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Abstract:  In the present paper, a reliability model is developed about the profit analysis and Optimization of number of hot 

standby units for a system working with two operative units. Hot standby works in a similar manner as operating unit means that 

when an operating unit fails, hot standby unit works with the same efficiency as the operating unit. The optimization of hot 

standby units is very important factor for any industry/unit/system for increasing the reliability redundancy and achieving the 

maximum profit. Thus, reliability models with no/one/two/three hot standby units in a system working with two operative units 

are developed. The cut-off points with regard to revenue, failure rate, etc. have been obtained to determine as to how many 

standby unit(s) should be there for the system. Comparative study has also been made to see which and when one of these models 

is better than the other as far as the profitability of the system is concerned. Semi-Markov processes and regenerative point 

technique have been used to obtain various performability measures. 

 

Keywords: Two operative units, hot standby units, Regenerative point Technique, Profit analysis, Optimization 

I. INTRODUCTION 

Ranging from man to machine and in the present scenario 

also, technology has a great impact on every field of life. 

Due to increase in population and change in their tastes/ 

interests, demand of products is increasing continuously. 

To overcome this increasing demand, it is necessary to 

introduce the standby redundancy. Hot standby redundancy 

is that redundancy which is loaded with the same way as 

the operating unit when the operating unit fails. Many 

scholars have done a lot of work on hot standby units like 

Goel and Gupta (1983) discussed the analysis of a two-unit 

hot standby system with three modes. Christov and 

Stoytcheva (1999) dealt with the reliability and safety 

research of hot standby microcomputer signally systems. 

Rizwan et al. (2005) carried out the reliability analysis of a 

hot standby PLC system. Parashar and Taneja (2007) found 

the reliability and profit evaluation of a PLC hot standby 

system based on master-slave concept and two types of 

repair facilities. Rizwan et al. (2010) gave the reliability 

analysis of a hot standby industrial system.  Kumar and 

Kumari (2017) carried out the comparative study of two-

unit hot standby hardware software systems with impact of 

imperfect fault coverage. Manocha et al. (2017) discussed 

the stochastic and cost-benefit analysis of two-unit hot 

standby database system but the optimization of number of 

hot standby units for a system has not been taken into 

consideration by them. Batra and Taneja (2018) found a 

reliability model for the optimum number of hot standby 
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units in a system working with one operative unit. 

However, there are many systems where systems 

comprising operative and hot standby system may require 

two operative units to meet out the demand. For such a 

system, working with two operative units, there is need to 

study as to how many hot standby units should be kept in 

order to get the optimum profit. To answer this question, 

we, in the present paper, develop four reliability models for 

a system having two operative units and:  

 

i. No hot standby unit (Model 1) 

ii. Two operative and one hot standby unit (Model 2) 

iii. Two operative and two hot standby units (Model 

3) 

iv. Two operative and three hot standby units (Model 

4).  

The models are compared in order to optimize the number 

of hot standby units to be used. Analysis is done using 

semi-Markov processes and regenerative point technique. 

 

II. NOMENCLATURE  

λ   Failure rate of operative unit 

λ1   Failure rate of hot standby unit 

g(t),G(t)  p.d.f. and c.d.f. of the repair time 

Op  Operative unit 

Hs  Standby unit 

Fr  Failed unit under repair 

Fwr  Failed unit is waiting for the repair 

FR  Repair of the failed unit is continuing 

              from previous state 

C0  Revenue per unit up time 

C1  Cost per unit up time for which the 

               repairman is busy 

C2  Cost per visit of the repairman 

IC  Installation cost of an additional identical 

              unit 

Pi  Profit of model i; i=1,2,3,4 

Φi(t)  C.d.f. of the first passage time from 

               regenerative state i to a failed state 

qij(t), Qij(t) pdf, cdf of the first passage time from 

regenerative state Si to a regenerative 

state Sj  
j

iAC (t)
 Probability that system working in full 

capacity at the instant t given that it 

entered Si at t=0 in case of model j; j=1, 

2, 3, 4. 

j

iB (t)
 Probability that the system is under repair 

at t given that the system entered Si at 

t=0 in case of j=1, 2, 3, 4. 
j

iV (t)
 Expected number of visits in (0, t]; given 

that the system entered regenerative state 

Si at t=0 in case of j; j=1, 2, 3, 4. 

 

III. ANALYSIS OF THE MODELS 

3.1    Model 1: System Comprising Two Operative Units 

and No Hot Standby Unit 
In this model, we have considered a system wherein two 

units are operative and there is no hot standby unit. 

Possible transitions from one state to other are given as 

follows: 

From S0 S1 S1 S1 S2 

To S1 S0 S1 S2 S1 

Via ... ... S2 ... ... 

 

where S0 = (Op, Op), S1= (Fr, Op),  S2 = (FR, Fwr). 

