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Abstract: Generally, signal processing is applied to a set of data that is derived from the sampling of an acquired signal. This 

treatment is carried out with the help of a computer that in turn executes a series of logical and mathematical operations. The 

treatment of signals is linked to other techniques and scientific disciplines. Some of the applications of the signal treatments may 

be in the form of processing of audio signals, treatment of digital images, digital communications and biological signals.  

In this case, the treatment was applied to biological signals such as ECG (Electrocardiogram signal: electrical activity of the 

heart), EEG (Electroencephalography signal: electrical activity of the brain recorded on the scalp), EMG (Electrocardiogram 

signal: electrical activity of muscle), and a dynamic prototype. 

This work shows a method for the extraction of characteristics of biological signals. The proposed method is based on statistical 

parameters. First, a histogram was obtained for each biological signal. After the information obtained from the histogram, the 

frequency polygon of each biological signal was calculated. This process was performed with the brand class brand, including the 

lower and upper ranges of each class of biological signals (ECG, EEG, EMG and a dynamic prototype).  
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I. INTRODUCTION 

Signal processing is applied to a set of data that is derived 

from the sampling of a signal obtained by any means and is 

performed with the help of a computer through a series of 

logical and mathematical operations. 

The biological signals of the human body can come from 

many physical phenomena. Being able to process and draw 

conclusions about this phenomenon is a task of great 

interest for the scientific world. First, the physical 

phenomenon must be converted into electric character 

signals [1]. After obtaining the signals, it is necessary to 

translate them. This is possible using a translator to 

transform the digital signal into a tangible analogy signal in 

the real world. 

The treatment of signals is linked to other techniques and 

scientific disciplines. Some of the applications of the signal 

treatments can be oriented to audio signals, digital image 

processing, digital communications and biological signals. 

In this case, the treatment was applied to biological signals 

such as ECG (Electrocardiogram signal: electrical activity 

of the heart), EEG (Electroencephalography signal: 

electrical activity of the brain recorded on the scalp), EMG 

(Electrocardiogram signal: electrical activity of muscle), 

and a dynamic prototype [2]. 
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The process applied to the biological signals was: 

 

• Histogram 

• Frequency polygon 

 

There are several methods to treat biological signals. One 

of them is the Dynalet’s method [3], which was based on 

Liénard (differential equations) to model and compress 

signals, such as the case of the ECG and the pulse. Once 

this process is completed, a comparison is made with the 

original signal using the Dynalet and Fourier 

transformation as a whole. 

The biomedical signal can be processed using the wavelet 

technique [4]. There are additional techniques based on the 

decomposition of the value (SVD) and the reduction of the 

wave difference (WDR) for the compression of the ECG 

signal [5]. 

Another way to obtain information on biological signals is 

by decomposition in the empirical way (EMD) [6]. In this 

method, they are not stationary signals derived from non-

linear systems that decompose. When this process is 

applied to real biomedical signals, it is possible to obtain 

components to represent physiological phenomena. 

Time domain analysis techniques involve data handling as 

parametric functions to obtain computer or mathematical 

models from the original system [7]. 

When working with non-periodic and non-repeated signals 

that the brain generates from any stimulus, it is a complex 

investigation in which information is constantly obtained. 

With this new information is possible to expand and to 

understand the acquired knowledge.  

Many time signals consist of points quantities over time, 

however, samples obtained from replicas of biological data 

are usually scarce [8]. 

The biological signals that are characterized in the 

frequency domain are very useful for making diagnoses. 

The problem with these signals lies in their infinite 

waveform and their great length. 

There are many techniques to analyze signals, among them 

we can find the Wavelet transform, the Fourier transforms 

and the neural networks [9]. There is also the Hilbert 

Huang transform to recognize patterns in biological signals 

such as EMG, and then obtain a characteristic vector from 

them [10].There is no systematic model to deal specifically 

with the data obtained from biological signals, that is to 

say, an established method cannot be applied to perform 

the treatment of biological signals[11]. 

