2...N

Fractional Explicit Group (FEG) Iterative Scheme
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In developing the FEG iterative scheme, we divide the
whole solution domain into groups of four points. In
doing so the group of points will be treated as single
point like the standard or rotated point finite difference
approximations by reducing the arithmetic operations and
lapse time per iteration.

Apply equation (4) on a group of four points will result 4
x 4 system of equations,
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Rewrite the above matrix equation as,
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rhs;

Ths;1, (6)
ThSit1+1
Ths; 41

Where
s 1 20,2 2
A=0A4+nr+n) —E(1+r1+r2) (n°+nr°)
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The scheme described in (6) generate an iterative process
on a group of four points over the entire spatial domain.
This process continues on a group of four points until
certain convergence criterion is achieved. The converged
solutions are then utilized as initial guess for the next
time level.

Fractional Explicit De-coupled Group (FEDG) Iterative
Scheme

To derive the FEDG iterative scheme, similar to FEG
method, we apply equation (5) on group of four points

will result 4 x 4 system of equations,
k+1

ki ki ks ks i) rhs®;;

ky ki ks ks ufcfll,jﬂ rhs™ 1141
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Where

ki =1+n/2+1/2, ky=-n1/4, k3=0 and k, =
-1/4
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The above matrix equation of this section can be written
as pair of matrix equations,
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The FEDG iterative scheme comprises the two sets of
group points represented by the matrix equations (7) and
(8). The scheme can be constructed by iterating on either
(7) or (8). Suppose the iterations are generated using (7)
until a certain criteria is met. Once the convergence is
attained the values on the remaining points of the
solution domain can be evaluated using FSP formula as
described in (4). Similarly, the scheme can be
implemented if (8) is chosen for iteration process.

I11. NUMERICAL EXPERIMENT AND RESULTS

Two numerical experiments were performed to test the
viability of the proposed methods in solving the two
dimensional time-fractional diffusion-wave equation
(2.1). The numerical experiments were carried out on a
PC with Core 2 Duo 2.8 GHz, 2GB of RAM with
Window XP SP3 operating system using Cygwin C and
Mathematica 11 software. In both experiments, we
assume that the step sizes in both x and y directions are
the same. i.e. h = Ax = Ay. Various mesh sizes of 10, 16
, 22 and 28 were considered for different time steps of
1/10, 1/16 , 1/22 and 1/28 in example 3.1 and mesh sizes
of 10, 20, 30 and 40 were considered for different time
steps of 1/10, 1/20, 1/30 and 1/40 in example 3.2. Gauss
Seidel method with relaxation factor w, equal to 1 were
selected for both examples and for convergence criteria
1,norm was used with tolerance factor ¢ = 107>

TABLE |: COMPUTATIONAL COMPLEXITY ANALYSIS FOR FsP, FRP, FEG AND FEDG METHODS

MNMethod Per Iteration
(+/-) (= /=)
FSP (18 4+ 17(k — 1)3A2 (10 4 (& — 1))1A=
FRP ((9 + 8.5k —1)(A% + 1) (54 0.5k — 1))(A% + 1)
FEC (19 4+ 17(k — 1))(A — 1)2 (16 4+ (k& — 1))(A — 132
+(18 4+ 17(k — 1))(2A — 1) +(10 + (& — 1))(2X — 1)
FEDOG (9 + 8.5(k — 1))(X — 1)2 (6 +~0.5(k — 1))(Xx — 1)2

+ (18 + 17(k — 1)) A +(10 + (k — 1))A

is the mesh size of discretized solution domain whereas
Table 2 describes the computational complexity of the
four methods after convergence.

Table 1 summarizes the computational complexity per
iteration for FSP, FRP, FEG and FEDG iterative methods
in which kdenote the time level and A = n — 1 where n
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TABLE II: COMPUTATIONAL COMPLEXITY ANALYSIS FOR FSP, FRP, FEG AND FEDG METHODS

Method After Convergence
ET) EVED)
FsSpP - -
FRP ((9 4+ 85k —1))(A%2 —1) (B5+05(k—1))(A%2—-1)
FEG - -

FEDG (9 +8.5(k—1))(A%2—1) (5 4+ 05(k—1))(A% —1)

Table 3 sums up the total number of arithmetic operations of each iterative method with Ite. indicating the number of
iterations.