States S0 and S1 are regenerative states whereas S2 is a non-

regenerative state 

3.1.1   Transition Probabilities and Mean Sojourn Times 

The state transition probabilities 
*

ij ij
s 0

p limq (s)



 can be 

obtained using the following: 
(2 )t

01q (t) (2 )e dt   , 
t

10q (t) e g(t)dt
, 

t

12q (t) e G(t)dt 
, 

(2) t

11q (t) ( e 1)g(t)dt  
 

Thus, we have 

* (2) * *

01 10 11 12

01

10 12

(2)

10 11

p =1, p =g (λ), p =g (0)-g (λ), p =λ (λ)

From these values, we have thefollowing relations

p 1

p +p =1

p +p =1

G



 

Mean sojourn times (i) i.e. the expected time of stay in 

regenerative state i are given as 

0

1
μ =

2λ
, 

*

1

1-g (λ)
μ =

λ
 

Let 
ij ij ij

0

m = tq (t)dt= -q * (0)



 , 

i.e.,
01 0m =μ , 

10 12 1m +m =μ , 

(2)

10 11 1

0

m +m = tg(t)dt = k (say)



  

3.1.2    Measures of System Effectiveness 

 



COMPUSOFT, An international journal of advanced computer technology, 8(2), February-2019 (Volume-VIII, Issue-II) 

3061 

 

3.1.2.1 Mean Time to System Failure (MTSF) 

 

To determine the mean time to system failure (MTSF) of 

the system, we regard the failed state as absorbing state. 

Thus, 

  0(t) = Q01(t)  1 (t)    

     

 1(t) = Q10(t)   0(t) + Q12(t)  

Thus,    
** 1

0

1s 0

1 (s) N
MTSF lim

s D


  ,  where 

 
1

0 1N =μ +μ , 1

12D = p  

 

3.1.2.2 Availability  

 

The availability ACi(t) is seen to satisfy the following 

recursive relations: 
1 1 1

0 0 01 1AC (t) M (t) q (t) AC (t)      

   
1 1 1 (2) 1

1 1 10 0 11 1

1 2 t

0

1 t

1

AC (t) M (t) q (t) AC (t) q (t) AC (t)

M (t) e

M (t) e G(t)

 



    





 

 

Taking Laplace Transforms and then solving the above 

equations for
1*

0AC (s) , the availability of the system, in 

steady state, is given by 
1

1 1* 1
0 0 1s 0

1

N
AC limsAC (s)

D
  ,  

where 
1

1 10 0 1N = p μ +μ , 1

1 10 0 1D = p μ +k  

 

Proceeding in the similar manner as done in the case of 

obtaining expressions: 

 
3.1.2.3  Expected fraction of time during which the repairman 

is busy 
1 1

1 1* 2 2
0 0 1 1s 0 s 0

1 1

sN (s) N
(B ) limsB (s) lim

D (s) D 
    

 

3.1.2.4  Expected Number of Visits  

(
1 1

1 1** 3 3
0 0 1 1s 0 s 0

1 1

sN (s) N
V ) limsV (s) lim

D (s) D 
    

where 

 

1

2 1N k                                                                
1

3N = 1 

3.1.3   Profit Analysis  

Profit equation in steady state is given by  

 Profit (P1) = C0AC0
1
 – C1B0

1
 – C2V0

1
 

 

 
3.2       Model 2: System Comprising Two Operative Units 

and One Hot Standby Unit 

 

In this model, system with two operative and one hot 

standby unit is considered. Possible transitions from one 

state to the other are shown as follows: 

 

From S0 S1 S1 S1 S1 S4 S4 

To S1 S0 S1 S3 S4 S1 S4 

Via ... ... S2 S2 S2 and 

S3 

... S3 

 

Where 

 S0 = (Op, Hs, Hs), S1= (Fr, Op, Hs), S2 = (FR, Fwr, Op), S3 

= (FR, Fwr, Fwr), S4= (Op, Fr, Fwr) 

 

States S0, S1 andS4 are regenerative states whereas S2 and 

S3 are non-regenerative states. 

 

3.2.1 Transition Probabilities and Mean Sojourn Times 
1-(2λ+λ )t -2λt (2) -2λt -λt (2) -2λt -λt

01 1 10 11 1 3

(2,3) -2λt -λt -λt (3) -λt

1 4 41 44

q (t)=(2λ+λ )e , q (t)=e g(t), q (t)=(2λe ©e )g(t), q (t)=(2λe ©λe )G(t),

q (t)=(2λe ©λe ©1)g(t), q (t)=e g(t)dt, q (t)=(λe ©1)g(t)

 

The transition probabilities 
*

ij ij
s 0

p limq (s)


 for this model 

are obtained as  
* (2) * (2) * *

01 10 11 13

(2,3) * * * * (3) * *

1 4 41 44

p 1,p g (2 ), p 2(g ( ) g (2 )) , p 2 (G ( ) G (2 ))

p g (0) 2g ( ) g (2 ), p g ( ), p g (0) g ( )

           

         

 

Thus, from these probabilities we conclude that 

01

(2) (2)

