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Abstract: Representation and reasoning with temporal data is a well-researched problem in logic and computer science. Although 

many practical applications need the representation of inexact dates and reasoning with such representations, there is no standard 

developed methodology for it. In this paper, we propose a standard representation of inexact dates based on discrete probability 

distributions. Inspired by recent breakthroughs in natural language processing and information retrieval in embedding words as 

dense vectors we have developed a similar approach for representation and comparison of inexact dates. 
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I. INTRODUCTION 

The problems related to the representation of temporal 

information and reasoning with them has puzzled 

researcher in many fields of sciences, engineering and 

humanities for ages. From ancient philosophers’ inquiries 

on the nature of time [1][2] to contemporary research of 

temporal reasoning within digital humanities [3][4] and 

artificial intelligence [5]a large number of theories, 

methodologies, and formalism are developed to deal with 

various aspects of time. The whole academic subfields, like 

chronology and periodisation within history, or tense logic 

within philosophy, have been devoted to this problem. 

 

In this paper, we focus on one aspect of temporal 

reasoning, the digital representation of inexact dates that 

enables efficient reasoning in the context of information 

retrieval and record linkage. Although the developed 

system is applicable in other all where inexact temporal 

information is present, the focus of this research is on 

developing the effective method to embed uncertain dating 

of events related to persons in genealogical records and to 

infer relationships among them.  

Information on the past dates in historical records are often 

imprecise, and frequently only a vague range of temporal 

values can be only guessed. For example, in the baptismal 

parish registers, one of the typically biggest source for 

family history, the date of the most important temporal 

information, the date of the birth, is not explicitly stated for 

any person named in the record. We can only infer that the 

child has been born in a short period before the day of the 

baptism, although it varies from a few days to a year 

depending on the congregation and historical period[6][7].  

 

We can further guess that it is most probable that mother 

was at her fertility peak, though the probability distribution 

of fertility fluctuates in history and geography [8], and so 

on. Nevertheless, such uncertain inference of temporal data 

is often vital when researcher conclude from such evidence, 

like identify all the records that refer to the same person. 

To be able to automate such inference, the first step is a 

proper representation of the uncertain temporal data. 
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II. INEXACT DATES REPRESENTATION 

The proper representation of temporal information is a 

well-researched problem in logic, computer science and 

artificial intelligence. At the beginning of the second half 

of the twentieth century, logician Arthur Prior developed 

temporal logic as an extension of classical logic, with the 

modal operators such as “It has at some time been the case 

that…” [9].  The approach inspired by Donald Davidson 

extension of first-order logic with a temporal argument has 

inspired James Allen interval algebra [10][11]. To the 

present days, the number of alternative approaches has 

been developed, within the fields of temporal databases 

[12], linked data [13], logic programming [14] and many 

others.  

 

The common characteristic of all these approaches is that 

that they represent temporal data as either point or interval. 

However, in the many contexts, especially within 

humanities in general and history in particular, temporal 

intervals have often vague boundaries, and some periods 

are more probablethan others. For example, if some event 

took place during the industrial revolution, it is possible 

that it happened in 1745, but this is less probable than, e.g. 

1801.  If there is a record of a mother of the baptized child 

in 1848, it is more probable that she is born in 1828 than in 

1814. 

 

Even when some source quotes the exact date, we can put 

more or less reliance on it, depending on the credence of 

the source. So, in the case of the information from 

unreliable sources, we want their representation to be close 

or more similar to the representation of the surrounding 

times.  

 

One of the obvious ways to design such representation is to 

represent dates as a discrete probability distribution over 

the timeline. In this research the granularity of days is 

sufficient, but the same representation can be used for more 

fine-grained granularity such as hours, minutes or 

seconds.Consequently, the vague temporal period can be 

represented as a vector of real numbers from the interval [0, 

1] that signify the probability that the corresponding day is 

the real date of the event we are embedding. The size of the 

vector is the number of days between the first date we need 

to represent to the present. To satisfy the requirement of 

discrete probability distribution the sum of all probability 

masses must add to one. 

 

The reliability of information, or precision, can be 

expressed as a smaller or higher variance around the mean 

of the date. In such a way, we can easily describe any 

temporal determinant, from exact dates, months, years, 

centuries, to the more complicated qualified times or date 

ranges.  

 

Figure1 depicts some examples of such representations: 

 

Figure 1 

The first graph represents the exact date from a reliable 

source, allowing for the small spread of the of the 10% 

probability mass to the surrounding times. The possibility 

of error is represented by the beta distribution with the 

parameters 𝛼 = 1.5, 𝛽 = 1.5. The second probability 

distribution represents the same date, but from a very 

unreliable source. Although the mean and the highest mass 

is at the exact date, the 90% of the probability is spread 

around the date using the same beta distribution. 

 

The third graph represents an example of less precise 

information, namely any day in May 1795. The month is 

expressed using the uniform distribution over all days in 

the month, again allowing some uncertainty by distributing 

some weight to the close dates. The same principle applies 

to the fourth and fifth graphs, where former represents a 

year and the later the whole century.  

