
MATHGRAPH : A PYTHON PACKAGE TO COMPUTE ENERGY AND
TOPOLOGICAL INDICES OF GRAPHS

M. R. Rajesh Kanna∗

Department of Mathematics,
Sri D Devaraj Urs Government First Grade College,

Hunsur - 571105, India.

R. Pradeep Kumar
Department of Mathematics,

GSSS Institute of Engineering and Technology for Women,
KRS Road, Mysuru - 570 016, India.

Sudharsan Vijayaraghavan
CISCO INC, Software Engineer, Bengaluru, India.

Ananda Kumar M.R
Juniper Networks, Software Engineer, Bengaluru, India.

Soner Nandappa D
Department of Studies in Mathematics, University of Mysore,

Mysuru - 570 006, India.

In this paper, we introduce MathGraph, an open-source and cross-platform Python package.
As a Python package, MathGraph is easily integrable with graph visualization softwares. This helps
researchers in graph theory to either create a graph programmatically using Python program or
draw the graph using Graphical User Interface (GUI) tool such as ‘Tulip’ to compute distinct sets,
energies and topological indices of graphs.

Mathematics Subject Classification : Primary 05C50, 05C15, 05C69.

Keywords and Phrases : MathGraph, Python package, Tulip, Dominating sets, Minimum
dominating sets, Minimum dominating energy, Covering sets, Minimum covering sets, Minimum
covering energy, Common neighborhood, Laplacian energy, Minimum Laplacian dominating energy,
Seidel energy, Maximum degree energy, Atom bond connectivity index, second, fourth and fifth
atom bond connectivity index.

I. INTRODUCTION

One of the important applications of graph theory
is to represent practical problems by means of structural
models. Graph theoretical ideas are highly utilized in
computer science applications. Modeling of computer
science problems leads to the development of various al-
gorithms. The main objective of this paper is to write a
program (MathGraph) in Python language to compute

∗ Department of Mathematics,
Sri D Devaraj Urs Government First Grade College,
Hunsur - 571105, India.; mr.rajeshkanna@gmail.com,
pradeepr.mysore@gmail.com, sudvijayr@gmail.com,
anandmr.acm@gmail.com and ndsoner@yahoo.co.in

various types of sets, energies and topological indices for
any given graph.

MathGraph is made available as a open source
python package which can be downloaded from
https://pypi.Python.org/pypi/mathgraph. We have
used three Python packages namely numpy, networkx
and mathchem [6] to implement MathGraph. The Math-
Graph package can also be used with graph visualiza-
tion software like i8u8i8iijuTulip. This helps to draw any
graph in Tulip using devices like Wacom tablet to find
sets, energy and topological indices instantly.

NumPy: NumPy is a open source Python package
for scientific computing with Python. NumPy is used
in MathGraph to compute eigenvalues and other proper-
ties of a graph. Details of this package can be found at

COMPUSOFT, An international journal of advanced computer technology, 8(1), January-2019 (Volume-VIII, Issue-I)

12990

2

https://pypi.Python.org/pypi/numpy.

NetworkX: NetworkX is a open source Python pack-
age for studying graphs and networks. NetworkX is used
in MathGraph to create a graph, perform some of the
basic operations on a graph such as traversing the edges
of the graph, compute neighborhood of the nodes etc.,
which are helpful in computing sets, energies and topo-
logical indices of a graph. Details of this package can be
found at https://pypi.Python.org/pypi/networkx.

Mathchem: Mathchem [6] is a open source Python
package for calculating topological indices and other in-
variants of molecular graphs. Mathchem is used in Math-
Graph to compute degree, order and adjacency matrix
of a graph. Details of this package can be found at
https://pypi.Python.org/pypi/mathchem.

Tulip: Tulip is an information visualization frame-
work dedicated to the analysis and visualization of re-
lational data. Details of this package can be found at
http://tulip.labri.fr.

II. INSTALLATION

Standard Python package installation procedure is
good enough for installing mathgraph, mathchem, net-
workx, numpy and tulip. Typical commands for package
installation will be one of the following:

Python setup.py install or pip install <package name>
as shown below

$pip install numpy
$pip install networkx = 1.10
$pip install mathchem
$pip install tulip
$pip install mathgraph

Note: MathGraph is installed and tested on Linux oper-
ating system.

III. COMPUTING DISTINCT ENERGIES AND
TOPOLOGICAL INDICES

The sets, energies and topological indices of a graph
can be computed using MathGraph in two methods:

1. Standalone method

2. Graphical visualization method using Tulip
software

A. Standalone method:

In this method, graph for which sets, energies and
topological indices has to be calculated must be cre-
ated using Python program and compute the values using
Python interpreter.

For example:

The mathgraph_standalone.py is Python program
and it can be run as shown below

>python mathgraph_standalone.py

Computing covering sets:
Covering sets:
[set([0, 2]), set([0, 1, 2]), set([0, 2, 3]),
set([1, 2, 3]), set([0, 1, 3]),
set([0, 1, 2, 3])]

Minimum covering sets:
[set([0, 2])]

Computing minimum dominating sets:

Computing dominating sets:
Dominating sets:
[set([2]), set([0]), set([0, 1]), set([1, 2]),
set([1, 3]), set([2, 3]), set([0, 3]), set([0, 2]),
set([0, 1, 2]), set([0, 2, 3]), set([1, 2, 3]),
set([0, 1, 3])]

Minimum dominating sets:
[set([2]), set([0])]

Computing common neighborhood:
Common neighborhood:
[[0. 1. 2. 1.]
[1. 0. 1. 2.]
[2. 1. 0. 1.]
[1. 2. 1. 0.]]

