
COMPUSOFT, An international journal of advanced computer technology, 8(2), February-2019 (Volume-VIII, Issue-II)

3047

This work is licensed under Creative Commons Attribution 4.0 International License.

REFORMULATION OF NATURAL LANGUAGE QUERIES ON SOURCE

CODE BASE USING NLP TECHNIQUES

Swathi B.P
1
, Anju R

2

Department of I&CT,

Manipal Institute of Technology,

Manipal Academy of Higher Education,

swathi.bp@manipal.edu,

anju.r@manipal.edu

Abstract: Source code retrieval is a branch of text retrieval which helps developer find a piece of code from the code base. The

developer can obtain the required code from the code base by issuing a query on the source code base. Generally, a developer

who has been working on the code base since a long time will know how to formulate his/her query in order to get a good search

result. A developer who is novice to the code base will not know what terms he/she has to include in query to obtain a good

search result. In fact, a system should allow developer to issue natural language queries. This arises a need for query

reformulation to optimize the developer query when the query does not contain terms from code base. This work has conducted

extensive study on areas where natural language queries are applied and the various reformulation techniques. In this work,

semantic query reformulation technique is applied on the natural language queries on the source code base. Our discussion and

results prove how semantically right word and a word which is in context of the source code can be obtained which acts as a

replacement for a query term which is not present in the source code base.

Keywords: Natural Language Processing, Query reformulation, Similarity score, Query Expansion, Natural Language Queries.

I. INTRODUCTION

Information retrieval (IR) is a task of retrieving relevant

documents from a large collection of documents. One of

the branches of Information Retrieval is Text Retrieval in

which information is retrieved in the form of text.

Retrieval takes place only when query matches against the

documents, and the documents which are returned have

very close relevance with the terms in the query. Source

code retrieval is an application of text retrieval where

information retrieved is source code. Source code retrieval

is significantly necessary for developers in software

industry to find methods or classes during bug fixing

[18][19]. A modification in source code is not only

performed by software developers but by any individual

who would like to work on open source projects. Generally,

the open source project does not consist of software

artifacts. As a result, a developer who is a novice to the

code base, will have difficult time in finding out the class

or method where he has to do modify the code. At present,

the integrated development environments (IDE) allow a

developer to search for a piece of code/ method/ class using

exact term that is present in the source code base. The

search may be slightly advanced using a regular expression

in the query which should still contain a base term from the

corpus. In Information Retrieval (IR), one of the

fundamental obstacles faced by users is that

Available online at: https://ijact.in

Date of Submission

Date of Acceptance

19/01/2019

14/02/2019

Date of Publication 28/02/2019

Page numbers 3047-3052 (6 Pages)

ISSN:2320-0790

mailto:swathi.bp@manipal.edu
mailto:anju.r@manipal.edu
https://ijact.in/index.php/ijact/issue/view/80

COMPUSOFT, An international journal of advanced computer technology, 8(2), February-2019 (Volume-VIII, Issue-II)

3048

communicating their informational requirement in a query

which a IR engine comprehends. Apart from the query

formulation that system understands, the critical problem

lies in deciding the set of words or terms in the query that

express users need semantically. Defining the former

problem in source code retrieval, a developer who is

completely accustomed with the source code base will

know identifier names used in the code base. But, a

developer who is new to the code base is unaware of class

names, method name or any other variable names.

Therefore, often as an end user of the IDE, developer

would like to have a system which allows for natural

language querying on the corpus. The convenience with

natural language querying is that the developer need not

really remember exact terms such as identifier names from

the source code base [1]. This leads to formulation of query

which does not have terms from code base. At the same

time when the query term does not match the corpus, the

search result will be poor. To overcome this poor search

result, this work focuses on application of semantic

reformulation techniques to optimize the developer query.

Studying the various reformulation techniques and

concluding that application of semantic reformulation

technique on natural language queries on source code base

can help developer to obtain a better search result even in

the situations when they are not acquainted with source

code base.