In this document, a computational analysis is performed on 

signs of biological origin; this analysis is divided into two 

parts. On the one hand, we worked with trigonometric 

functions; Sinusoidal function, composite function and 

damped sinusoidal function. From which is obtained its 

respective histogram to know its potential action and obtain 

the frequency polygon for each function and in this way 

Perform, understand and interpret the information 

contained in these functions to model and treat them. 

On the other hand, the next part of this document is to 

analyze the biological signals (ECG, EEG and EMG) and 

the dynamic prototype [2]. From the signal his histogram 

was obtained to see its potential action, and to obtain the 

frequency polygon for each function in the same way, 

perform, understand and interpret the information 

contained in these functions to model and treat them. In this 

document, the software implemented was RStudio. 

II. THEORETICAL DESCRIPTION 

The essential part of this document is the treatment of 

biological signals obtained from stimuli applied to various 

areas of the body. The biological signals with which we 

worked were; ECG (electrocardiogram, heart activity), 

EEG (encephalogram, neuronal activity of the brain) and, 

finally, EMG (electromyogram, muscle activity). 

A. Biological signals 

Signals are a way of transmitting information. When these 

signals are obtained, it is possible to obtain information 

about the source that generated it. The biological signals 

originate from different physiological systems of the 

organism, which allows the doctor to extract information 

about how the organs that emit these signals work and 

obtain a diagnosis [11]. 

The bioelectrical signals are used mainly to obtain a 

medical diagnosis and to detect pathologies in the organs. 

However, there are also bioelectrical signals that are 

produced voluntarily to control man-machine interfaces. 

These signals originate in the membrane of various cells of 

the body and have behaviour similar to that of some 

electrical components [12]. 

These signals can be obtained from signals from 

electrophysiological sensors, such as arterial pulse sensors. 

The signals can also be obtained from molecular devices, 

such as nuclear magnetic resonance (NMR) spectrometry 

[3]. 

These signals come from the human body and are produced 

due to the displacement of ions in solutions that correspond 

mainly to Na+, K+ and C1. Displacement occurs due to 

differences in the concentration of organic fluids [13]. 

As mentioned above, in the work a treatment was made to 

several biological signals (ECG, EEG and EMG) and a 

dynamic prototype. Below is a brief description of each of 

these. 

a. Electrocardiogram 

ECG (see figure 1) is a biopotential generated by the 

heart’s muscles movement. To understand the origin of the 

ECG, it is necessary to have a brief knowledge of the 

heart’s anatomy. 

 
 

Figure 1 Electrocardiogram representation 
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The process begins with the pacemaker, a cellular group 

specifically commissioned to generate actions of regular 

rhythm potentials which are controlled through 

innervations. The potential generated by the pacemaker 

moves in all directions along the surface of the atria and 

travels to the union of them and the ventricles. The wave 

ends at a point called the atrioventricular nodule. 

The process continues when the nerve fibres act as delay 

lines in the muscles of the ventricles. And they get 

adequate timing between the atria and the ventricles. On 

the other hand, the wave front crosses the surface of the 

ventricles and terminates the path at the tip of the apex of 

the heart. 

On the other hand, a depolarization wave is followed by a 

re-polarization wave; this last wave lasts between 0.2 and 

0.4 seconds. Now to represent the ECG waves to each 

characteristic that stands out in the record is assigned a 

letter. These characteristics are identified with actions 

related to the propagation of the action potential. In Figure 

2, you can see the various waves that make up an ECG. 

 
Figure 2 Waves that conformed an ECG. 

The representation begins with a horizontal segment that 

precedes the P wave and is designated as a baseline or 

isopotential, now the P wave is a depolarization of the atrial 

musculature. On the other hand, the QRS complex is the 

result of the combination of repolarization of the atria and 

in the depolarization of the ventricles, these actions occur 

almost at the same time. 