Computing energy:
Adjacency matrix:
[[0 1 1 1]
[1 0 1 0]
[1 1 0 1]
[1 0 1 0]]
Eigenvalues are:
[-1.5615528128088303, -1.0000000000000002,
8.881784197000973e-16, 2.561552812808829]
Energy of a graph:
[5.123105625617661]

Computing Laplacian energy:
No of edges:
5
No of vertices:
4
Degree matrix:
[[3. 0. 0. 0.]
[0. 2. 0. 0.]
[0. 0. 3. 0.]
[0. 0. 0. 2.]]
Adjacency matrix:
[[0 1 1 1]
[1 0 1 0]
[1 1 0 1]

2991

3

[1 0 1 0]]
Laplacian matrix:
[[3. -1. -1. -1.]
[-1. 2. -1. 0.]
[-1. -1. 3. -1.]
[-1. 0. -1. 2.]]
Laplacian eigenvalues:
[1.1102230246251565e-16, 2.0000000000000004,
3.9999999999999996, 4.0]
Laplacian energy of a graph:
[6.0]

Computing seidel energy:
Seidel matrix
[[0. -1. -1. -1.]
[-1. 0. -1. 1.]
[-1. -1. 0. -1.]
[-1. 1. -1. 0.]]
Seidel eigenvalues:
[-2.236067977499789, -0.9999999999999999,
1.0, 2.23606797749979]
Seidel energy of a graph:
6.472135954999579

Computing maximum degree energy:
Maximum degree matrix:
[[0. 3. 3. 3.]
[3. 0. 3. 0.]
[3. 3. 0. 3.]
[3. 0. 3. 0.]]
Maximum degree eigenvalues:
[-4.684658438426493, -2.9999999999999996,
8.88178419699941e-16, 7.68465843842649]
Maximum degree energy of a graph:
15.369316876852984

Computing minimum covering energy:

Computing minimum covering sets:

Computing covering sets:
Covering sets:
[set([0, 2]), set([0, 1, 2]), set([0, 2, 3]),
set([1, 2, 3]), set([0, 1, 3]),
set([0, 1, 2, 3])]
Minimum covering sets:
[set([0, 2])]
Minimum covering matrix:
[[1 1 1 1]
[1 0 1 0]
[1 1 1 1]
[1 0 1 0]]
Minimum covering eigenvalues:
[-1.2360679774997896, -4.319753644032946e-17,
7.09531120559584e-17, 3.23606797749979]
Minimum covering energy of a graph:
[4.47213595499958]

Computing minimum dominating energy:

Computing minimum dominating sets:

Computing dominating sets:
Dominating sets:
[set([2]), set([0]), set([0, 1]), set([1, 2]),
set([1, 3]), set([2, 3]), set([0, 3]),
set([0, 2]), set([0, 1, 2]), set([0, 2, 3]),
set([1, 2, 3]), set([0, 1, 3])]
Minimum dominating sets:
[set([2]), set([0])]
Minimum dominating matrix:
[[1 1 1 1]
[1 0 1 0]
[1 1 1 1]
[1 0 1 0]]
Minimum dominating eigenvalues:
[-1.2360679774997896, -4.319753644032946e-17,
7.09531120559584e-17, 3.23606797749979]
Minimum dominating energy of a graph:
[4.47213595499958]

Computing minimum dominating Laplacian energy:

Computing minimum dominating sets:

Computing dominating sets:
Dominating sets:
[set([2]), set([0]), set([0, 1]), set([1, 2]),
set([1, 3]), set([2, 3]), set([0, 3]),
set([0, 2]), set([0, 1, 2]), set([0, 2, 3]),
set([1, 2, 3]), set([0, 1, 3])]
Minimum dominating sets:
[set([2]), set([0])]
Degree matrix:
[[3. 0. 0. 0.]
[0. 2. 0. 0.]
[0. 0. 3. 0.]
[0. 0. 0. 2.]]
Minimum dominating matrix:
[[0 1 1 1]
[1 0 1 0]
[1 1 1 1]
[1 0 1 0]]
Minimum dominating Laplacian matrix:
[[3. -1. -1. -1.]
[-1. 2. -1. 0.]
[-1. -1. 2. -1.]
[-1. 0. -1. 2.]]
Minimum dominating Laplacian eigenvalues:
[-0.3027756377319952, 2.0, 3.3027756377319952, 4.0]
Minimum dominating Laplacian energy of a graph:
[9.60555127546399]

Computing Atom-Bond Connectivity Index:
Atom-Bond Connectivity Index:
3.4950937914128569206

32992

4

Computing Atom-Bond Connectivity Index2:
Atom bond connectivity index2:
0.0

Computing Atom-Bond Connectivity Index4:
Atom bond connectivity index4:
6.716645127367839

Computing Atom-Bond Connectivity Index5:
atom bond connectivity index5:
0.0

Below is the code for mathgraph_standalone.py:

import mathgraph as mg
#import numpy as np
#from numpy import linalg as la

G = mg.MathGraph()
for example adding a triangle

G.add_edge(0,1)
G.add_edge(1,2)
G.add_edge(2,3)
G.add_edge(3,0)
G.add_edge(0,2)

G.minimum_covering_set()
G.minimum_dominating_set()
G.common_neighbourhood()
G.energy()
G.laplacian_energy()
G.seidel_energy()
G.maximum_degree_energy()
G.minimum_covering_energy()
G.minimum_dominating_energy()
G.minimum_dominating_Laplacian_energy()
G.atom_bond_connectivity_index()
G.atom_bond_connectivity_index2()
G.atom_bond_connectivity_index4()
G.atom_bond_connectivity_index5()

B. Graphical visualization method

In this method, graph has to be drawn using Tulip
software. Compute the values of sets, energies and
topological indices using Python plugin script as shown
below.
Step 1: To start the Tulip software type tulip in the
shell prompt as shown below
tulip

Step 2: Above command will open tulip application as
shown below.
Click on the arrow button to get the graph importing
wizard.