TABLE IlI: TOTAL NUMBER OF ARITHMETIC OPERATIONS FOR FsP, FRP, FEG AND FEDG METHODS

Methods Total Operations

FSP (28 + 18(k — 1))A2 * Ite.

FRP

FEG

(14 + 90k — 1))(A? + 1) = [te.
+(14+9(k — 1)) (A2 —1)

{((35 - 18(k — 1))(A —1)2

+(28 + 18(k — 1))(2A — 1))} = Ite.

FEDG

{((15 4+ 9(k — 1))(X — 1)2) + (28 + 18(k — 1))A} * Tte.
+(15+9(k—1))(A2=1)

Example 1:Consider the following time-fractional
diffusion-wave together with the source term given by
the relation [24],

6“u_62u+62u+1 inGe) sin(y) t2@
ate ~ ax2 Ty TS sin0) [T
The initial and boundary conditions are given by
u(x,y,0) = p(x,y) =0,  u (x,y,00=0
u(0,y,t) = g1y, t) =0,

u(ll.y, t) =g.(L,y,t)

=T t2 sin(1) siniifly)
u(x; 0; t) = 93 (x’ t) = 0’ u(x; 11 t) = 94 (xl 1; t)

1
=10 t2 sin(x) siniifl)
The exact analytical solution is given by

+ t2]

1
u(x,y,t) = T t% sin(x) siniifly)

Example 2:Consider the following time-fractional
diffusion-wave together with the source term given by
the relation [24],

0u  d*u d*u 1 _ 3t3@

Frel + W + gsm(nx) sin(my) [m

+ m2t3]

The initial and boundary conditions are given by
u(x'yyo)=¢(x'Y)=0' ut (X,y,O)Z 0
u(o»}’,t) = gl(y; t) = 0;

u(l,y,t) =91y, t) =0
u(x,0,t) = g3(x,t) =0, ulx,1,t) =g4(x,1,t) =0
The exact analytical solution is given by

1
u(x,y,t) = 10 t3 sin(mx) siniifiry)

In Table 4-7, the execution timings of FEDG method is
only about (30:28104 - 33:82384)% , (86:84919 -
90:196)% and (43:3666 - 46:00035)% of FSP, FRP and
FEG methods and total operations of FEDG method is
only about (28:85107-30:70429)%, (86:40948 -
95:99756)% and (38:98463 - 39:59843)% of FSP, FRP
and FEG methods in example 1 when a =1.25 . In
Table 6-8, execution timings of FEDG method is merely
about (29:23623- 32:86743)%, (87:03719-87:97271)%
and (42:81756-47:47509)% of FSP, FRP and FEG
methods and total operations of FEDG method is merely
about (25:83004 - 26:49201)%, (80:27011 - 83:73499)%,
(41:94131-43:06748)% of FSP, FRP and FEG methods
in example 2 when a = 1.25. Figures 1 and 2 represent
the graphs of FSP, FRP, FEG and FEDG iterative
methods of example 1 and 2 in terms of execution times,
total operations and number of iterations when a =
1.50whena = 1.25respectively.