While the T wave is ventricular repolarization, the U wave, 

if it appears, may be the result of the posterior potentials of 

the muscles of the ventricles. Finally, the P-Q interval is 

the time when the excitation wave is delayed in nearby 

fibres in the atrioventricular node [15]. 

b. Encephalogram  

EEG is a representation that registers bioelectric potential 

that is generated in the neuronal activity of the brain. The 

brain has a complex shape and waveforms that vary 

depending on the location of the electrodes on the surface 

of the scalp, see figure 3. 

 

 
Figure 3 Encephalogram representation 

 

EEG potentials that are measured in the surface of the scalp 

are a representation of the combinatorial effect of neuronal 

potentials of the big cortex region and diverse interiors 

points [15]. 

c. Electromyogram 

EMGs are bioelectric potentials associated with muscle 

activity and can be measured on the surface of the body 

near the muscle of interest. Or you can also enter directly 

into the muscle with the help of needle electrodes that pass 

through the skin, see Figure 4. 

The signal obtained from EMG is generally a sum of 

potentials that act individually on the fibers and constitute a 

muscle, or muscles, in which this potential is measured. 

The electrodes of the EMG gathered muscle potentials 

within reach. That is, the closest muscle potentials can 

interfere with attempts to measure EMG in small muscles, 

although electrodes are placed in small muscles [15]. 

 
Figure 4 Electromyogram representation 

 

B.    Signals treatment 

a. Histogram 

A histogram is a graph that attempts to show the shape of 

the sample and indicate where the highest concentration 

and the least amount of sampling points can be found. The 

first step is to build a frequency table and create class 

intervals, these intervals divide the sampling into groups 

and show where each group starts and ends. 

An important element is also the total frequency. It is the 

amount of data that you have within each class interval 

while the relative frequency is the frequency but divided by 

the total number of data. 

 

Finally, the density is the relative frequency but now 

divided by the width of the class. The purpose of the 

density of the relative frequency is to adjust the relative 

frequency with the width of the class without any change in 

the representation. A wider class is a class with more 

elements of sampling and a higher relative frequency, then, 

when the relative frequency is divided by the width of the 

class, the trend is adjusted and the density is the relative 

frequency per unit. 

 

The class intervals are represented by rectangles, in each of 

them a rectangle height is the sampling density in this 

interval. The area in each rectangle is the relative frequency 

in each class interval and the area under the entire 

histogram must be equal to 1 [16].  
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b. Classmark 

The class mark is a representative value in each of the 

classes of a histogram; it is the central value of each 

interval. What is measured when calculating the arithmetic 

mean between the limits of the interval, that is, the 

arithmetic means between the lowest limit and the highest 

limit [17]. 

c. Cumulative frequency polygon. 

The cumulative frequency polygon is a representation of 

absolute and relative simple frequencies; it is represented 

by a line that unites all class mark [17]. 

III. EXPERIMENTAL SETUP AND RESULTS  

This document consists of two parts, in the first part there 

is a simulation stage in which tests are performed on 

trigonometric functions; Sinusoidal function, composite 

function and damped sinusoidal function. 

The treatment applied for these functions were the creation 

of the graph, the making of the histogram and with this 

information to generate a frequency polygon. 

The first function generated was:    xxf sin , which 

can be seen in Figure 5. 

 
Figure 5: Plot of the Sin(x) function 

The next step was to create a histogram of the function, 

which can be seen in Figure 6. 

 
Figure 6: histogram of Sin(x) 

Once the histogram function was obtained, it was plotted in 

the graphical form of the frequency polygon of the 

histogram, as shown in Figure 7. 
 

 
Figure 7: Histogram & frequency of sin(x) 

A table was also prepared that contained relevant 

information about the original function. The parameters in 

this table are; lower and upper limit, class and frequency 

mark (the table only showed a small part of the function 

data), as shown in Table 1. 
 