 

In some historical sources, a qualifier is applied to the 

range of dates, like the middle, beginning or the end of 

some period. Such dateis easily represented using more 

skewed distribution, like in the last graph depicting the 

beginning of the 18
th

 century, again using beta distribution 

but with parameters𝛼 = 1, 𝛽 = 3. 

 

This representation also facilitates representation of 

incomplete information thatmethodologies using intervals 

cannot even approximate. For example, if we know that 

today is the birthday of some college student, but we do not 

know her or his age, we still can represent her or his day of 

birth as an uncommonbut proper probability distribution 

that assignsprobability mass on today’s date in the years 

between, say, 17 and 25 years ago. 

 

Frequently, there is no explicit dating of some event, but it 

is possible to infer temporal determinants from the 

contextual information in the source. For example, if a 

source quotes that some person was, for example, a 

member of Christopher Columbus' crew on the first 

voyage, in the absence of other information; we can only 
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deduce that the person was probably born before 1778 and 

after 1730. In the context of genealogical research, in the 

baptism records, the dates of births of parents are ordinarily 

not inscribed. In such cases, it is possible to use available 

demographic data to find and fit an appropriate probability 

distribution, and make an educated guess about the implicit 

dating. For example, if we analyze a baptism record from 

the 1940s, we can use the following demographic data: 

 

 
 

Age of mother 

Ye

ar Total 

Und

er 

15 

15–

19 

20–

24 

25–

29 

30–

34 

35–

39 

40–

44 

45–

492 

194
0 

2,558,
647 

3,86
5 

332,6
67 

799,5
37 

693,2
68 

431,4
68 

222,0
15 

68,2
69 

7,5
58 

 

The empirical distribution is generalized by finding and 

fitting parameters to some probability distribution. Figure 2 

represents the date of birth of a person that has become a 

mother in 1940 using the beta distribution (𝛼 = 9.5, 𝛽 =
7), inferred from the empirical statistical data shown by the 

blue curve. 

 

 

Figure 2 

Using this approach, we can express our best guess about 

any inexact dates. Using standard techniques of Bayesian 

statistics [15], we can express our uncertainty about 

temporal information as priors, and learn better 

representations when empirical distributions are available 

either from public sources or our data.  

As we can represent all inexact temporal information, at 

least in principle, in this way, the next natural step is to 

develop a reasoning system for such representations.  

 

III. REASONING WITH INEXACT DATES REPRESENTATION 

 

 

Standard tasks in temporal reasoning include inferring 

relationship among temporal points and intervals, reasoning 

about actions and changes, assessing the consistency of a 

set of temporal information [16][17]. In this paper, we 

focus on inferring the fundamental relation between two 

dates – the relation of equivalence. As the dates are inexact, 

instead of classical binary relation, we need to infer the 

fuzzy relationship between two dates. In the case of 

imprecisedates, it is convenient to express the relationship 

between two periods as a similarity metric. Such similarity 

metrics can be used as a component in an information 

retrieval system or a more complicated reasoning system. 

 

IV. DEFINING MEASURE OF INEXACT DATES SIMILARITIES 

The standard requirements for any metric function are non-

negativity, symmetricity, the identity of indiscernibles, and 

the triangle inequality. Additionally, it is convenient when 

the metric is normalized so that it takes a real value in the 

[0,1] interval. As the dates are represented as standard 

probability distributions, it wouldseem convenient to use 

some of the existing distance or similarity metrics. There 

are many such similarity measures and distance function 

between probability distribution in different scientific 

fields. In statistics and probability theory there are distance 

correlations, Bhattacharyya distance f-divergences like 

Kullback–Leibler, Kolmogorov–Smirnov and so on [18]. 

The most commonly used measure is Bhattacharyya 

similarity. For inexact dates represented as random 

variables X and Y, it would be calculated as: 

 

𝑆𝑏ℎ𝑎𝑡𝑡   𝑋, 𝑌 =   𝑋𝑖 × 𝑌𝑖

𝑡𝑜𝑑𝑎𝑦

𝑖=0

 

Another possible applicable distance function may be 

information theoretical measures like mutual information 

or Jensen–Shannon divergence, as a symmetric version of 

Kullback–Leibler divergence [19].  

The principal problem with all those distances is that they 

do not satisfy the basic intuitive semantics of the inexact 

date’scomparison. Namely, the reason for representing 

dates as the probability distribution is to express our 

ignorance about the exact date of some event. The event 

happened on some exact date; wedo not have enough 

information of confidence to determine it. As most of the 

above distance and similarity measures are proper metrics, 

they satisfy the identity of indiscernibles, so the distance 

between two identical probability distribution is zero and, 

consequently, the similarity is maximal (1). This property 

is not desired in our context as our chosen similarity is the 

probability that two events have happened on the same day 

giventhe two inexact dates representation. If we signify 

with 𝑥𝑒  date of the first event and with 𝑦𝑒  date of the 

second one, and with 𝑋 and Y probability distributions 

representing our uncertainty about the exact dates when the 

events occurred, we can define the similarity as a 

conditional probability: 
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𝑝 𝑥𝑒 = 𝑦𝑒  𝑋, 𝑌) 