Step 4: Any graph can be drawn in the right most
window

Step 5: Click on add nodes/edges icon pointed by the
arrow mark in the screen below

Step 6: Add the number of nodes as required to
draw the graph

Step 7: Draw the edges by dragging the mouse between

42993

5

the nodes as shown in the screen below

Step 8: If required label the nodes by following
steps below:
a) First click on hand symbol as pointed by the arrow
mark
b) Select a node to be labeled and then right click to
select the edit option
c) Click on label and number the nodes as desired.

Step 9: click on add panel button to get panel de-
scription dialog as shown in the figure

Step 10: Select python script view then click ok

Step 11: In the script editor window, click on load file
button and select mathgraph tulip Python file as shown
file

Step 12: Finally run the Python script by clicking the
play button in the script output window.

The sets, energies and topological indices of the drawn
graph will be displayed in the script output window.

IV. TYPES OF ENERGIES

The concept of energy of a graph was introduced
by I. Gutman [14] in 1978. Let G be a graph with n
vertices and m edges. Let V (G) = {v1, v2, v3, . . . , vn}
and E(G) = {e1, e2, e3, . . . , em} be the vertex set and
edge set of a graph. The adjacency matrix of the graph
is n × n matrix A = (aij) where its elements aij are
defined by

52994

6

aij =

{
1, if (vi, vj) ∈ E(G),
0, if (vi, vj) /∈ E(G).

The characteristic equation of G is |A− λI| = 0. The
roots of this equation λ1, λ2, . . . , λn are called character-
istic roots or eigenvalues of A (or G), which are usually
taken in increasing order. The greatest eigenvalue λ1 is
called spectral radius of G. Here A is a real symmetric
matrix with real eigenvalues of G whose sum is zero.

The collection of eigenvalues of adjacency matrix is
called the spectrum of G. If λ1 ≥ λ2 ≥ · · · ≥
λk are the distinct eigenvalues of G with multipli-
cation m1,m2, . . . ,mk respectively then spec(G) =(
λ1 λ2 · · · λk
m1 m2 · · · mk

)
The energy E(G) is defined to be the sum of the abso-

lute values of the eigenvalues of G. i.e., E(G) =

n∑
i=1

|λi|.

For details on the mathematical aspects of the theory
of graph energy, basic properties including various upper
and lower bounds for energy of a graph can be found in
[16].

A. Minimum Covering Energy

In the year 2012, C. Adiga et al. [1] introduced the
minimum covering energy of a graph. Let G be a simple
graph of order n with vertex set V = {v1, v2, . . . , vn} and
edge set E. A subset C of V is called a covering set of
G if every edge of G is incident to at least one vertex of
V . Any covering set with minimum cardinality is called
a minimum covering set. Let C be a minimum covering
set of a graph G. The minimum covering matrix of G is
the n× n matrix defined by AC(G) := (aij) where aij = 1, if vivj ∈ E,

1, if i = j and vi ∈ C,
0, otherwise.

The characteristic polynomial of AC(G) is denoted
by fn(G,λ) = det(λI −AC(G)). The minimum covering
eigenvalues of the graph G are the eigenvalues of AC(G).
Since AC(G) is real and symmetric, its eigenvalues are
real numbers and we label them in non-increasing order
λ1 > λ2 > · · · > λn. The minimum covering energy

of G is then defined as EC(G) =

n∑
i=1

|λi|.

B. Minimum Dominating Energy

M. R. Rajesh Kanna et al. [17] introduced minimum
dominating energy of a graph ED(G).

Let G be a simple graph of order n with vertex set V =
{v1, v2, . . . , vn} and edge set E. A subset D of V is called
a dominating set of G if every vertex of V −D is adjacent
to some vertex in D. Any dominating set with minimum
cardinality is called a minimum dominating set. Let D be

a minimum dominating set of a graph G. The minimum
dominating matrix of G is the n × n matrix defined by
AD(G) = (aij),

where aij =

 1, if vivj ∈ E,
1, if i = j and vi ∈ D,
0, otherwise.

The characteristic polynomial of AD(G) is denoted by
fn(G,λ) = det(λI −AD(G)). The minimum dominating
eigenvalues of the graph G are the eigenvalues of AD(G).
Since AD(G) is real and symmetric, its eigenvalues are
real numbers and we label them in non-increasing order
λ1 > λ2 > · · · > λn. The minimum dominating energy

of G is defined as EDM (G) =

n∑
i=1

|λi|.

Note that the trace of AD(G) = Domination number =
k.