Lower    Upper     Main     Frequency   

-1.00   -0.95     -0.975          62      

-0.95   -0.90     -0.925          26      

-0.90    -0.85    -0.875          20      

-0.85    -0.80    -0.825          16      

-0.80    -0.75    -0.775          16      

-0.75    -0.70    -0.725          12      

-0.70    -0.65    -0.675          15      

-0.65    -0.60    -0.625          11        

-0.60    -0.55    -0.575          12        

-0.55    -0.50    -0.525          12        

-0.50    -0.45    -0.475          10        

-0.45    -0.40    -0.425          10        

-0.40    -0.35    -0.375          11        

-0.35    -0.30    -0.325          10        

-0.30    -0.25    -0.275           9        

Table 1 Sin(x) summary 

 

From Table 1, we worked with the classmark and the 

frequency to obtain the frequency polygon graphically and 

mathematically, as seen in Figure 8. 

 

Figure 8: Frequency polygon of Sin(x) 

 

The second function generated was:  

     xxxf cossin 
  

This can be seen in Figure 5: 

 
Figure 9: plot of the Sin(x)+cos(x) function 

The next step was to elaborate a histogram of the function, 

which can be seen in Figure 10. 
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Figure 10: Histogram of Sin(x)+cos(x) 

 
Once the function histogram was obtained, it was 

represented in the graphic shape of histogram frequency 

polygon, as shown in Figure 7. 

 

 
Figure 11: Histogram & frequency polygon of 

sin(x)+cos(x) 

 
The following table shows relevant information about the 

original function. The parameters in this table are; lower 

and upper limit, class and frequency mark (the table only 

showed a small part of the function data), as shown in 

Table 2. 
 

Lower    Upper     Main    Frequency  

-1.45    -1.40    -1.425        14         

-1.40    -1.35    -1.375        14         

-1.35    -1.30    -1.325         9         

-1.30    -1.25    -1.275         8         

-1.25    -1.20    -1.225         7         

-1.20    -1.15    -1.175         4         

-1.15    -1.10    -1.125         7         

-1.10    -1.05    -1.075         4         

-1.05    -1.00    -1.025         5         

-1.00    -0.95    -0.975         4         

-0.95    -0.90    -0.925         5         

-0.90    -0.85    -0.875         3         

-0.85    -0.80    -0.825         5         

-0.80    -0.75    -0.775         3         

-0.75    -0.70    -0.725         4         

 
Table 2: sin(x)+cos(x) summary 

From Table 2, we worked with the classmark and the 

frequency to obtain the frequency polygon graphically and 

mathematically, as seen in Figure 12. 

 

 
Figure 12: Sin(x)+cos(x) frequency polygon 

 

The second function generated was:  

     xxxf  2.0exp2sin10
 
This can be seen 

in Figure 13. 

 
Figure 13: Plot of the 10*sin(2*x)*exp(-0.2*x) function 

 

The next step was to elaborate a histogram of the function, 

which can be seen in Figure 14. 

 
Figure 14: 10*sin(2*x)*exp(-0.2*x) histogram 

 

Once the function histogram was obtained, it was 

represented in the graphic shape of histogram frequency 

polygon, as shown in Figure 15. 

 

 
 

Figure 15: Histogram & frequency polygon of 

10*sin(2*x)*exp(-0.2*x). 
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The relevant information regarding the original function, 

including the parameters lower and upper limit, class mark, 

and frequency, (the table only showed a little part of data 

about the function), are shown in Table 3. 

Lower    Upper     Main    Frequency  

-3400    -3300    -3350         2         

-3300    -3200    -3250         1         

-3200    -3100    -3150         1         

-3100    -3000    -3050         1         

-3000    -2900    -2950         0         

-2900    -2800    -2850         0         

-2800    -2700    -2750         2         

-2700    -2600    -2650         0         

-2600    -2500    -2550         0         

-2500    -2400    -2450         0         

-2400    -2300    -2350         2         

-2300    -2200    -2250         0         

-2200    -2100    -2150         0         

-2100    -2000    -2050         0         

-2000    -1900    -1950         0         

 

Table 3: 10*sin(2*x)*exp(-0.2*x)  summary 

 

From Table 3, we worked with the classmark and the 

frequency to obtain the frequency polygon graphically and 

mathematically, as seen in Figure 16. 