TABLE IV: COMPARISON BETWEEN FSP, FRP, FEG AND FEDG ITERATIVE METHODS FOR EXAMPLE 1
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o — 1.25
ar 7T Meothod Time (sec) Jie. Ave Error Max Error  Operations
FSP 212161 21 2.76040=10 °  546536x10 * 323.100
13 281782x10°3  5.56365x10°3 108,870
N e 15  1.08030x10°2 4.90316x10°2 237,570
11 1.06857=10"2 4.74351x102 094,074
38 3.02652<10 °  6.44493<10 ° 1,877,400
17 3.02535x10°3 6.45087x1073 605834
1716 6 119497 20 0.40835x10°3 537497x102 1,368,440
5.30403 15 9.36120x10°3  5.24¢ 541,650
663160 32  3.23760=<10 3 =10 3 5,72 2
23.3689 20 3.20596x<10% =x107% 1883840
22 22
s - 24  868431x10°3 5637T2x10°? 4,364,304
18 8.64233x10°3  5.53095x<10"2 1,712,028
36 342226<10 °  7.60060=10 ° 13459116
22  3.36488x10°% 7.56402x10°% 4314516
/28 28 8.25220x<10°% 581188x10°? 10,624,264
21 21011103 5.71870x10°2 4,141,830
o — 1.50
At T Mcthod Time (sec) lte. Ave Error Max Error  Operations,
FSP 1.56001 16 45745010 9.03902x10 °
FRP 0.67081 10 4.65111x107%  9.19489x103
1/10 %0 11 1.00849x10°2  4.42391x102
8  999970x10°3  4.21195x10°2
1S 539024<10 ° 1.15758x10 %
12 5401211077  1.16071x102
376 16 13 9.32052x10°3  4.78248x 102
4.04043 10 9.28575x10°% 4.58766x10 2
42,1350 20 509379=<10 °  1.33846x10 2
15.8653 13 5.97738x1073  1.33504x102
1/22 22 3 2
31.0286 15 9.11530x<10 4.98941 %10
14.2585 11 9.07753x<10°3  4.80787x102
113.974 21 6.48216x10 °  1.45200x10 *
42.1359 14 6.44448x10°3  1.47320x10°2
’ -
] = $1.9317 16 9.13409x10-3  5.13371x102
37.7990 12 9.07935x10°3  4.96294x10 2

o 1.75

Y3 BT Mcthod Tiume (soc) lic. Ave Error Max Error  Operations
FSP 1.20121 12 6.78819x10°° 1.36466x10 2 184,680

FRP 0.56160 8  688407x10°3  1.39692x102 69,920

10 19 1.07641 8 1.04051x10"2 3.95971x10~2 126,704

6 1.03627x10"2 3.71935x10°2 54,804

13 827462x10 ° 1.82886x10 S71.650

8 8.30315x10°% 1.83085x10°2 302,768

1/16 18 9 1.03806x10°2 4.14124x10°? 615,798
7 1.03602x1072 3.89262x102 270,690

275186 13  0.20067<10 ° 214003x10 ° 2,327,508

11.4193 9  920111x103 215074x1072? 806,854

122 22 226357 10 1.06511x10°2 4.2 2 8

226357 06511 4.23311x10 1,818,460

11.1073 7 1.06248x10°2 3.98208x10°? 720,642

13 0052110 2 238828x10 2 4,871,178

9  1.00380x107% 238649x10°? 1875586

1728 2 10 1.10068x10°2 4.20659x10~2 3,704,380
8  1.09631x10°2 4.04566x10°2 1,694,112