C. Laplacian Energy

I. Gutman and B. Zhou [15] introduced the Lapla-
cian energy of a graph G in the year 2006.

Let G be a graph with n vertices and m edges. The
Laplacian matrix of the graph G, denoted by L =
(Lij), is a square matrix of order n × n whose elements
are defined as

Lij =

 −1, if vi and vj are adjacent,
0, if vi and vj are not adjacent,
di, if i = j .

where di is the degree of the vertex vi. Let µ1, µ2, . . . , µn

be the Laplacian eigenvalues of G then Laplacian en-

ergy LE(G) of G is defined as LE(G) =

n∑
i=1

∣∣∣µi −
2m

n

∣∣∣.

D. Minimum Laplacian Dominating Energy

M. R. Rajesh Kanna et al. [17] introduced minimum
Laplacian dominating energy of a graph ED(G).

Let D(G) be the diagonal matrix of vertex degrees of
the graph G. Then LD(G) = D(G)−AD(G) is called the
minimum Laplacian dominating matrix of G. Let µ1, µ2,
µ3, . . . , µn be the eigenvalues of LD(G), arranged in non-
increasing order. These eigenvalues are called minimum
Laplacian dominating eigenvalues of G. The minimum
Laplacian dominating energy of the graph G is de-

fined as LED(G) =

n∑
i=1

∣∣∣µi −
2m

n

∣∣∣.
where m is the number of edges of G and

2m

n
is the

average degree of G.

62995

7

E. Seidel Energy

Willem H. Haemers [18] defined Seidel energy of a
graph. The Seidel matrix of G is the n×n matrix denoted

by S(G) = (sij), where sij =

 −1, if vivj ∈ E,
1, if vivj 6= E,
0, if vivj .

The characteristic polynomial of S(G) is denoted by
fn(G,λ) = det(λI−S(G)). The Seidel eigenvalues of the
graph G are the eigenvalues of S(G). Since S(G) is real
and symmetric, its eigenvalues are real numbers. The
Seidel energy of G defined as SE(G) = Σn

i=1|λi|.

F. Maximum Degree Energy

C. Adiga and M. Smitha [2] defined maximum degree
energy of a graph. The maximum degree matrix of G
is the n × n matrix defined by AMD(G)= (aij), where

aij =

{
max{dvi, dvj} if vivj ∈ E

0 otherwisw

The characteristic polynomial of AMD(G) is denoted
by fn(G,λ) = det(λI − AMD(G)). The maximum de-
gree eigenvalues of the graph G are the eigenvalues of
AMD(G). Since AMD(G) is real and symmetric, its
eigenvalues are real numbers and we label them in non-
increasing order λ1 ≥ λ2 ≥ · · · ≥ λn. The maximum
degree energy of G defined as EMD(G) =

∑n
i=1 |λi|.

V. TOPOLOGICAL INDICES

All graphs considered in this thesis are finite,
connected, loop less and without multiple edges. Let
G(V,E) be a graph with n vertices and m edges. The
degree of a vertex u ∈ V (G) is denoted by du and is
the number of vertices that are adjacent to u. The edge
connecting the vertices u and v is denoted by uv.

Topological indices are the molecular descriptors
that describe the structures of chemical compounds
and they help us to predict certain physico-chemical
properties like boiling point, enthalpy of vaporization,
stability, etc. Molecules and molecular compounds are
often modeled by molecular graph. A molecular graph is
a representation of the structural formula of a chemical
compound in terms of Graph theory, whose vertices
correspond to the atoms of the compound and edges
correspond to chemical bonds. Note that hydrogen
atoms are often omitted.

A topological index Top(G) of a graph G, is a number
with the property that for every graph H isomorphic to
G, Top(H) = Top(G). So, a topological index is a real
number derived from the structure of a graph, which is
invariant under graph isomorphism. Topological indices
are numerical parameters of a graph which characterize

its topology and are usually graph invariants.

A graph invariant is any function on a graph that does
not depend on a labeling of its vertices. A topological
index is a graph invariant applicable in chemistry. By
IUPAC terminology, a topological index is a numerical
value associated with chemical constitution purporting
for correlation of chemical structure with various physical
properties, chemical reactivity or biological activity.

A. Atom Bond Connectivity index

The Atom-bond connectivity index, ABC index is
one of the degree based molecular descriptor, which was
introduced by Estrada et al. [8] in late 1990’s and it
can be used for modeling thermodynamic properties of
organic chemical compounds, it is also used as a tool for
explaining the stability of branched alkanes [7]. Some
upper bounds for the atom-bond connectivity index of
graphs can be found in [4], The atom-bond connectivity
index of chemical bicyclic graphs, connected graphs can
be seen in [5, 20]. For further results on ABC index of
trees see the papers [11, 19, 21] and the references cited
there in.

Let G(V,E) be a molecular graph and du is the de-
gree of the vertex u, then ABC index of G is defined as,

ABC(G) =
∑
uv∈E

√
du + dv − 2

dudv
.

Recently, Graovac and Ghorbani, introduced a new
version of the atom-bond connectivity index namely the
second atom bond connectivity index [13].

ABC2(G) =
∑
uv∈E

√
nu + nv − 2

nunv
where nu is the num-

ber of vertices closer to vertex u than vertex v and nv
defines similarly.

The fourth atom bond connectivity index, ABC4(G)
index was introduced by M. Ghorbani et al. [12] in 2010.
Further studies on ABC4(G) index can be found in [9,
10].

Let G be a graph, then its fourth ABC index

is defined as, ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
,

where Su is sum of the degrees of all neighbors of vertex

u in G. In other words, Su =
∑

uv∈E(G)

dv, Similarly for Sv.