1.1 Application of Natural Language Queries

It is becoming increasingly important for systems in

various fields to inculcate natural language querying which

intents at making search easier for end users. The research

works on natural language querying in various fields have

been summarized as follows: Massai et al. [2] have

developed an engine for semantic assistance which

suggests local points of interest (POIs) and services by

exploiting users‟ queries written in natural language. It

estimates the user information need in terms of geographic

references. The system adopts NLP and semantic

techniques to provide output recommendations on POIs and

services which best match the users‟ requests. Hu et al

[3] have proposed a natural language querying mechanism

that processes general aggregate queries over Resource

Description Framework (RDF) data. Generally a user‟s

query consists of semantic relations and aggregations in

them. Hence, a framework called NLAQ

(Natural Language Aggregate Query) has been proposed

which employs a novel algorithm to automatically

understand intention of a user's query.

Rencis et. Al [4] in their work has outlined a method as to

how those clinical information systems could be handled

by the domain experts themselves with the help of

natural language-based query language. The framework

defined works upon data stored in the ontology. Their

investigation prove that the suggested approach is certainly

easy to be used by end-users such as managers and

physicians of hospitals as natural language

query language is very intuitive to use. Esther et al. [5]

have worked to provide 4 different Natural language

interfaces (NLIs) that provides a user friendly means of

access to Semantic Web data for casual end-users through

their natural language query. Salaiwarakul et al [6] have

proposed cultural tourism ontology for Thailand which

allows users to access tourism information using natural

language queries in the Thai language. This work shows

how capacity of natural language querying visibly moved

the serious limitations of search based on keyword.

Lin et al. [7] have worked for developing a software called

TiQi in which users can issue queries related to software

artifacts verbally or written in natural language. It receives

Natural Language (NL) queries, converts those queries into

SQL, and then executes the queries against database. Jamil

et al. [7] in their work, have proposed a knowledge-based

middleware which is multilevel in nature. This facilitates

intent preserving and semantics mapping of a

natural language query. We develop abstractions that are

multi-level with a concept reasoner and information

retrieval engine to dynamically link

arbitrary natural language querying to structured queries.

Tamas et al. [16] have discussed how natural language can

help user query on e-commerce application or ERP

systems. The authors have developed a framework names

Artemis which accepts query inputs and converts into

filters applicable to underlying data models. Castillo-

Ortega et al [17] have worked on natural language querying

on multidimensional databases. They have come up with a

new tool, Linguistic F-Cube Factory which is based on

natural language querying on a multidimensional data

model to obtain linguistic results.

1.2 Query reformulation

In information retrieval, Query reformulation is a process

of reframing a query to reduce the search result mismatch.

Query reformulation is otherwise a query optimization

technique that provides the best suitable results [9]. The

need for reformulation arises when the terms in the query

does not match the document collection. Since, there is

more than one syntactic arrangement that communicates

the same piece of information; natural language processing

plays a significant role in query reformulation because after

the application of reformulation techniques such as query

expansion / reduction, reengagement of query terms or

query modification, the query should still mean the same.

Reformulation of query can be done manually based on the

search results from the initial query. The knowledge and

experience about how search engines work also help in

query reformulation [11]. Manual query reformulation is an

overhead for the information seeker because he has to go

through the search result obtained in the first place.

Query expansion is a reformulation technique in which new

terms are added to the existing query in order to get more

relevant results [10]. A dictionary or general thesaurus

could be used in this process. Lioma et al [13] have worked

on reformulation of queries using syntactic based

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=23991805600&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=35184778900&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=35184778900&zone=

COMPUSOFT, An international journal of advanced computer technology, 8(2), February-2019 (Volume-VIII, Issue-II)

3049

reformulation techniques. They also compared their

experimental results with pseudo –relevance feedback

through which it proved that syntactic based reformulation

performs much better than pseudo-relevance feedback.

Semantic query reformulation is another reformulation

technique which becomes highly advantageous when there

is more than one way of conveying a matter and also makes

the user query semantically enriched. It is a technique in

which query terms are replaced with the some other terms

which semantically mean the same, using ontological

support. Angel et al [12] have worked on query

reformulation using similarity thesaurus. The objective of

query reformulation is to use the underlying knowledge of

the database to reformulate a query into a less expensive

yet equivalent query. Amshakala et al [9] have exploited

WordNet Ontology for query reformulation and have also,

optimized the query by eliminating disjunctive clause.

