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Abstract:  The communication boom in the past few decades has resulted in a large flow of data. This entails the need for 

having high security and privacy with regards to data confidentiality and authenticity. One method of doing so is by utilizing a 

synchronized key. In the domain of cryptography there exist several methods of key generation, one such method is the tree 

parity machine (TPM) involving neural cryptography. In our paper, we provide a novel vectorized TPM (vTPM) in order to 

develop a key. We have also provided a system to detect any unwanted listeners, as one of the weakness of the TPM algorithm is 

Man in the middle attacks. We have further utilized this key for authentication between a sender and a receiver. The 

authentication is carried out by means of H-MAC with the SHA-512 hashing mechanism. Finally, a comparison is drawn out 

between the serial and vector implementation of the Tree Parity Machine. 

 

Keywords: Vectorized Tree Parity Machine (vTPM), Neural Cryptography, Hashing, H-MAC, Man-in-the-middle-attack, 

Parallelization 

I. INTRODUCTION 

Cryptography is the branch of computer science which deals 
with various methods of protecting data in order to maintain 
the four pillars of data protection. The four pillars of data 
protection include confidentiality, authentication, integrity 
and non-repudiation. Confidentiality aims to make sure that 
data access can be provided only to a trusted user. 
Authentication on the other hand looks into the identity of 
the sender and receiver in our system. Integrity provides a 
guarantee to the sender- receiver pair that the data has not 
been tampered or altered in any way. Non-repudiation helps 
to identify the sender even if the sender denies it. 
HMAC either known as Hash message authentication code 
or Hash-based message authentication code is one of the 

well-established mechanisms for asserting the two major 
cryptography principles of integrity and authenticity. This is 
can be accomplished by using a MAC that needs a hash 
function “H” and a secret key “K”. The major difference 
between the other types of authentication and HMAC is it 
signs the entire request.  
The concept of Neural Networks draws inspiration from the 
human nervous system. The neural networks consist of 
different layers that are analogous to the neurons of the 
human system. The first layer takes the input provided and 
transmits it to the succeeding layers in a manner similar to 
how neurons communicate with each other using synapses. 
The number of layers in a system determines its complexity. 
Each "synapse" has a weight as a parameter that is included 
in the calculation of the input to the succeeding layer. The 
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network has a learning process which aims to optimize the 
outputs by updating of weights for each layer. This method 
of learning is termed as a gradient descent mechanism. In 
order to simulate real world scenarios and not merely 
restrict to linear bounds of data a neural network employs 
the use of a concept called activation function at the end of 
each layer. The activation function helps to restrict the 
values of output from a particular neuron into a bounded 
range so as to maintain a coherent nature with a realistic 
scenario.  
The process of encryption and cryptanalysis that uses 
stochastic algorithms in combination with neural networks 
gives rise to a branch of cryptography called Neural 
Cryptography. The Neural key exchange protocol is an 
important part of this domain, and is a protocol that allows 
the secure transfer of a shared key between the two parties 
Alice and Bob. The basis for this lies in the usage and 
synchronization of two Tree parity machine (TPM). 
Since the Tree parity machine is a computationally intensive 
algorithm, there arises a need to optimize and reduce the 
computation time. In order to make the algorithm more 
feasible we have utilized the concept of vector processing or 
in short vectorisation. Vectorisation is a parallel processing 
technique which uses multiple threads simultaneously on a 
Single Instruction Multiple Data (SIMD) based processor to 
process chunks of data with the same instruction. The Tree 
Parity Machine can be undermined by Man-in-the-middle 
attacks due to the fact that there can be any external agent 
listening in on the transmission of output values.  
In the following sections, we first encounter the mechanism 
employed for neural key exchange. Following which we 
present the vectorized implementation of this algorithm. We 
also look into the Man-in-the middle-attacks that the Tree 
Parity Machine is susceptible to. In addition, to the above 
we also look into the utilization of the key generated by the 
TPM for authentication using H-MAC. Finally, we discuss 
the results of our vectorized implementation by contrasting 
it against the serial version of the Tree Parity Machine. 