The consequence of such definition is that our desired 

similarity measure is not proper metrics, as it violates 

condition that 𝑑 𝑥, 𝑦 = 0 ↔ 𝑥 = 𝑦. One simple 

counterexample, where 𝑟 is inexact date representation 

using uniform distribution, is 

 
𝑝 𝑥𝑒 = 𝑦𝑒 𝑟(𝑋𝐼𝑋 𝑐𝑒𝑛𝑡𝑢𝑟𝑦), 𝑟(𝑋𝐼𝑋 𝑐𝑒𝑛𝑡𝑢𝑟𝑦))

< 𝑝 𝑥𝑒 = 𝑦𝑒  𝑟(1848), 𝑟(1848))  

< 𝑝 𝑥𝑒 = 𝑦𝑒  𝑟(1.5.1848), 𝑟(1.5.1848)) 

 

The only case where we want that similarity of two 

representation is one is when there is no uncertainty, and 

whole probability mass is assigned to a single day. In all 

other cases, similarity should be significantly lower.  

Although it is very hard to calculate exact similarity, 

because the joint probability distribution of two inexact 

dates representation is more often than not unknown, it is 

plausible to use a strong (naive) independence assumptions 

between probability distribution.  With this assumption, the 

similarity measure is a simple scalar product between two 

vectors. As those vectors are normalized (they are 

probability distributions), this measure is equivalent to the 

cosine similarity, and one of the most commonly used 

measures in information retrieval.  

As we are applying dimensionality reduction to the inexact 

date representation, and such reduction inevitably adds 

some noise to the similarity calculation. For example, the 

probability that two events occurred on the same day if we 

know that they happened in the same century is 

only2.737e-05. As we are primarily interestedin preserving 

relative ranking similarity and not calculating the exact 

probability, we are using a scaled version of the scalar 

product, to minimize the error introduced by 

dimensionality reduction. So the similarity function we are 

using is: 

𝑠 𝑋, 𝑌 =  𝑋 ∙ 𝑌
4

 

V.  DIMENSIONALITY REDUCTION 

 

Dates representations as probability distributions with the 

day granularity can be very large vectors. When the first 

possible date,happened in the distant past, it can have a 

dimensionality of several hundred thousands real numbers. 

In the case of big datasets, where every entity contains 

several temporal information, the developed representation 

can be computationally expensive. As in the almost all real-

world usage cases, the spread of possible dates is limited, 

the most of the dimensions are zero.  

This problem is akin to the problems caused by the 

standard one hot representation of words in the natural 

language processing system. The recent developments of 

latent semantical analysis and the dense vector 

representation of words meaning have provided ground-

breaking forays in areas of natural language processing, 

information retrieval and connected fields [19, 20]. As our 

focus is on inferring dates similarities, the similar 

techniques can be used to reduce the dimensionality of 

dates vectors. An additional benefit of such dense 

representation is that it is easier to combine dates vectors 

with word vectors in more complex retrieval and record 

linkage systems. 

To perform dimensionality reduction, Siamese neural 

network [21]is designed. The input of the network shared is 

two date representation that is reduced to the 

dimensionality of 300 with the embedding layer with 

shared weights. The reduced vectors are fed to the cosine 

similarity layer that produces output as a real number in 

[0,1] interval. The loss function is a standard quadratic loss. 

The network is trained on 100M generated positive and 

negative dates pairs, where 50% is generated such that the 

above similarity function has a value greater than 0, and the 

other half is zero.  

With this simple network architecture, satisfactory 

dimensionality reduction is obtained, with the total 

quadratic loss less than 0.006. Figure 3 represents an 

example of reduced vectors the two similar dates (the day 

5/1/1750 and the year 1750). Although the semantic 

transparency is lost, and the distributions are not readable 

from the dense representation, relation of similarity is 

preserved. 

 

 

VI. CONCLUSION AND FURTHER RESEARCH  

The developed representation for an inexact date, similarity 

measure and dimensionality reduction system has been 

implemented into retrieval and entity resolution system for 

genealogical data. As the final results are intervened with 

the other non-temporal date, it is hard to evaluate the 

contribution of this system. So the natural next step of this 

research is to develop an evaluation dataset of inexact dates 

that includes ranked similarity among them, as such 

dataset, to the author's best knowledge does not exist. Such 

dataset would facilitate evaluation of this approach in the 

information retrieval. Construction of such dataset should 

include the creation of neural models for automatic 

translation of inexact temporal expression to the structured 

representation. Some variants of such structured 

presentation are already proposed in the Wikidata date 



COMPUSOFT, An international journal of advanced computer technology, 8(2), February-2019 (Volume-VIII, Issue-II) 

3035 

 

format proposal [23] and other semantic web community 

research projects [24].  

The other lines of future research include a more theoretical 

solid definition of the similarity function, perhaps in the 

context of belief functions and evidence theory [25]. 

Further research into the development of the dimensionality 

reduction neural model architecture and the development of 

specialized word vectors for inexact dates also seems 

conceivable. 
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