The fifth atom bond connectivity index, ABC5(G) in-
dex was introduced by Calimli M.H. [3] in 2011.

Let G be a graph, then its fifth ABC index is defined

as, ABC5(G) =
∑

uv∈E(G)

√
Mu +Mv − 2

MuMv
, where Mu

denotes the products of the degrees of adjacent vertices
of u. Similarly for Mv.

72996

8

In this paper, we determine dominating sets, mini-
mum dominating sets, minimum dominating energy, cov-
ering sets, minimum covering sets, minimum covering
energy, common neighborhood, Laplacian energy, min-
imum Laplacian dominating energy, Seidel energy, max-
imum degree energy, atom bond connectivity index, sec-
ond, fourth and fifth atom bond connectivity index of a
graph by using Mathgraph package.

VI. MATHGRAPH PROGRAM

Mathgraph program to compute various types
of energies and topological indices for a graph.

import numpy as np
import networkx as nx
import mathchem as mc
import itertools as it
from numpy import linalg as la
class MathGraph ():

r"""
MathGraph
"""

__NX_graph = None
__Mol_graph = None

def _reset_(self):
""" Reset all attributes """
self.__NX_graph = None
self.__Mol_graph = None

def __init__(self):
""" Molecular graph class """

self.__NX_graph = nx.Graph()

def NX_graph(self):
""" Return NetworkX graph object """
return self.__NX_graph

def Mol_graph(self):
""" Return Mathchem graph object """

if self.__Mol_graph is None:
nxg = self.NX_graph()
self.__Mol_graph = mc.Mol(nx.generate_graph6(nxg))
return self.__Mol_graph

def add_edge(self, u, v=None):
"""Add edge between u and v"""
nxg = self.NX_graph()

if isinstance(u, (int, long)) == False:
x = u.id
else:
x = u
if isinstance(u, (int, long)) == False:
y = v.id

else:
y = v

nxg.add_edge(x, y)

def degree_matrix(self):
""" degrees matrix """
nxg = self.NX_graph()
mcg = self.Mol_graph()
nodes = nxg.nodes()

DM = np.ndarray((len(nodes), len(nodes)))
degrees = np.array(mcg.degrees())
for i in nodes:
for j in nodes:
if i == j:
DM[i,i] = degrees[i]
else:
DM[i,j] = 0

return DM

def subset (self):
""" find subsets of nodes """
nxg = self.NX_graph()

nodes = nxg.nodes()
subsets_array = []
num = 1
for i in nodes:
subsets = set(it.combinations(nodes,num))
subsets_array.append([])
for j in subsets:
t = set(list(j))
subsets_array[num-1].append(t)
num += 1
return subsets_array

def complementary_subset(self):
""" find complement sets for every subset of nodes """
subsets_array = self.subset()

nxg = self.NX_graph()
nodes = nxg.nodes()
nodes_set = set([])
num = 1
comp_subsets_array = []
for i in nodes:
nodes_set.add(i)
for i in nodes:
comp_subsets_array.append([])
diffs = set([])
for j in subsets_array[num-1]:
diffs = nodes_set - j
comp_subsets_array[num-1].append(diffs)
num += 1
return comp_subsets_array

def dominating_condition(self, k, num, count):
""" logic to verify presence of dominance """

82997

9

subsets_array = self.subset()
nxg = self.NX_graph()

nodes = nxg.nodes()
subset_row = subsets_array[num-1]
lcount = 1
for j in subset_row:
if lcount == count:
for m in j:
if nxg.has_edge(k,m):
return 1
lcount += 1

return 0

def dominating_set(self):
""" dominating sets of a graph """
comp_subsets_array = self.complementary_subset()
nodes_set = set([])
dom_set = []
num = 1

nxg = self.NX_graph()
nodes = nxg.nodes()
num = 1
for i in nodes:
nodes_set.add(i)
for i in nodes:
comp_subset_row = comp_subsets_array[num-1]
count = 1
for j in comp_subset_row:
ret = 0
for k in j:
ret = self.dominating_condition(k, num, count)
if ret == 0:
break;
if ret == 1:
dom_set.append(nodes_set - j)
count += 1
num += 1
return dom_set

def minimal_dominating_set(self):
""" minimal dominating sets of a graph """
minimal_dom_set = []
dom_set = self.dominating_set()
dom_len = len(dom_set[0])
for i in dom_set:
if dom_len != len(i):
break;
minimal_dom_set.append(i)
return minimal_dom_set

def minimal_dominating_energy(self):
""" Minimal dominating energy """
minimal_dom_set = self.minimal_dominating_set()
print minimal_dom_set
energy = []
nxg = self.NX_graph()

mcg = self.Mol_graph()
nodes = nxg.nodes()
adj = np.array(mcg.adjacency_matrix())
for j in minimal_dom_set:
for u, v in nxg.edges_iter():
if u in j and v in j:
adj[u,v] = 1
for i in nodes:
if i in j:
adj[i,i] = 1
s = la.eigvalsh(adj).tolist()
s.sort(reverse=True)
a = np.sum(s,dtype=np.longdouble)/len(s)
energy.append(np.float64(np.sum(map(
lambda x: abs(x-a) ,s), dtype=np.longdouble)))

return energy

def covering_set(self):
""" covering sets of a graph """
cover_set = []
nxg = self.NX_graph()
nodes = nxg.nodes()

subsets_array = self.subset()
num = 1
for i in nodes:
subset_row = subsets_array[num-1]

for j in subset_row:
flag = 0
for u, v in nxg.edges_iter():
if u in j or v in j:
flag = 1
else:
flag = 0
break;
if flag == 1:
cover_set.append(j)
num += 1
return cover_set

def minimal_covering_set(self):
""" covering sets of a graph """
minimal_cover_set = []
cover_set = self.covering_set()
cover_len = len(cover_set[0])
for i in cover_set:
if cover_len != len(i):
break;
minimal_cover_set.append(i)

return minimal_cover_set

def minimal_covering_energy(self):
""" Minimal covering energy """
minimal_cover_set = self.minimal_covering_set()
print minimal_cover_set
energy = []
nxg = self.NX_graph()