II. LITERATURE REVIEW 

Originally, the study and research of neural networks was 

piloted by its potential of being a powerful memory 

machine that can learn [1]. The basis of Neural 

Cryptography is the notion that two neural networks can 

synchronise by mutual learning. 

In 2002, Kinzel et al. [2] proposed a secret key exchange 

protocol as opposed to a public key exchange channel that 

was proposed by Diffie and Hellman [3] in 1976. The key 

exchange method consists of the two shallow neural nets. 

Each party that is communicating has a neural network, 

initially having random weights. The neural networks 

update themselves at each round. The moment the two 

networks synchronize we can infer the key from their 

mutual output bits. Once synchronized, the common 

identical weights gained from the two parties are used as 

the encryption key. In [2], it is also shown that an attacking 

party using an identical neural network having the same 

learning procedure has very low chances of synchronizing 

their neural network with that of another party. For key 

generation over a public channel, this protocol was the first 

one which was based on number theory.  

However, in 2002 itself, Klimov et al. [9] broke this system 

by attacking it with three different techniques- probabilistic 

analysis, genetic algorithms, and geometric considerations. 

Klein et al. [4] in 2004 presented the usage of neural nets in 

key exchange systems in public channels. However, in 

contrast to the previous efforts Klien et al. used a chaotic 

synchronisation system. The alternate output is used to 

train the network and are synchronised through a chaos 

synchronised system resulting in equal time dependent 

weight vectors. This type of synchronization made the 

system more secure. 

The use of neural cryptography for the generation of secret 

key was suggested by N. Prabakaran [7] based on 

synchronisation of Tree Parity Machines (TPM). This 

system has two identical systems that are dynamic and start 

from different initial conditions. These identical systems 

are synchronised using common input values resulting in 

providing a common vector as the input to the network. 

After the calculation of their outputs, their weight vectors 

are updated when a similar mutual output is observed at 

every step. The initial random values of the weight vectors 

are generated by PRNGs (Pseudo-Random Number 

Generators). No exchange of input or output vectors occurs 

through the public channel until the weight vectors of the 

two networks are matched and this matched vector is used 

for the process of encryption and decryption as the secret 

key. 

In [5], Kinzel et al. describe a Tree Parity Machine (TPM) 

as a novel type of shallow neural net with forward feed 

having input (N) neurons, hidden (K) neurons, and a range 

(L) of weights. There are two neural networks, one 

belonging to each party. These networks receive a common 

input that has been randomly generated. In each step, they 

learn the outputs that are common to both of them. This 

results in the concept of synchronisation by mutual learning 

as mentioned in [6]. The two neural machines are 

synchronised to the same weight vector which is time 

dependent. This concept of synchronisation is used for 

generation of a secure secret key in [4] and [8].  

 

Our proposed system implements an authentication system 

using HMAC and SHA-512 hashing mechanism. 

 

As presented in [10], HMAC is a mechanism for message 

authentication that uses cryptographic hashing functions. 

This mechanism can be used with any iterative hashing 

function like MD-5 and SHA-1. The performance of the 

HMAC is essentially dependent on the underlying hashing 

function. 

The NIST launched the Hash Standard [11] in 2002, which 

detailed SHA-512, SHA-384 and SHA-256. NSIT [11] 

describes the full description of these Secure Hashing 

Algorithms. SHA-512 produces a 512-bit message hash, 

while SHA-256 gives a 256 bit hash message. 
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III. METHODOLGY 

A. Tree Parity Machine 

It is a key exchange algorithm analogous to the Diffie-

Hellman protocol. TPM relies on a neural network with a 

single hidden layer. The tree comprises of input (N) 

neurons and hidden (K) neurons. This results the TPM to 

have K*N number of weights from the neural network. We 

restrict the weights between the bounds {-L, …, -2, -1, 0, 1, 

2, …, L}, where L is a parameter of the TPM. 

Suppose that there are two machines Alice and Bob, which 

require the generation of a common key. The two machines 

Alice and Bob are initialized with random weights and 

provided the same parameters (K, N, L). Initially, the 

weights are different due to the random initialization. In 

order to exchange the key between Alice and Bob, we 

require the updation of weights in such a manner so as to 

synchronize the two machines, thereby, having the same 

weights for Alice and Bob. 