10 11 13

(2) (2,3)

10 11 1 4

(3)

41 44

p =1

p +p +p =1

p +p +p =1

p +p =1

 

Mean Sojourn times (i) for the model are: 
* *

0 1 4

1

1-g (2λ ) 1-g (λ )1
μ = , μ = , μ =

2λ +λ 2λ λ

 

Here, 

01 0

(2) (2) -2λt -λt -2λt -λt -2λt
10 11 13 2

0

(2) (2,3) (3)
10 11 14 1 41 4 4 1

0 0

m =μ  

m +m +m = t(e g(t)+2e g(t)-2e g(t)+2λe G(t)-2λe G(t))=k (say)

m + m +m = tg(t)dt=k (say),    m +m = tg(t)dt=k (say)



 



 
 

3.2.2    Measures of System Effectiveness 

3.2.2.1 Mean Time to System Failure (MTSF) 

 

 0(t) = Q01(t)  1 (t)     

 1(t) = Q10(t)   0(t) + 
(2)

11Q (t)  1(t) + 
(2)

1 3Q (t)
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Thus,   
** 2

0

2s 0

1 (s) N
MTSF lim

s D


  , where 

2 (2)

0 10 1 3 2N =μ  (p +p )+k , 2 (2)

1 3D = p

 

3.2.2.2 Availability at full Capacity  

 

The availability ACi(t) is seen to satisfy the following 

recursive relations: 
2 2 2

0 0 01 1ACF (t) M (t) q (t) ACF (t)      

 

1

2 2 2 (2) 2 (2,3) 2

1 1f 10 0 11 1 1 4 4

2 2 (3) 2

2 41 1 44 4

(2 )t1

0

1 2 t

1f

ACF (t) M (t) q (t) ACF (t) q (t) ACF (t) q (t) ACF (t)

ACF (t) q (t) ACF (t) q (t) ACF (t)

M (t) e

M (t) e G(t)

 

 

      

   





 

Taking Laplace Transforms and then solving the above 

equations for
2*

0AC (s) , the availability of the system, in 

steady state, is given by 
2

2 2* 1f
0 0 2s 0

1

N
ACF limsACF (s)

D
  ,  

Where, 
2

1f 41 10 0 41 1N = p p μ +p μ ,
2 (2,3)

1 41 10 0 14 3 41 2D = p p μ +p μ +p k  

 

3.2.2.3 Availability at reduced Capacity  

 

The availability ACRi(t) is seen to satisfy the following 

recursive relations: 

2 2

0 01 1ACR (t) q (t) ACR (t)     

   
2 2 2 (2) 2 (2,3) 2

1 1r 10 0 11 1 1 4 4

2 2 2 (3) 2

2 4 41 1 44 4

2 2 t t

1r 3

2 t

4

ACR (t) M (t) q (t) ACR (t) q (t) ACR (t) q (t) ACR (t)

ACR (t) M (t) q (t) ACR (t) q (t) ACR (t)

M (t) (2 e e )G(t) k (say)

M (t) e G(t)

  



      

    

   



 

 

Taking Laplace Transforms and then solving the 

above equations for
2*

0ACR (s) , the availability of 

the system, in steady state, is given by 
2

2 2* 1r
0 0 2s 0

1

N
ACR limsACR (s)

D
 

, where 
2 (2,3)

1r 1 4 4 41 3N = p μ +p k , 2 (2,3)

1 41 10 0 14 3 41 2D = p p μ +p μ +p k  

 

 

 

Proceeding in the similar manner as done in the case of 

obtaining expressions 

 

3.2.2.4 Expected fraction of time during which the 

repairman is busy       
2 2

2 2* 2 2
0 0 2 2s 0 s 0

1 1

sN (s) N
(B ) limsB (s) lim

D (s) D 
    

3.2.2.5 Expected Number of Visits:  

(
2 2

2 2** 3 3
0 0 2 2s 0 s 0

1 1

sN (s) N
V ) limsV (s) lim

D (s) D 
    

Where, 

 
2 (2,3)

2 41 14 1N (p p )k and  2 (2) (2,3)

3 11 41 14 41N =(1-p )p +p (1+p )  

           
3.2.3    Profit Analysis  

Profit equation for standby unit in steady state is given by  

Profit (P2) = C0AC0
2
 – C1B0

2
 – C2V0

2
-(IC0) 

IC0 is the installation cost of a hot standby unit per unit 

time. 