92998

10

mcg = self.Mol_graph()
nodes = nxg.nodes()
adj = np.array(mcg.adjacency_matrix())
for j in minimal_cover_set:
for u, v in nxg.edges_iter():
if u in j and v in j:
adj[u,v] = 1
for i in nodes:
if i in j:
adj[i,i] = 1
s = la.eigvalsh(adj).tolist()
s.sort(reverse=True)
a = np.sum(s,dtype=np.longdouble)/len(s)
energy.append(np.float64(np.sum(map(
lambda x: abs(x-a), s), dtype=np.longdouble)))

return energy

def min_laplacian_dominating_energy(self):
""" laplacian covering energy """
nxg = self.NX_graph()
minimal_dom_set = self.minimal_dominating_set()
energy = []
nodes = nxg.nodes()
mcg = self.Mol_graph()
degree_array = np.array(self.degree_matrix())
adj = np.array(mcg.adjacency_matrix())
for j in minimal_dom_set:
for u, v in nxg.edges_iter():
if u in j and v in j:
adj[u,v] = 1
for i in nodes:
if i in j:
adj[i,i] = 1
print adj
lap = adj - degree_array
print lap
s = la.eigvalsh((lap)).tolist()
s.sort(reverse=True)
a = np.sum(s,dtype=np.longdouble)/len(s)
energy.append(np.float64(np.sum(map(
lambda x: abs(x-a), s), dtype=np.longdouble)))

return energy

def atom_bond_connectivity_index2(self):
""" Atom-Bond Connectivity Index (ABC2) """

nxg = self.NX_graph()
mcg = self.Mol_graph()

s = np.longdouble(0) # summator
la = mcg.edges()
lb = mcg.vertices()

for (x,y) in nxg.edges():
s1 = np.longdouble(0) # summator
s2 = np.longdouble(0) # summator

t1 = []
t2 = []
la = mcg.distances_from_vertex(x)

lb = mcg.distances_from_vertex(y)
for keys,values in la.items():
t1.append(values)
for keys,values in lb.items():
t2.append(values)
for v in mcg.vertices():
if t1[v]<t2[v]:
s1 += 1
elif t1[v]>t2[v]:
s2 += 1

if s1 != 0 and s2 != 0:
s += np.longdouble(
((s1 + s2 - 2) / (s1 * s2)) ** .5)

return np.float64(s)

def atom_bond_connectivity_index4(self):
""" Atom-Bond Connectivity Index (ABC4) """
nxg = self.NX_graph()

mcg = self.Mol_graph()
s = np.longdouble(0) # summator
for (x,y) in nxg.edges():
s1 = np.longdouble(0) # summator
s2 = np.longdouble(0) # summator
l = nx.all_neighbors(nxg, x)
m = nx.all_neighbors(nxg, y)

for i in l:
s1 += np.float64(mcg.degrees()[i])

for i in m:
s2 += np.float64(mcg.degrees()[i])

if s1 != 0 and s2 != 0:
s += np.longdouble(
((s1 + s2 - 2) / (s1 * s2)) ** .5)

return np.float64(s)

def seidel_energy(self):
""" seidel energy """

mcg = self.Mol_graph()
s = la.eigvalsh(mcg.seidel_matrix()).tolist()
s.sort(reverse=True)
a = np.sum(s,dtype=np.longdouble)/len(s)
return np.float64(np.sum(map(

lambda x: abs(x-a) ,s), dtype=np.longdouble))

def maximum_degree_energy(self):
""" Max degree energy """

mcg = self.Mol_graph()
m = mcg.order()
n = mcg.vertices()
RD = np.ndarray((m, m))
for i in n:

for j in n:
if mcg.distance_matrix()[i,j] == 1:

RD[i,j] = np.maximum(mcg.degrees()[i], mcg.degrees()[j]);
else:
RD[i,j] = 0;

s = la.eigvalsh(RD).tolist()

102999

11

s.sort(reverse=True)
a = np.sum(s,dtype=np.longdouble)/len(s)
return np.float64(np.sum(map(
lambda x: abs(x-a),s), dtype=np.longdouble))

def common_neighbourhood(self):
""" common neighborhood """
nxg = self.NX_graph()

mcg = self.Mol_graph()
m = mcg.order()
n = mcg.vertices()
RD = np.ndarray((m, m))
for i in n:

for j in n:
if i == j:
RD[i, j] = 0
continue

l = nx.common_neighbors(nxg, i, j)
count = 0
for k in l:
count += 1

RD[i,j] = count
return RD

def atom_bond_connectivity_index5(self):
""" Atom-Bond Connectivity Index (ABC5) """

nxg = self.NX_graph()
s = np.longdouble(0) # summator
for (x,y) in nxg.edges():
ex = np.longdouble(0) # summator
ey = np.longdouble(0) # summator
ex = nx.eccentricity(nxg, x)
ey = nx.eccentricity(nxg, y)

if ex != 0 and ey != 0:
s += np.longdouble(
((ex + ey - 2) / (ex * ey)) ** .5)

return np.float64(s)