 

 

The output function Tau (𝜏) is calculated as follows: 

 

 

 𝐼𝑛𝑝𝑢𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 𝑥𝑖 ,𝑗 =  −1,0,1  

 

 

(1) 

 

 

 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 𝑤𝑖 ,𝑗 = {−𝐿, … , 0, … , 𝐿} 

 

(2) 

 

𝜎𝑖 = 𝑠𝑖𝑔𝑛( 𝑥𝑖 ,𝑗

𝑁

𝑗 =1

× 𝑤𝑖 ,𝑗 ) 

 

 

Where, 

(3) 

 
𝑠𝑖𝑔𝑛 𝑥 =  

−1 : 𝑥 < 0
0 : 𝑥 = 0
1 : 𝑥 > 0

  

 

(4) 

  

𝜏 =   𝜎𝑖

𝐾

𝑖=1

 

 

 

(5) 

   

We use the following three mentioned algorithms to update 

the weights in the TPM, each of them varying slightly to 

the other. 

 

 Hebbian  

 

 𝑤𝑖
+ =  𝑤𝑖 + 𝜎𝑖𝑥𝑖𝜃(𝜎𝑖𝜏)𝜃(𝜏𝐴𝜏𝐵) (6) 

 Anti-Hebbian  

  

 𝑤𝑖
+ =  𝑤𝑖 − 𝜎𝑖𝑥𝑖𝜃(𝜎𝑖𝜏)𝜃(𝜏𝐴𝜏𝐵) (7) 

 Random walk  

 

 𝑤𝑖
+ =  𝑤𝑖 +  𝑥𝑖𝜃(𝜎𝑖𝜏)𝜃(𝜏𝐴𝜏𝐵) (8) 

   

 
Fig. 1: Architecture of Neural Network for Tree Parity Machine 

 

 
 

B. Vectorization of TPM 

Simple TPM uses for loops for updating the values in the 

rules, this serialised implementation starts lagging once 

there is an increase in the size of the neural network.  In 

real life scenario we need large authentication key to ensure 

high security and hence we vectorized the serial 

implementation using the “NumPy” library [12]. 

NumPy arrays are densely packed arrays of homogeneous 

type. Numerous reasons motivated us to implement this, 

first and foremost the process of vectorization, a powerful 

ability within NumPy helped to express operations as 

occurring on entire arrays rather than their individual 

elements. In this method, for loops was replaced with array 

expressions. Secondly, use of Broadcasting feature of 

NumPy that helped us compute over two arrays of different 

shapes. Lastly, NumPy used very less memory to store data 

[12]. 

 

Algorithm to Synchronize: 

Step 1: Initialize values K, N, L 

Step 2: Initialize a random Weight Matrix of 

Dimension K*N for Alice and Bob 

Step 3: Get a Common Input vector for Alice and Bob 

X 

Step 4: Calculate the Output Function Tau for Alice 

and Bob: 

Step 5: If Tau for Alice equals Tau for Bob: 

  Update Weights based on Update rule 

 Else: 

  Go back to Step 3 

Step 6: If Weight matrix for Alice equals Weight 

matrix for Bob: 

  Generate Key 

 Else: 

  Go back to Step 3 
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Matrix A(4,1) Matrix B(1.3)  Matrix C (4,3) 

Fig 2: Sample of Broadcasting in Numpy 

C. Countering Man-in-the-Middle 

The eavesdropper (Eve) has also been incorporated in this 

implementation. Knowing the initial vector, it is almost 

impossible to synchronise the exact same weights. But if 

the man in the middle is able to do so, we check by 

utilising the synchronisation values. In our implementation 

we have introduced a third machine Eve to check for any 

interception.  For each round of update between Alice and 

Bob we compare the Output value 𝜏 of Alice and Bob with 

the output value 𝜏 of Eve. In the case there is a match we 

update the weights for Eve using the same method as used 

for Alice and Bob. Finally, we check the weights between 

the Two synchronised Machines Alice and Bob and our 

third external listener Eve. In the case that there is 100% 

synchronisation between all the machines, we can conclude 

that Eve knows the secret key between Alice and Bob. We 

terminate here and exit to prevent intrusion. 