3.3    Model 3: System Comprising Two Operative Units 

and Two Hot Standby Units 

 

In this model, a system with two operative and two hot 

standby units have been considered. Possible state 

transitions are shown in the following table: 

 

From S0 S1 S1 S1 S1 S1 

To S1 S0 S1 S4 S5 S6 

Via ... ... S2 S2 and S3 S2 and S3 S2, S3and S5 

From S4 S4 S4 S4 S6 S6 

To S1 S4 S5 S6 S4 S6 

Via ... S3 S3 S3 and S5  S5 

 

Where, 

 S0 = (Op, Op, Hs, Hs), S1= (Fr, Op, Op, Hs), S2 = (FR, Fwr, 

Op, Op), S3 = (Op, FR, Fwr, Fwr), S4= (Op, Op, Fr, Fwr), S5 

= (FR, Fwr, Fwr, Fwr), S6 = (Op, Fr, Fwr, Fwr) 

States S0, S1, S4 andS6 are regenerative states whereas S2, 

S3 and S5 are non-regenerative states. 

3.3.1 Transition Probabilities and Mean Sojourn Times 

The transition probabilities are:  

 1(2 2 )t

01 1q (1) (2 2 )e dt
  

    , 

1(2 ) t

10q (t) e g(t)dt
 

  , 
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1(2 )t(2) 2 t

11 1q (t) ((2 ) e e )g(t)dt
        

1(2 )t(2,3) 2 t

14 1

tq (t) ((2 ) e 2 e )g(t)dte
        

1(2 )t(2,3) 2 t

15 1

tq (t) ((2 )e 2 e )G( dte t)
          

1(2 )t(2,3,5) 2 t

16 1

tq (t) ((2 )e 2 e )g(t)dte 1
          

 2 t

41q (t) e g(t)dt   , (3) 2 t

44

tq (t e) (2 e )g(t)dt    , 

(3) 2 t

45

tq (t) (2 e ) t)dte G(     

(3,5) 2 t

4

t

6 e 1q (t) (2 e )g(t)dt      , t

64q (t) e g(t)dt  

(5) t

66q (t) ( e )g( dt1 t)    

The transition probabilities are given as *

ij ij
s 0

p limq (s)


  

Here, 

01p 1   

 (2) (2,3) (2,3)

10 1 1 15p p p p 1      

 (2) (2,3) (2,3,5)

10 11 14 16p p p p 1      

 (3) (3)

41 44 45p p p 1     

(3) (3,5)

41 44 46p p p 1     

 (5)

64 66p p 1    

Mean Sojourn times (i) for the model are: 
* * *

1
0 1 4 6

1 1

1-g (2λ+ ) 1-g (2λ ) 1-g (λ )1
μ = , μ = , μ = ,μ =

2λ +2λ 2λ+ 2λ λ





 

Thus, 

01 0m     

1

2
(2 )(2) (2,3) (2,3) 1

10 11 14 15

1 10

2 (1 2 . )
m m m m t e g(t)

( )



     
    

  


2
2 t1 1

1

(4 2 2 )
e g(t)      




t1

1

2(2 )(1 )
e g(t)

( )

   
 

  

                

dt = K5 (say) 

(2) (2,3) (2,3,5)

10 11 14 16 1

0

m m m m tg(t)dt k (say)



      

(3) (3) 2 t t

41 44 45 6

0

m m m t{(2 1)e 2(1 )e }g(t)dt k (say)



         

 (3) (3,5)

41 44 46 1
0

m m m tg(t)dt k (say)


     

 

3.3.2    Measures of System Effectiveness 

 

3.3.2.1 Mean Time to System Failure (MTSF) 

 

0 01 1
sQ (t) Q (t) (t)    

(2) (2,3) (2,3)

1 10 0 11 1 14 4 15
s s sQ (t) Q (t) (t) Q (t) (t) Q (t) (t) Q (t)        

(3) (3)

4 41 1 44 4 45
s sQ (t) Q (t) (t) Q (t) (t) Q (t)       

MTSF when system starts from the state ‘0’ is 

  0

s 0

1 **(s)
MTSF lim

s


   

  = 
s 0

D(s) N(s) '0 '
lim form

sD(s) 0


   

   = 
3

3

D'(0) N '(0) N

D(0) D


   

Where, 

 3 (2,3) (3) (2,3) (3)

14 45 15 44D p p p (1 p )     

3 (2,3) (3) (3) (2,3) (3) (2) (3) (2) (2,3) (2,3

14 41 44 45 41 10 15 45 11 0 41 45 10 11 14 15N p (m m m ) (p (p p ) p (1 p ) (p p )(m m m m )            

   = (2,3) (2,3) (3) (2) (3)

14 6 41 10 15 45 11 0 41 45 5p k (p (p p ) p (1 p )) (p p )k        

3.3.2.2 Availability at full Capacity  

The availability ACFi(t) is seen to satisfy the following 

recursive relations: 

3

1

3 3

0 0 01ACF (t) M (t) ACq ( )t) F (t     

3 (2) 33 (2,3) 3 (2,3,5) 3

0 11 1 1

3

1 1 4 4 11 6f 60 ACF (t) q (t) ACF (t) q (t) ACF (t) qACF (t) M (t (t) q (t) ) ACF (t)      

3 (3) 3 (3,5) 3

1 44 4 46

3 3

4 4f 41 6ACF ACF (t) q (t) ACF (t)(t) M (t) q (t q (t) ACF (t) )     