TABLE VI: COMPARISON BETWEEN FSP, FRP, FEG AND FEDG ITERATIVE METHODS FOR EXAMPLE 2

=
> — 1.25
At T Mothod Time (soc) Tie.  Ave Error Max Error _ Operations
FSP 2.23081 25 864546107 1.75656x 10 7 384,750
FRP 0.84241 15 7.98274x10°3  1.61696x102
/10 FEG 1.54441 8.59709x1073 1.74673x10°2 237,570
FEDG  0.73321 7931322103 1.60709<10"2 101,928
TSP 39,5591 T00902= 107 5,209,230
FRP 17.2069 9.91067x103 S 1,606,910
1/20 20 pEc 334154 1.00410x 102 2 3124274
FEDG 14.9917 989806 103 - 1,345,546
=P 251,650 T.10372=10 2 ~T31,739.550
FRP 97.0638 1.08793x 1072 2  6,945950
/30 30 pec 192.256 1.09318x102 2 13,105,064
FEDG 852701 1.08527x102 2 55753522
TSP 572860 118020107 T 57,737,160
FRP 329.193 1.15925x 102 2 18,331,760
1740 0 pec 676.358 1.16145x10"2  2.72704x10"2 35854016
FEDG 289600 1.15446x10~2  271078x10"2 15,037,644
& — 1.50
At 7T Mothod Time (soc) JTie.  Ave Error Max Error | Operations
TSP 166921 1S 135105<10 7 274607 =10 7 277,020
FRP 068640 11 130378x10°2 264471x10°2  93.200
TE ) 10 pec 1.32601 12 1.34192x102 2
FEDG 0.62400 9 1 A -
TSP 305606 23 1 T3 R3538%10°7 3072110
FRP 11.2945 15 1 2 380816x1077 1071150
1/20 2 rec 21.0601 14 171062x10"2 3.82493x10~2 1,901,732
FEDG 990606 12 170187x10~2 380519x10-2 874 4S8
157.062 25 103721x10 7  1.47459=10 7
57.2212 16 1.92505x10°2 4.44644x<10°2
130 30 109513 16  192682x10~2 4.45053x10°2 7488608
5 92682 ’ x 7,488
50.5131 13 1.92208x10°2  4.43965x10°2 3,252,182
386458 26 2.09995-10 7 1.03060=10 2 28,868,580
179.354 16 208277x10°2 4.80022x10°2  9.443280
1740 0 343779 16 208251x10°2 488973x<10°2 17,927,008
160400 13 2.07757x10-2  4.87821x10~2  7.706.982
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TABLE VII: COMPARISON BETWEEN FSP, FRP, FEG AND FEDG ITERATIVE METHODS FOR EXAMPLE 2

o ‘D
At h~' Mecthod Time (sec) [te. Ave Error Max Error Operations
FSpP 1.26361 13 1.88837x10°¢ 383680x10"7 200,070
FRP 0.56160 a9 1.85557x<1072 3.76675x<102 77.710
/10 19 rec 1.06081 9  187138x10-2 380243102 142542
FEDG 0.57720 7 1.83796x 102 3.73127x1072 62,658
FSP 18,8761 14 246013x10° % 550069x 10 < 1.869 950
FRP 7.92485 0 245285x 102 5.48430x102 669.330
1/20 20 g _ D gc-atar 2 -
FEG 14.3833 9 245249x10°2 5.48376x10°2 222 542
FEDG 7.64405 8 2.44649x1072 5.47020x102 605,312
FSpP 90 .8862 14 275876x 107 637226x10 " 6,475,700
FRP 36.7226 a9 2.75107x<10°2 6.35452x10°2 2314950
1/30 P pEG 688432 9 275056x10~2 635326x10-2 4212342
FEDG 35.2562 8 274833x 1072 6.34824x1072 2.090512
FspP 268571 13 205177=10 2 693065x10 2 14,434,290
FRP 108.452 9 294080x10°2 690514x10°2 5554570
1/40 40 FEG 208.090 9 203914%x10"2 690107102 10,083 942
FEDG 101.416 7 2036731072 689547x10"2 1,455,138

In both figures, one can easily observed that FEDG
iterative method requires the least number of total

numbers of arithmetic operations and CPU timings as
compared to other three methods state.

i —
i e — e H iy - -
He — " {. A
; L - | " 'i//"a
, I
Figure 1: Graph of FSP, FRP, FEG and FEDG when o =1.50 for Example 1
i " . T — Fd
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- y —— - i 5 — | r pra.
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1 = — | . _ - s P i
Figure 2: Graph of FSP, FRP, FEG and FEDG when o =1.25 for Example 2
IV. CONCLUSION ACKNOWLEDGEMENT

In this study, we have developed two new groups
iterative methods derived from the fractional standard
five points and fractional rotated five point schemes in
solving the two dimensional second order diffusion wave
equation. The fractional rotated five point scheme is
derived from the fractional standard five point scheme by
rotating the clockwise at an angle of 45° from the
standard mesh. Consequently, FEDG iterative method is
based on the involvement of rotation. Our findings
indicate that FEDG requires the least computing efforts
in terms of computational complexity and least CPU
execution times among the other methods tested.
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