Illustration : 1. Consider a graph,

Screen Output:

Computing minimum covering sets:

Computing covering sets:
Covering sets:
[set([1L, 2L]), set([0L, 2L]),
set([0L, 1L, 2L]), set([0L, 2L, 3L]),
set([1L, 2L, 3L]), set([0L, 1L, 3L]),
set([0L, 1L, 2L, 3L])]
Minimum covering sets:
[set([1L, 2L]), set([0L, 2L])]

Computing minimum dominating sets:

Computing dominating sets:
Dominating sets:
[set([2L]), set([1L, 2L]), set([1L, 3L]),
set([2L, 3L]), set([0L, 3L]), set([0L, 2L]),
set([0L, 1L, 2L]), set([0L, 2L, 3L]),
set([1L, 2L, 3L]), set([0L, 1L, 3L])]
Minimum dominating sets:
[set([2L])]

Computing common neighborhood:
Common neighborhood:
[[0. 1. 1. 1.]
[1. 0. 1. 1.]
[1. 1. 0. 0.]
[1. 1. 0. 0.]]

Computing energy:
Adjacency matrix:
[[0 1 1 0]
[1 0 1 0]
[1 1 0 1]
[0 0 1 0]]
Eigenvalues are:
[-1.4811943040920155, -1.0,
0.31110781746598215, 2.1700864866260337]
Energy of a graph:
[4.962388608184031]

Computing Laplacian energy:
No of edges:
4
No of vertices:
4
Degree matrix:
[[2. 0. 0. 0.]
[0. 2. 0. 0.]
[0. 0. 3. 0.]
[0. 0. 0. 1.]]
Adjacency matrix:
[[0 1 1 0]
[1 0 1 0]
[1 1 0 1]
[0 0 1 0]]
Laplacian matrix:
[[2. -1. -1. 0.]
[-1. 2. -1. 0.]
[-1. -1. 3. -1.]
[0. 0. -1. 1.]]
Laplacian eigenvalues:
[-1.7752834956276696e-16,
0.9999999999999999, 3.0,
4.000000000000002]
Laplacian energy of a graph:
[6.000000000000002]

Computing seidel energy:
Seidel matrix
[[0. -1. -1. 1.]

113000

12

[-1. 0. -1. 1.]
[-1. -1. 0. -1.]
[1. 1. -1. 0.]]
Seidel eigenvalues:
[-2.2360679774997885, -1.0,
1.0000000000000002, 2.23606797749979]
Seidel energy of a graph:
6.472135954999579

Computing maximum degree energy:
Maximum degree matrix:
[[0. 2. 3. 0.]
[2. 0. 3. 0.]
[3. 3. 0. 3.]
[0. 0. 3. 0.]]
Maximum degree eigenvalues:
[-4.645751311064589, -2.0000000000000004,
0.6457513110645907,
6.000000000000003]
Maximum degree energy of a graph:
13.291502622129183

Computing minimum covering energy:

Computing minimum covering sets:

Computing covering sets:
Covering sets:
[set([1L, 2L]), set([0L, 2L]), set([0L, 1L, 2L]),
set([0L, 2L, 3L]), set([1L, 2L, 3L]),
set([0L, 1L, 3L]), set([0L, 1L, 2L, 3L])]
Minimum covering sets:
[set([1L, 2L]), set([0L, 2L])]
Minimum covering matrix:
[[1 1 1 0]
[1 1 1 0]
[1 1 1 1]
[0 0 1 0]]
Minimum covering eigenvalues:
[-0.8608058531117033, -6.76685531271428e-16,
0.7458983116349476,
3.114907541476756]
Minimum covering energy of a graph:
[4.721611706223408]

Computing minimum dominating energy:

Computing minimum dominating sets:

Computing dominating sets:
Dominating sets:
[set([2L]), set([1L, 2L]), set([1L, 3L]),
set([2L, 3L]), set([0L, 3L]), set([0L, 2L]),
set([0L, 1L, 2L]), set([0L, 2L, 3L]),
set([1L, 2L, 3L]), set([0L, 1L, 3L])]
Minimum dominating sets:
[set([2L])]
Minimum dominating matrix:

[[0 1 1 0]
[1 0 1 0]
[1 1 1 1]
[0 0 1 0]]
Minimum dominating eigenvalues:
[-1.0, -1.0, 0.38196601125010493,
2.6180339887498945]
Minimum dominating energy of a graph:
[4.999999999999999]

Computing minimum dominating Laplacian energy:

Computing minimum dominating sets:

Computing dominating sets:
Dominating sets:
[set([2L]), set([1L, 2L]), set([1L, 3L]),
set([2L, 3L]), set([0L, 3L]), set([0L, 2L]),
set([0L, 1L, 2L]), set([0L, 2L, 3L]),
set([1L, 2L, 3L]), set([0L, 1L, 3L])]
Minimum dominating sets:
[set([2L])]
Degree matrix:
[[2. 0. 0. 0.]
[0. 2. 0. 0.]
[0. 0. 3. 0.]
[0. 0. 0. 1.]]
Minimum dominating matrix:
[[0 1 1 0]
[1 0 1 0]
[1 1 1 1]
[0 0 1 0]]
Minimum dominating Laplacian matrix:
[[2. -1. -1. 0.]
[-1. 2. -1. 0.]
[-1. -1. 2. -1.]
[0. 0. -1. 1.]]
Minimum dominating Laplacian eigenvalues:
[-0.30277563773199445, 0.9999999999999999,
3.0, 3.3027756377319957]
Minimum dominating Laplacian energy of a graph:
[7.60555127546399]

Computing Atom-Bond Connectivity Index:
Atom-Bond Connectivity Index:
2.9378169244873687527

Computing Atom-Bond Connectivity Index2:
Atom bond connectivity index2:
0.0

Computing Atom-Bond Connectivity Index4:
Atom bond connectivity index4:
5.634048107060956

Computing Atom-Bond Connectivity Index5:
atom bond connectivity index5:
0.0

123001

13

Brief summary and conclusion
In this paper, we introduced MathGraph, an open-

source and cross-platform Python package. As a Python
package, MathGraph is easily integrable with graph
visualization softwares. This helps researchers in graph
theory to either create a graph programmatically using
Python program or draw the graph using Graphical User
Interface (GUI) tool such as ‘Tulip’ to compute distinct
sets, energies and topological indices of graphs..

Funding : Not applicable

Competing interests :
The authors declare that they have no competing
interests.

Authors contributions :
MRR, SV and MRA drafted the manuscript. RPK and
DSN revised it. All authors read and approved the final
manuscript.

[1] C. Adiga, A. Bayad, I. Gutman, S. A. Srinivas, The min-
imum covering energy of a graph. Kragujevac J. Sci. 34
(2012), 39-56.

[2] C. Adiga and M. Smitha, On maximum degree energy of
a graph, International Journal of Contemporary Mathe-
matical Sciences, 4 (2009), No. 8, 385-396.

[3] Calimli M.H., The Fifth Version of Atom Bond Con-
nectivity Index (ABC5) of an infinite class of den-
drimers, Optoelectron. Adv. Mater.- Rapid Commun.,
Vol.5, No.10, 2011, pp.1091-1092.

[4] J. Chen, J. Liu, X. Guo, Some upper bounds for the
atom-bond connectivity index of graphs, Appl. Math.
Lett., 25 (2012), 1077-1081.

[5] J. Chen, X. Guo, The atom-bond connectivity index of
chemical bicyclic graphs, Appl. Math. j. Chinese Univ.,
27 (2012), 243-252.

[6] Dragan Stevanović and Alexander Vasilyev, MathChem:
A Python Package For Calculating Topological Indices,
MATCH Commun. Math. Comput. Chem., 71 (2014),
657-680.

[7] E. Estrada, Atom-bond connectivity and the energetic of
branched alkanes, Chem. Phy. Lett., 463 (2008), 422-425.

[8] E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An
atom-bond connectivity index: Modelling the enthalpy of
formation of alkanes, Indian Journal of Chemistry, 37A
(1998), 849-855.

[9] M. R. Farahani, Computing fourth atom-bond connectiv-
ity index of V-Phenylenic Nanotubes and Nanotori. Acta
Chimica Slovenica., 60(2), (2013), 429-432.

[10] M. R. Farahani, On the Fourth atom-bond connectivity
index of Armchair Polyhex Nanotube, Proc. Rom. Acad.,

Series B, 15(1), (2013), 3-6.
[11] B. Furtula, A. Gravoc, D. Vukicevic, Atom-bond connec-

tivity index of trees, J. Math. Chem., 48 (2010), 370 -
380.

[12] M. Ghorbani, M. A. Hosseinzadeh, Computing ABC4 in-
dex of Nanostar dendrimers. Optoelectron. Adv. Mater-
Rapid commun., 4(9), (2010), 1419-1422.

[13] A. Graovac, M. Ghorbani, A new version of atom-bond
connectivity index, Acta. Chim. Slov., 57, (2010), 609-
612.

[14] I. Gutman, The energy of a graph, Ber. Math-Statist.
Sekt. Forschungsz.Graz, 103 (1978), 1-22.

[15] I. Gutman and B. Zhou, Laplacian energy of a graph,
Linear Algebra and Its Applications, 414 (2006), 29- 37.

[16] X. Li, Y.Shi and I. Gutman, Graph Energy, Springer, 1
(2010), 266 .

[17] M. R. Rajesh Kanna, B. N. Dharmendra, and
G. Sridhara, Minimum dominating energy of a
graph, International Journal of Pure and Ap-
plied Mathematics, 85 (2013, No. 4, 707-718.
[http://dx.doi.org/10.12732/ijpam.v85i4.7]

[18] Willem H. Haemers, Seidel switching and graph energy,
MATCH Communications in Mathematical and in Com-
puter Chemistry, 68 (2012), 653-659.

[19] R. Xing, B. Zhou, Z. Du, Further results on atom-bond
connectivity index of trees, Discr. Appl. Math., 158
(2010), no. 14, 1536-1545.

[20] R. Xing, B. Zhou, F. Dong, On atom-bond connectivity
index of connected graphs, Discr. Appl. Math., in press.

[21] R. Xing, B. Zhou, F. Dong, Extremal trees with fixed de-
gree sequence for atom-bond connectivity index, Filomat,
26 (2012), 683 - 688.

133002