Although, adoption of general thesaurus to formulate the

user‟s need does not yield good results [20].

Bissan et al [14] combined Semantic query reformulation

technique with query expansion technique to produce a

new technique called Semantic Mixed query Expansion and

Reformulation Approach (SMERA) that uses these two

types of concepts to improve web queries. The choice of

terms to be used as expansion in queries is made very

intelligently. The approach provides a statistically

significant improvement in precision over a competitive

query expansion method. Kun Lu et.al [15] in their study

have found out the effects of contextual factors and system

features on query reformulation. They have also studied the

relationship between types of query reformulation

technique and search performance. Both the analysis have

been given a solution in multilevel modeling which is a

single research model. The results disclosed the facts that

query reformulation techniques are influenced by system

features and users‟ educational background Also, types of

query reformulation had a significant impact on search

performance.

 Of all the reformulation techniques that we have gone

through from various researchers, natural language

querying acted upon by sematic query reformulation is the

most helpful technique because , a user need not have

knowledge about the terms in the database. But, the main

speck that we have observed from the earlier works on

semantic query reformulation is replacement of

semantically right term in the place of that term which is

not found in the database. In our work, two developers may

refer to the same piece of code with different terms which

semantically mean the same.

Therefore, Objective of this work is to find a semantically

right term which is context of the source code base as a

replacement for the query term which is not present in the

source code base. To achieve this, we have built a thesauri

from the source code base on which search is launched and

similarity thesaurus. The thesaurus built acts as dictionary

and query reformulation is performed using this dictionary.

To build the thesaurus from source code base, we have

considered benchmark open source project as input to our

model. The benchmark open source projects are considered

to have documentation (comments) written by the

developers of the project. A mapping from words present in

the comments of the source code to words in the similarity

thesaurus is performed which creates a dictionary of words

along with their synonyms. A word can be a synonym to

many other words. For example, the word „show‟ is a

synonym to the word „display‟ as well as „exhibit‟. But, in

actual the word „show‟ has to be replaced by „display‟,

because the „display‟ is the word that is present in the

source code base. Now this decision needs the context

information, which we have obtained through NLP

techniques. A similarity metric from NLP which is one of

the pre-retrieval metrics has been employed to obtain the

similarity between the term and the source code. The

comments obtained from the source code are stored in an

unstructured data base for further processing. The

following sections furnishes in detail about the

methodology followed and the result discussions.

II. METHODOLOGY

The proposed framework is mainly divides into four parts

namely, retrieval of comments from the source code base,

application of natural language processing on comments

and developer query, creation of dictionary to map words

from comments to words in similarity thesaurus and query

reformulation through similarity score computation. In Fig.

2.1, the input to the model is a source code base containing

comments. The comments are retrieved based on the

regular expression match performed and all the comments

fetched are stored in an unstructured database. During the

implementation, we have used MongoDB since the

comments are unstructured in nature. This phase of

comment retrieval followed by the application of natural

language processing on comments as well as developer

query. We have applied natural language processing

techniques such as stemming, lemmatization, stop words

removal. After applying NLP techniques on query we

obtained a list of query terms which are maintained in a list

called Q_L. Ti represents terms in the query. CiWj

represents words from each comment. Si represents

synonym for each CiWj. Similarly the processed comments

are maintained in a list C_L. with the help of similarity

thesaurus, a dictionary D has been built to store the

synonyms of the words which are present in the comments.

The dictionary consists of words from comments as key

and the synonyms as values. If a term in the query is

already present in the code base, then there is no need of

replacing such term. Otherwise, find such term in the

synonyms that are nothing but values. Next, find the

similarity of those keys for which there is a match in the

synonym. Replace the query term with that key which has

the highest similarity. The psuedocode for aforementioned

is sketched in Fig. 2.3 Fig. 2.2 outlines about finding the

similarity score of the entire query with respect to the code

base. If the similarity score of the entire query is very low,

COMPUSOFT, An international journal of advanced computer technology, 8(2), February-2019 (Volume-VIII, Issue-II)

3050

then it is a clear indication that the query needs more terms

which are present in the code base in order to obtain a

better search result.