 3 (5) 3

6

3

46 664 6ACF (t) q AC(t F (t) q A (t) CF )     

Where, 

1

1

(2λ+2λ )t3

0

-(2λ+λ )t3 -2λt1
1f 7

1 1

3 -2λt

4f

M (t)= e

(2λ+λ ) 2λ
M (t)= e G(t)- e G(t)=k (say)

λ λ

M (t)=e G(t)



 

Taking Laplace Transforms and then solving the above 

equations for 3*

0ACF (s) , the availability of the system, in 

steady state, is given by 

3 3

0 0
s 0

ACF limsACF (t)


  = 1

s 0
1

sN (s) '0 '
lim form

D (s) 0
   

       = 
3 3

1 1 1 1f

3 3s 0
1 1 1

sN '(s) N (s) N (0) N
lim

D '(s) D '(0) D


    

 Where, 

3 (2)

1f 64 41 10 0 64 10 11 4 64 41 7N p p p p (1 p p ) p p k         
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3 (2) (2,3) (2,3,5) (2,3) (2,3,5) (3) (3,5)

1 64 41 10 11 14 16 64 14 16 41 44 46D p p (m m m m ) p (p p )(m m m )       

           + (2,3,5) (3,5) (2,3) (2,3,5)

64 41 10 0 5 41 16 46 14 16p p p (p p p (p p )      

 
64 41 10 0p p p  (2,3,5) (3,5) (2,3) (2,3,5)

41 16 64 46 64 14 16 1{p (p p ) (p p )(p p )}k      

3.3.2.2 Availability at reduced Capacity  

The availability ACRi(t) is seen to satisfy the following 

recursive relations: 

3 3

10 01ACR (t) q (t) ACR (t)   

3 (2) 3 (2,3) 3

0 11 1 14

3 3

1 1r 10 4ACR ACR (t) q (t) ACR (t)(t) M (t) q (t q (t) ACR (t) )     

(2,3,5)

16

3

6ACR t)q (   

3 (3) 3 (3,5) 3

1 44 4 46

3 3

4 4r 41 6ACR ACR (t) q (t) ACR (t)(t) M (t) q (t q (t) ACR (t) )     

 3 (5) 3

4 66

3 3

6 6 6 64 ACR (t) q (t) ACR (ACR ( tt) M ( ) q )t (t)     

Where, 

1-(2λ+λ )t3 -λt -2λt1 1 1 1
1r 8

1 1 1 1

3 -λt -2λt

4r 9

3 -λt

6

2(2λ+λ ) 2(2λ+λ ) 2(2λ+λ )(λ+2λ )
M (t)= e G(t)+ e G(t)- e G(t)=k (say)

+λ λ λ ( +λ )

M (t)=2e G(t)-2e G(t)=k (say)

M (t)=e G(t)

    

Taking Laplace Transforms and then solving the above 

equations for
3*

0ACR (s) , the availability of the system, in 

steady state, is given by: 

            3 3

0 0
s 0

ACR limsACR (t)


  = 1

s 0
1

sN (s) '0 '
lim form

D (s) 0
   

       = 
3 3

1 1 1 1r

3 3s 0
1 1 1

sN '(s) N (s) N (0) N
lim

D '(s) D '(0) D


    

Where, 

3 (2,3,5) (3,5) (2,3) (2,3,5)

1r 64 41 8 41 16 46 14 16 6N p p k (p p p (p p ))      

(2,3) (2,3,5)

64 14 16 9p (p p )k   and 3

1D is already defined.  

Proceeding in the similar manner as done in the case of 

obtaining expressions 

 

3.3.2.4 Expected fraction of time during which the 

repairman is busy       
3 3

3 3* 2 2
0 0 3 3s 0 s 0

1 1

sN (s) N
(B ) limsB (s) lim

D (s) D 
  

 

3.3.2.5 Expected Number of Visits  

(
3 3

3 3** 3 3
0 0 3 3s 0 s 0

1 1

sN (s) N
V ) limsV (s) lim

D (s) D 
    

Where, 

3 (2,3,5) (3,5) (2,3) (2,3,5)

2 64 41 16 46 64 14 16 1N (p (p p ) (p p )(p p ))k      and 

3

3 64 41 10N p p p   

3.3.4    Profit Analysis  

Profit equation for two standby units in steady state is 

given by:  

Profit (P3) = C0AC0
3
 – C1B0

3
 – C2V0

3
-2(IC0) 

 

3.4     Model 4: System having Two Operative Units and 

Three Hot Standby Units: 

 

In this model, we have considered a system wherein two 

units are operative and three hot standby units which take 

place of the operative unit if the latter gets failed. Possible 

transitions from one state to other one given as follows: 

 