 
Figure 16: 10*sin(2*x)*exp(-0.2*x) frequency polygon 

 

The second part of this document shows the results 

obtained by applying the same treatment in trigonometric 

functions but now in biological signals (EEG, ECG, EMG 

[18]) and a dynamic prototype [2], to avoid the loss of 

information for the analysis of these signals. 

The first graphic obtained was of a dynamic prototype. In 

the same way as in the simulation, an important factor to 

consider is the sampling frequency, which, in this case, is 5 

Hz. The formula applied was: original signal / sampling 

frequency and the result are shown in the Figure 17. 

 
Figure 17: Dynamic prototype 

The next step was to elaborate a histogram of the function, 

which can be seen in Figure 18. 

 
Figure 18: Dynamic prototype histogram 

 

Once the function histogram was obtained, it was 

represented in the graphic shape of histogram frequency 

polygon, as shown in Figure 19. 

 
Figure 19 Histogram & frequency polygon of Dynamic 

prototype 

 

And again, a table was elaborated, which contained 

relevant information regarding the original function. 

Parameters in this table are; lower and upper limit, class 

mark, and frequency, (the table only showed a little part of 

data about the function), as shown in Table 4. 

 

Lower    Upper      Main  Frequency  

0.20          0.25      0.225      1         

0.25          0.30      0.275      0         

0.30          0.35      0.325      0         

0.35          0.40      0.375      0         

0.40          0.45      0.425      0         

0.45          0.50      0.475      0         

0.50          0.55      0.525      0         

0.55          0.60      0.575      1         

0.60          0.65      0.625      0         

0.65          0.70      0.675      0         

0.70          0.75      0.725      0         

0.75          0.80      0.775      0         

0.80          0.85      0.825      0         

0.85          0.90      0.875      0         

0.90          0.95      0.925      0         

 

Table 4: Dynamic prototype summary 

 

From Table 4, we worked with the classmark and the 

frequency to obtain the frequency polygon graphically and 

mathematically, as seen in Figure 20. 
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Figure 20: Dynamic prototype frequency polygon 

 

The second graphic generated was from an ECG. An 

important fact to consider in this case is the sampling 

frequency which is 500 Hz. The formula applied was: 

original signal / sampling frequency and the result is shown 

in Figure 21. 

 
 

Figure 21: Graphic of an ECG 

 

The next step was to make a histogram of the function, 

which is shown in Figure 22. 

 
Figure 22: ECG histogram 

 

Once the histogram function was obtained, it was plotted in 

the graphical form of the frequency polygon of the 

histogram, as shown in Figure 23. 

 
Figure 23: Histogram & frequency of ECG 

 

In the same way as in the previous cases, a table was 

prepared that contains relevant information about the 

original function. The parameters in this table are; lower 

and upper limit, class and frequency mark (the table only 

showed a small part of the function data), as shown in 

Table 5. 

Lower      Upper     Main      Frequency  

-45              -40       -42.5           4         

-40              -35       -37.5          10         

-35              -30       -32.5          19         

-30              -25       -27.5         108         

-25              -20       -22.5         411         

-20              -15       -17.5         730        

-15              -10       -12.5         837        

-10              -5         -7.5           738        

-5                 0          -2.5          370         

0                  5           2.5          297         

5                 10          7.5          299         

10               15         12.5         297         

15               20         17.5         208         

20               25         22.5         129         

25               30         27.5         113         

 

Table 5: ECG summary 

 

From Table 5, we work with the class mark and the 

frequency to obtain the frequency polygon graphically and 

mathematically, as shown in Figure 24. 

 
Figure 24: ECG frequency polygon 

 

The third graphic generated was of an EEG, an important 

data to consider is a sampling frequency, in this case, the 

EEG sampling frequency is 500 Hz, the formula applied 

was: original signal / sampling frequency and the result was 

shown in Figure 25. 