Fig. 2.1 Framework for semantic query reformulation

The similarity score of the term with respect to the code

base is obtained by making use of a metric Similarity

collection Query (SCQ) from natural language processing

[1]. The similarity score of the term with respect to the

document is obtained using (1). This focuses on similarity

of entire query with source code base.

 𝑆𝐶𝑄 𝑡 = (1 + log 𝑖𝑐𝑡𝑓 𝑡,𝐷 . 𝑖𝑑𝑓(𝑡) (1)

(2)

𝒊𝒄𝒕𝒇 𝒕 = 𝐥𝐨𝐠
 𝑫

𝒕𝒇 𝒕,𝑫
 (3)

where D: collection of documents,

t: key in the key-value pair where the synonym for the

term Q is found,

Dt :collection of documents containing the term t,

tf(t,D): frequency of term t in all the documents

Collection-query similarity (SCQ) over all query terms can

be computed using ∑QQuery SCQ(Q).

III. RESULTS AND DISCUSSIONS

This section briefs about the various ways in which a

developer can query on a source code base and how query

reformulation is performed by computing similarity score.

To demonstrate the cases, we have considered few

comments from vlc-media player.

Examples of Comments from vlc-media player:

Unclosed network connection

Return socket handle

Accepts an new connection on a set of listening sockets

Example of Dictionary D created from the model:

Unclosed – open, unlatched, unshut

Network - net, chain, circuitry

Connections – contact, network, relation, association

Return- rebound, entry, arrival, restores

Recovery- rebound, restores, entry, arrival

Fig. 2.2. Framework for computation of similarity score

of developer query

Case 1: A developer issues a query “unclosed connection”.

Since all query terms are present in the code base,

reformulation is not required and query is issued to IR

engine as it is.

Case 2: A developer issues a query „open connection”.

Since the word „open‟ is not present in the code base, it

needs to be replaced with the term which is present in the

codebase. From the aforementioned thesaurus example, we

find that „open‟ is the synonym for unclosed. There is no

ambiguity about the replacement because „open‟ is the

synonym for only one key, i.e „unclosed‟. Similarity of

„unclosed‟ with source code base is 4.6.

Case 3: A developer issues a query „rebound socket

handler‟. Since „rebound‟ is a synonym for two keys i.e „

return‟ and „recovery‟, we find from similarity score

computation that SCQ(return)= 3.2 and

SCQ(recovery)=1.2. The low value of SCQ for recovery is

because „recovery‟ is present very few documents. The

similarity score of entire query „return socket handler‟ and

„recovery socket handler‟ are 5.5 and 3.5 respectively.

COMPUSOFT, An international journal of advanced computer technology, 8(2), February-2019 (Volume-VIII, Issue-II)

3051

Fig. 2.3 Psuedocode for semantic query reformulation

IV. CONCLUSION

The results obtained from semantic query reformulation

technique applied on natural language queries of the

developer legitimates that developer need not remember the

exact terms from code base. It also shows that it is

inadequate if a query term is directly replaced with a

synonym. In addition to finding the similarity, it is

necessary to find whether the synonym belongs to the

context of the corpus. Our future work focuses on semantic

query reformulation along with query expansion. Now, this

is necessary if a developer does not provide in his query

sufficient terms. Inclusion of extra terms along with

semantic reformulation on developer query hopes to

improve the search result significantly.

V. REFERENCES

[1] S. Haiduc, G. Bavota, R. Oliveto, A. D Lucia, and

Marcus, Automatic query performance assessment

during the retrieval of software artifacts, Proceedings

of the 27th IEEE/ACM international conference on

Automated Software Engineering, pp. 90-99, 2012.

[2] Massai, Lorenzo and Nesi, Paolo and Pantaleo,

Gianni (2019), PAVAL: A location-aware virtual

personal assistant for retrieving geolocated points of

interest and location-based services, Engineering

Applications of Artificial Intelligence, Vol. 77,

Elsevier, pp 70-85.

[3] Xin Hu and Yingting Yao and Luting Ye and Depeng

Dang (2017), Natural Language Aggregate Query

over {RDF}, Information Sciences, abs/1710.07891.