Fro

m 

S

0 

S1 S

1 

S1 S1 S1 S1 S6 S6 S

7 

To S

1 

S0 S

1 

S5 S7 S8 S6 S7 S6 S

7 

Via ... ... S

2 

S2,  

S3 

an

d 

S4 

S2,  

S3 

an

d 

S4 

S2 

an

d 

S3 

S2, 

S3,  

S4an

d S5 

... S5 S

4 

Fro

m 

S

7 

S7 S

7 

S8 S8 S8 S7 S8 S8  

To S

8 

S6 S

5 

S1 S8 S7 S5 S5 S6  

Via  S4 

an

d 

S5 

S

4 

 S3 S3 

an

d 

S4 

S4 S3 

an

d 

S4 

S3,  

S4 

an

d  

S5 

 

 

Where, 

 S0 = (Op, Op, Hs, Hs, Hs), S1= (Fr, Op, Op, Hs, Hs), S2 = 

(FR, Fwr, Hs, Op, Op), S3 = (Op, Op, FR, Fwr, Fwr), S4= 

(Op, FR , Fwr, Fwr, Fwr), S5 = (FR, Fwr, Fwr, Fwr, Fwr), S6 

= (Op, Fr, Fwr, Fwr, Fwr), S7 = (Op, Op, Fwr, Fwr, Fr), S6 = 

(Op, Op, Hs, Fwr, Fr) 

States S0, S1, S6, S7 andS8 are regenerative states whereas 

S2, S3, S4 and S5 are non-regenerative states. 

 

3.4.1 Transition Probabilities and Mean Sojourn Times 

The transition probabilities are:  

1(2 3 )t

01 1q (1) (2 3 )e dt
  

     , 1(2 2 )t

10q (t) e g(t)dt
  

   

1 1(2 2 )t (2 )t(2)

11 1q (t) ((2 2 )e e )g(t)dt
    

      

1 1 2 t(2 2 )t (2 )t(2,3,4)

15 1 1

tq (t) ((2 2 )e 2 )e )G(( 2 e e t)dt
       

        

1 1(2 2 )t (2 )t(2,3)

18 1

2

1

tq (t) ((2 2 )e 2 )e )g(t)dt( e
              

1 1 2 t(2 2 )t (2 )t(2,3,4)

17 1 1

tq (t) ((2 2 )e 2 )e )g(( 2 e e t)dt
      

        

 1 1 2 t t(2 2 )t (2 )t(2,3,4,5)

16 1 1q (t) ((2 2 )e 2( 2 e)e )g(t)e dt1      
           
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t

67q (t) e g(t)dt  ,  (5) t

66q (t) (2 e )g( dt1 t)  , 

2 t

78q (t) e g(t)dt    

(4) 2 t

77

tq (t e) (2 e )g(t)dt   , 

(4,5) 2 t

7

t

6 e 1q (t) (2 e )g(t)dt       

2 t

81q (t) e g(t)dt  , (3) 2 t

8

2 t

8q (t) (2 e )g(t)dte       

(3,4) 2 t

8

2 t t

7q 2 e e(t) (2 e )g(t)dt         

(3,4,5) 2 t

8

2 t t

6 2q (t) (2 e )g(t)dte e 1          

(4) 2 t

75

tq (t) (2 e ) t)dte G(      

(3,4) 2 t

8

2 t t

5q 2(t) (2 e )G(e )de t t        

It can be checked that 

01p 1    

 (2) (2,3,4) (2,3) (2,3,4)

10 11 1 5 18 1 7p p p p p 1       

 (2) (2,3) (2,3,4) (2,3,4,5)

10 11 18 1 7 1 6p p p p p 1       

 (5)

64 66p p 1   

(4) (4,5)

78 77 76

(4) (4)

78 77 75

p p p 1

p p p 1

  

  

  

(3) (3,4) (3,4)

81 88 87 85p p p p 1      

(3) (3,4) (3,4,5)

81 88 87 8 6p p p p 1     

 Mean Sojourn times (i) for the model are: 
* * *

1
0 1 6 7 8

1 1

1-g (2λ+2 ) 1-g (λ ) 1-g (2λ )1
μ = , μ = , μ = ,μ = μ

2λ +3λ 2λ+2 λ 2λ






Here, 

01 0m     

1 1 1

1 1

(2 2 )t (2 )t (2 2 )t(2) (2,3) (2,3,4) (2,3,4) 1
10 11 18 17 15 1

10

(2 )t (2 2 )t(2 )t1 1

2

1

t 2 t

1 1

1 1 1

2( )
m m m m m t{e g (t) (e e )g(t)

( )(2 )
(e 2e e )g(t)

e e
4 ( )(2 )(

( )(2 ) 2



       

     

  

  
      



     
  



        
       



1 1

1 1

2

(2 )t (2 2 )t

2 2

1 1 1 1

t 2 t
2

1 1 2

1 1 1

(2 )t (2 2 )t

102 2

1 1 1 1

e e
)g(t)

( ) 2 ( 2 )

e e
4 ( )(2 )(

( )(2 ) 2

e e
)G(t)}dt k (say)

( ) 2 ( 2 )

    

  

    

 
       