 
Figure 25 EEG plot 
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The next step was to elaborate a histogram of the function, 

which can be seen in Figure 26. 

 
Figure 26: EEG histogram of the current EEG function 

 

Once the function histogram was obtained, it was 

represented in the graphic shape of histogram frequency 

polygon, as shown in Figure 27. 

 
Figure 27: Histogram & frequency polygon of EEG 

 

As in the previous cases, a table was prepared that contains 

relevant information about the original function. In the 

same way the parameters in this table are; lower and upper 

limit, class and frequency mark (the table only showed a 

small part of the function data), as shown in Table 6. 

 

Lower        Upper      Main      Frequency  

-18000     -17000     -17500         1        

-17000     -16000     -16500         0        

-16000     -15000     -15500         0        

-15000     -14000     -14500         0        

-14000     -13000     -13500         0        

-13000     -12000     -12500         0        

-12000     -11000     -11500         0        

-11000     -10000     -10500         1         

-10000     -9000       -9500           0         

-9000       -8000       -8500           0         

-8000       -7000       -7500           0         

-7000       -6000       -6500           2         

-6000       -5000       -5500           1         

-5000      -4000        -4500           0         

-4000      -3000        -3500           1         

 

Table 6: EEG summary 

From Table 6, we worked with the classmark and the 

frequency to obtain the frequency polygon graphically and 

mathematically, as seen in Figure 28. 

 

 
Figure 28: EEG frequency polygon 

 

The last generated graph was of an EMG [18], for this case 

the sampling frequency of the EMG is 30 Hz, the formula 

applied was: original signal / sampling frequency and the 

result is shown in Figure 29. 

 
Figure 29: Plot of the EMG 

 

The next step was to elaborate a histogram of the function, 

which can be seen in Figure 30. 

 
Figure 30: EMG histogram 

 

Once the function histogram was obtained, it was 

represented in the graphic shape of histogram frequency 

polygon, as shown in Figure 31. 

 
Figure 31: Histogram & frequency polygon of EMG. Self-

image 
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Finally, also for this case, a table was created that contains 

relevant information about the original function. The 

parameters in this table are; lower and upper limit, class 

and frequency mark (the table only showed a small part of 

the function data), as shown in Table 7. 

 

Lower     Upper     Main     Frequency  

-0.40       -0.38       -0.39         1         

-0.38       -0.36       -0.37         0         

-0.36       -0.34       -0.35         0         

-0.34       -0.32       -0.33         1         

-0.32       -0.30       -0.31         0         

-0.30       -0.28       -0.29         0         

-0.28       -0.26       -0.27         0         

-0.26       -0.24       -0.25         0         

-0.24       -0.22       -0.23         0         

-0.22       -0.20       -0.21         0         

-0.20       -0.18       -0.19         1         

-0.18       -0.16       -0.17         0         

-0.16       -0.14       -0.15         0         

-0.14       -0.12       -0.13         1         

-0.12       -0.10       -0.11         1         

 

Table 7: EMG summary 

 

From Table 7, we worked with the classmark and the 

frequency to obtain the frequency polygon graphically and 

mathematically, as seen in Figure 32. 

 
Figure 32: EMG frequency polygon. Self-image 

 

IV. CONCLUSION 

An optimal way to avoid the loss of important information 

from a biological signal for analysis purposes is by creating 

histograms in which your information is separated by 

classes and where the frequency with which the data is 

represented is shown. 

On the other hand, the class mark allows obtaining a 

representative point of each histogram interval and then 

creating a frequency polygon. In this case, it is possible to 

obtain a graphic form to represent the original data. 

It was possible to identify that through the frequency 

polygon, there is a graphic way to represent the information 

contained in the dynamic prototype and the biological 

signals (EEG, EMG and ECG). 

It is an optimal way to preserve the greatest amount of 

information, since the frequency polygon maintains the 

form of the original data. 

For a future document, with the information obtained with 

this work, it is proposed to work with classifiers in which 

the processed information will be introduced, to identify if 

it is possible or not to make a good classification of data. 
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