D. Key Generation from Weights 

 

E. H-MAC from Generated Key 

The Hash based Message Authentication Code (H-MAC) is 

then used for authentication purpose using the key 

generated. The message is padded to the left with an input 

signature. This entire message along with the padding 

forms the input for a hash function. 

Take M to be the original message and H to be the hashing 

function. L is the number of blocks in M, K is the secret 

key that will be used in hashing, IV is a constant value 

forming the initial vector and Yi is the i
th

 block number of 

the original message M, where the range of i falls from    

[1, L]. 

The following is the generation of Si, the input signature 

and So, the output signature. 

 𝑆𝑖 =  𝐾+ 𝑥𝑜𝑟  𝑖𝑝𝑎𝑑 (9) 

 𝑆𝑜 =  𝐾+ 𝑥𝑜𝑟  𝑜𝑝𝑎𝑑 (10) 

where, 𝐾+ = zeros padded to K from the left resulting in 

 a length of b bits, 

 𝑜𝑝𝑎𝑑=01011100,  

 𝑖𝑝𝑎𝑑=00110110 

Each taken b/8 times repeatedly. 

 

 

 

IV. RRESULTS AND DISCUSSION 

A. Comparison of Serial and Parallel Implementation 

In our study of neural cryptography for authentication, we 

have analysed and compared the serial and parallel 

implementations of the Tree Parity Machine. We have 

implemented the algorithm in Python on the Google Colab 

open source platform. The processor which we used was 2 

Intel Xeon Processors running at 2.30GHz and having 12 

cores each.  When ran on the same initial parameters K, N 

and L we obtained a significant speed up. The minimum 

speed up we obtained was 243 times for k = 5 and n = 5, 

and the maximum speed up obtained was around 50,000 

times for K = 49 and N = 49.  

We ran the comparative time calculation for K, N in the 

range of 5 to 50 each. We found that the parallel vectorized 

implementation provided us with an almost constant output 

time of about 0.002s. On the other hand, our serial 

implementation depended heavily on the parameters K and 

N with a max time going above 12s. 

Sr. No. K N Serial Time 

(in s) 

Parallel Time 

(in s) 

1 5 5 0.03738 0.00015 

2 10 10 0.22837 0.00015 

3 25 25 1.16199 0.00017 

4 45 45 8.85800 0.00024 

Table 1:  Values for Serial and Parallel Execution and corresponding K, N

 

 𝑀𝐴𝐶 = 𝐻(𝑆𝑜  ||ℎ 𝑆𝑖  ||𝑀 ) (11) 

Algorithm to generate key:  

Step 1: Initialize string object (str) to all  possible 

characters key can have,  

 [A-Z,0-9] 

Step 2: keySize = length(str) / L  

Step 3:keyLength = K * N / keySize 

Step 4: Loop variable i from range 1 to keyLength 

 Repeat, 

temp =1 

from range (i-1*keySize) to (i*keySize-1) 

temp = temp + W[j] + L 

Append str[temp] to Key 

Step 5: Return Key 
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Fig. 3: Plot of the time taken by serial and vectorised implementation for 

various values of K, N 

Figure 3 provides us a comparison of the time taken for the 

varying values of K and N. As we can evidently see from 

the graphs, the vectorized implementation provides a 

significantly larger time advantage and takes almost 

negligible time to execute and generate the key. We can 

also observe that there is not a linear increase in the serial 

execution time. An approximation would show that there is 

an exponential increase in the execution time, one may 

attribute this to the exponentially increasing number of 

linkages when we increase the values of K and N. 

However, when we observe the Vector time of execution, 

we can observe that the changes are barely noticeable and 

be in the order of 0.01 to 0.1 seconds that dwarfs when 

compared to the drastic change in serial execution time. 

This gives us the belief that vector execution time remains 

constant, but the following section delves into the variation 

of execution time for the vectorized implementation. 

B. Comparing the execution time against the variation of 

parameters N, K and L 

In a bid to see how the parameters influence the working of 

the vectorized implementation, we have compared the 

exaction times for synchronization of the tree parity 

machine by varying each of the parameters N, K and L 

independently.  