[4] Rencis, Edgars(2018), Towards a Natural Language-

based Interface for Querying Hospital Data,

Proceedings of 2018 International Conference on Big

Data Technologies ICBDT '18, China, pp 25-28

[5] Kaufmann, Esther & Bernstein, Abraham. (2010),

Evaluating the Usability of Natural Language Query

Languages and Interfaces to Semantic Web

Knowledge Bases, SSRN Electronic Journal.

[6] Salaiwarakul, A. (2018), Thai natural language based

cultural tourism ontology. ICIC Express Letters. 12.

159-165.

[7] J. Lin et al.(2017), TiQi: A natural language interface

for querying software project data, 2017 32nd

IEEE/ACM International Conference on Automated

Software Engineering (ASE), Urbana, IL, pp. 973-

977.

[8] Hasan M. Jamil(2017), Knowledge Rich Natural

Language Queries over Structured Biological

Databases, Proceedings of the 8th ACM International

Conference on Bioinformatics, Computational

Biology and Health Informatics, pp 352-361.

[9] Ka, Amshakala and Nedunchezhian. (2011). WordNet

Ontolog Based Query Reformulation and

Optimization using Disjunctive Clause Elimination.

International Journal of Database Management

Systems. 3. 55-63.

[10] Washio, Takashi, and Luo, Jun (2013), Applying NLP

Techniques for Query Reformulation to

Information Retrieval with Geographical References,

Emerging Trends in Knowledge Discovery and Data

Mining, Springer Berlin Heidelberg, pp 57-69.

[11] Jeff Huang and Efthimis N. Efthimiadis (2009),

Analyzing and evaluating query reformulation

strategies in web search logs, Proceedings of the 18th

ACM conference on Information and knowledge

management (CIKM '09), ACM, 77-86.

[12] Ángel F. Zazo, Carlos G. Figuerola, José L. Alonso

Berrocal, and Emilio Rodrıguez (2005), Reformulation

of queries using similarity thesauri, Information

Processing and Management: an International Journal,

Vol. 41, pp. 1163-1173.

[13] C. Lioma and I. Ounis. (2008), A syntactically-based

query reformulation technique for information

retrieval, Information Processing and Management: an

International Journal, Vol. 44, pp. 143-162.

[14] Audeh B., Beaune P., Beigbeder M. (2017) SMERA:

Semantic Mixed Approach for Web Query Expansion

and Reformulation, Advances in Knowledge

Discovery and Management, Studies in Computational

Intelligence, Vol 665. Springer, Cham.

[15] Kun Lu, Soohyung Joo, Taehun Lee, and Rong Hu.

(2017), Factors that influence query reformulations

and search performance in health information retrieval:

A multilevel modeling approach, Journal of the

Association for Information Science and Technology,

Vol. 68, pp 1886-1898.

[16] Tamas, I., & Salomie, I. (2016), Artemis-an extensible

natural language framework for data querying and

manipulation, Intelligent Computer Communication

and Processing (ICCP), 2016 IEEE 12th International

Conference, pp. 85-91.

COMPUSOFT, An international journal of advanced computer technology, 8(2), February-2019 (Volume-VIII, Issue-II)

3052

[17] Castillo-Ortega, R & Marín, Nicolás & Sánchez,

Daniel & Molina, Carlos (2013), Flexible Querying

with Linguistic F-Cube Factory, pp 245-256.

[18] Mills, C., Bavota, G., Haiduc, S., Oliveto, R., Marcus,

A. and Lucia, A.D., (2017), Predicting query quality

for applications of text retrieval to software

engineering tasks, ACM Transactions on Software

Engineering and Methodology (TOSEM), Vol. 26, pp.

3.

[19] Renuka Sindhgatta (2006), Using an information

retrieval system to retrieve source code samples,

Proceedings of the 28th international conference on

Software engineering (ICSE '06), pp 905-908.

[20] Ellen M. Voorhees and Donna K. Harman (2005),

TREC: Experiment and Evaluation in Information

Retrieval, Digital Libraries and Electronic Publishing,

The MIT Press.