        
       

  
       

 

(2) (2,3) (2,3,4,5) (2,3,4)

10 11 18 16 17 1

0

m m m m m tg(t)dt k (say)



     
 

(5)

67 66 1

0

m +m = tg(t)dt k




  

(4) (4) -2λt -λt -2λt -λt -2λt

78 77 75 11

0

m +m +m = t{e +2(e -e )+2λ(e -e )}g(t)dt=k (say)





(4) (4,5)

78 77 76 1
0

m m m tg(t)dt k (say)


     

(3) (3,4) (3,4) -2λt -2λt -λt -2λt -2λt -λt -2λt -2λt

81 88 87 85 12

0

m +m +m +m = {e +2λte +4(e -e -λte )}g(t)dt+4λ(e -e -λte )G(t)dt=k (say)





(3) (3,4) (3,4,5)

81 88 87 86 1

0

m +m +m +m = tg(t)dt k




 

4.4.2    Measures of System Effectiveness 

 

3.4.2.1 Mean Time to System Failure (MTSF) 

0 01 1
s(t) Q (t) (t) 0      

 (2) (2) (2,3,4) (2,3) (2,3,4)

10 0 1 11 17 7 18 8 15Q (t) (t)(1 q ) q (t) q q          

 (4) (4)

77 7 78 8 75(1 q ) q q       

(3,4) (3) (3,4)

81 1 87 7 88 8 85q q q q         

 MTSF = 0

s 0

1 **(s)
lim

s

   

   = 4

4s 0

N(s)
1

D'(0) N '(0) ND(s)
lim

s D(0) D




 
  

Where, 

 
4 (2,3,4) (2,3) (4) (2,3,4) (3,4) (3,4) (2,3) (3,4)

78 17 18 78 75 5 17 81 85 87 18 87 1N {p p p (p p } {p (p p p ) p p }k       

    (4) (3,4) (3,4)

78 81 75 81 87 85 3{p p p {p p p }k     

(3,4) (4) (3,4) (3,4) (2,3,4)

78 81 85 75 81 87 85 01 15 0[{p (p p ) p (p p )p )}(p p )]       

D
4
 = (2) (4) (3) (3,4)

11 10 77 88 78 87(1 p p )[(1 p )(1 p ) p p ]    

(2,3,4) (2,3) (4)

81 78 17 18 77p [p p p (1 p )]    

3.4.2.2 Availability at full Capacity  

 

The availability ACFi(t) is seen to satisfy the following 

recursive relations: 

4

1

4 4

0 0 01ACF (t) M (t) ACq ( )t) F (t     

4 (2) 4 (2,3,44 4

1 1f 10

(2,3,4)

,5) 4

(2,3)

17 1

0 11 1 16 6

4 4

7 88

ACF (t) q (t) ACF (t) q (tACF (t) M ) ACF (t)

ACF (t

(t) q (t)

q (t) ) ACF t)q t) ((

    

  

 

4 (5)

6 67 66

4 4

7 6ACF (ACF (t) q (t) q (tt) AC () F t)     
4 (3) 44 (3,4) 4 4

1 88 8 8

4 (3,4,5)

8 8f 81 87 7 6 6ACF (t) q (t) ACF (t)ACF (t) M (t) q (t) qq (t) ACF (t) ACF (t)(t)      

 Thus, 
  4

4 4 1f
0 0 4s 0

1

N
ACF limsACF *(s)

D
 

  

4 (2) (2,3) (2,3,4) (2,3,4,5)

1f 67 78 81 11 10 12 0 81 0 01 13 18 17 16

(2,3,4) (2,3,4,5) (2,3,4,5) (2,3,4) (2,3) (3,4) (3,4,5)

01 7 81 67 17 16 67 16 17 18 87 86

N p p p (1 p p k ) (p p k )(p p p )

p {(p p (p p ) p (p p p )(p p )}

        

      

  



COMPUSOFT, An international journal of advanced computer technology, 8(2), February-2019 (Volume-VIII, Issue-II) 

3066 

 

 4

1D  = (2,3,4,5) (2,3,4) (2,3) (3,4) (3,4,5) (4,5) (3) (3,4,5)

16 17 18 67 78 67 87 67 86 76 88 78 86{(p p p )(p p p p p p p (1 p ) p p )     
 

(2,3,4) (2,3,4,5)

67 78 81 67 81 17 16p p p p p (p p )    + 

(2,3,4,5) (2,3) (4,5)

81 16 78 18 76 4 67 78 81 10 0p (p p p p )}k p p p p     

 

 

3.4.2.3 Availability at reduced Capacity  

 

The availability ACRi(t) is seen to satisfy the following 

recursive relations: 

4

1

4 4

0 0 01ACR (t) M (t) ACq ( )t) R (t     

4 (2) 4 (2,3,44 4

1 1f 10

(2,3,4)

,5) 4

(2,3)

17 1

0 11 1 16 6

4 4

7 88

ACR (t) q (t) ACR (t) q (tACR (t) M ) ACR (t)