When we varied the parameter K we kept the values of L 

and N fixed as we calculated the execution time for a range 

of K = (5 to 50). The value of L was fixed as 5 for 

convenience and N was taken for 4 different values of 10, 

20, 30 and 40. From Fig 4. We can see that there is a 

general increase in the execution time as the number of 

Hidden Neurons K increases. This increase in execution 

time is not a very significantly large increase as the 

increase is in the order of 0.1 seconds. 

 

Fig.4: Plot of the vectorized time taken versus K for a fixed L = 5 and N = 

10,20,30 and 40 respectively. 

Next, the variation of N keeping K and L constant gave us 

results that were different. No apparent increase in the 

values could be found leading one to believe that the 

variation of N doesn‟t affect the vectorized execution time. 

This can be seen from Fig. 5 where the values randomly 

oscillate within a small bounded value. Here again we have 

fixed L as 5 for convenience and taken four cases of K. 

 

Fig.5: Plot of the time taken versus N for a fixed L = 5 and K =10, 20, 30 

and 40 respectively  

Finally, we look at the effect that L has on the execution 

time. We take a single case of N = 15 and K = 8 and vary 

the values of L over an interval of 5 to 50. We can clearly 

observe from Fig 6. that there is a randomness in the 

execution times and the variation is very minimum (order 

of 0.01 seconds). Since the variation has no definitive 

increasing pattern and the order of change is also negligibly 

small we can safely conclude that L bears no effect on the 

execution time in the vectorized implementation. 

 

Fig.6: Plot of the time taken versus L for N = 15 and K = 8. 

Thus, from our observations we can conclude that the 

maximum range of the weights (L) and the number of input 

neurons (N) bear no significant effect on the variation of 

execution time in the vectorized implementation. We can 

also safely conclude that the number of hidden Neurons (K) 

has a fairly significant effect on the execution time. We can 

see a gradual increase in the execution time of the 

vectorized implementation with an increase in the value of 

K. 

C. Man-in-the-Middle Attack 

We can observe that the man in the middle attacks can be 

effectively detected as the implementation exits as soon as 

an intrusion is detected. This is achieved by simultaneously 
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running a third Tree parity Machine „Eve‟ alongside 

„Alice‟ and „Bob.‟ We detect an intrusion if and only if the 

weights of „Eve‟ match those of either „Alice‟ or „Bob‟ 

during any of the cycles of synchronization. Once a match 

occurs, we can say that „Eve‟ which emulates an external 

Man in the middle has hijacked the synchronization. Thus, 

terminating the whole key exchange process and starting 

afresh. This method may not be most optimal as it may 

result in a precarious scenario where the key is never 

exchanged, but provides a failproof method to prevent the 

synchronization of a third party. There by, providing a road 

block to all Man-in-the-middle attacks. 

D.  Authentication using HMAC  

The key generated is different each time the TPM is run 

and is known only to Alice and Bob. Using vTPM, we can 

generate really long keys of several characters in a short 

duration of time, thus, providing a larger security against 

brute force attacks such as the Birthday Attack. The Hash 

Code generated is 512 bits as predefined by the SHA-512 

hash function used. 

Given below is an example of the Key and corresponding 

Hash Code after HMAC: 
 

Output Key from vTPM is ILOTLLFPVQLJHBBLM 

Message to Encrypt: This is a secure message 

Generated Hach 

Code:82cd30996750cbdf3d473fa9b1277e8301ed0ab0

a7f8be48d4ae06129b7a8fff169cdca09709b14aa0ce3c

ba354782fe02a803fa22fe1e505752ffb3f7b0e95a 137 

The advantage of using vTPM as a key generator is the 

large size of keys that can be generated in a short amount 

of time. 

V. CONCLUSION 

In our paper, we have successfully implemented a 

vectorized version of the Neural Cryptography method of 

Tree Parity Machine (vTPM). It was also shown that the 

processing time decreases drastically even for large 

computations when using vTPM. This can be utilised in 

communication systems which need high security. Since 

the length and strength of the key is variable, it is highly 

adaptive and we can optimise the security for a given need. 

Future prospects of this project include prevention of Man-

in-the-middle attacks as we have already detected and 

avoided them. Another aspect that can be improved on is 

the key generation method as it relies on the hashing of a 

predefined set of characters. 
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