ACR (t

(t) q (t)

q (t) ) ACR t)q t) ((

    

  

 

4 (5)

6 67 66

4 4

7 6ACR (ACR (t) q (t) q (tt) AC () R t)     

4 (3) 44 (3,4) 4 4

1 88 8 8

4 (3,4,5)

8 8f 81 87 7 6 6ACR (t) q (t) ACR (t)ACR (t) M (t) q (t) qq (t) ACR (t) ACR (t)(t)      

  

Thus, 

4
4 4 1f
0 0 4s 0

1

N
ACR limsACR *(s)

D
   

4 (2,3,4,5) (3,4,5) (2,3,4,5) (2,3)

1r 67 78 81 14 6 78 81 16 78 86 16 10 18

(4,5) (3,4) (3,4,5) (2,3,4,5) (2,3,4) (4,5) (2 ,3) (3,4,5) (2,3) (3,4) (3,4)

76 81 87 86 16 17 76 18 86 18 87 76

15 67

N p p p k {p p p p p (p p p )

p (p p p )(p p ) p p p p p p }

k {p

    

     

 (3) (2,3,4,5) (2,3,4) (2,3) (3,4) (3,4,5) (2,3,4,5) (2,3,4) (2,3)

88 1 17 67 18 87 86 16 67 78 16 17 18(1 p )(p p ) p p (p p )} k p p (p p p )      

  

Proceeding in the similar manner as done in the case of 

obtaining expressions: 

 

3.4.2.4 Expected fraction of time during which the 

repairman is busy:       
4 4

4 4* 2 2
0 0 4 4s 0 s 0

1 1

sN (s) N
(B ) limsB (s) lim

D (s) D 
  

 

3.4.2.5   Expected Number of Visits  

(
4 4

4 4** 3 3
0 0 4 4s 0 s 0

1 1

sN (s) N
V ) limsV (s) lim

D (s) D 
    

Where, 
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3.4.3     Profit Analysis  

Profit equation for three standby in steady state is given by  

Profit (P4) = C0AC0
4
 – C1B0

4
 – C2V0

4
-3(IC0) 

 

IV. COMPARATIVE STUDY AMONG THE MODELS 

 

4.1 Optimization of Number of Hot Standby Units with 

regard to Revenue per Unit up Time: 

 

a) On comparing the profits of Models 1 and 2, we 

conclude that Model 1 is better or worse than Model 2 

 

    if P1-P2 >0 or < 0  

i.e. if (C0AC0
1
  C1B0

1
  C2V0

1
)-(C0AC0

2
 – C1B0

2
 – C2V0

2
-

(IC0)) >0 or <0 

 

1 2

0 0

1 2

0 0

1 2 1 2

1 0 0 2

*

0 01

*

0 01

*

0

0 0 0

1 2

0 0

01

*

01

C >or <C >
i.e. if

C C <

Both the model

forAC AC

<or > forA

s areequally good if C =C

C AC

C B -B +C V

.

( ( ) ( ) )
wh

-V -I
ereC

C

AC -AC
=

  
 
  

 

b) Comparison between Models 2 and 3 reveals that 

Model 2 is better or worse than Model 3  
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c) As far as the selection between Model 3 and 1 is 

concerned, one should adopt Model 3 in preference to 

Model 1:  
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4.2 Optimization of Number of Hot Standby Units with 

regard to Cost of Installing a Hot Standby Unit: 

 

a)  On comparing thr profits of Model 1 and 2, we 

conclude that Model 1 is better or worse than  Model 2 

 

  if P1-P2 >0 or <0  
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b) Comparing between Model 2 and 3 reveals that 

Model 2 is better or worse than Model 3  
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c) As far as the selection between  Model 3 and 1 is 

concerned, one should adopt Model 3 in preference to 

Model 1  
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4.3 Optimization of Number of Hot Standby Units with 

regard to Cost per visit of the  repairman: 

 

a) On comparing thr profits of Model 1 and 2, we 

conclude that Model 1 is better or worse than    Model 2  

if P1-P2 >0 or <0  
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b) Comparing between Model 2 and 3 reveals that 

Model 2 is better or worse than Model 3  
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c) As far as the selection between Model 3 and 1 is 

concerned, one should adopt Model 3 in preference to 

Model 1  

 if P3-P1> 0 or < 0 
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V. CONCLUSION 

Four reliability models have been developed to decide as to 

how many hot standby units should be there for a system 

working with two operative units. The decision may be 

taken by finding the difference between profits with regard 

to parameter of interest like revenue per unit up time, cost 

of installing a hot standby unit, cost per visit of the 

repairman or any other parameter which the user of such 

systems wishes to be considered. Cut-off points of some 

parameters have been obtained to reveal as to when and 

which model is more beneficial than the other. Cut-off 

points of some other parameters of interest may also be 

obtained to arrive at a decision of adopting one of the four 

discussed models. 
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