
COMPUSOFT, An international journal of advanced computer technology, 8(5), May-2019 (Volume-VIII, Issue-V)

3140

Cite This Paper: Smruti Chourasia, Hrishikesh B.C., Queenie D, Krati A,

Lavanya K. (2019). Vectorized neural key exchange using tree parity machine,
8(5), COMPUSOFT, An International Journal of Advanced Computer

Technology. ISSN: 2320-0790, PP. 3140-3145.

This work is licensed under Creative Commons Attribution 4.0 International License.

VECTORIZED NEURAL KEY EXCHANGE USING TREE PARITY

MACHINE
Smruti Chourasia

1
, Hrishikesh Bharadwaj C

2
, Queenie Das

3
, Krati Agarwal

4
, Lavanya K

5

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India

1
smruti.chourasia2016@vitstudent.ac.in,

2
hrishikeshbharadwaj.c2016@vitstudent.ac.in,

3
queenie.das2016@vitstudent.ac.in,

4
krati.agarwal2016@vitstudent.ac.in,

5
lavanya.k@vit.ac.in

Abstract: The communication boom in the past few decades has resulted in a large flow of data. This entails the need for

having high security and privacy with regards to data confidentiality and authenticity. One method of doing so is by utilizing a

synchronized key. In the domain of cryptography there exist several methods of key generation, one such method is the tree

parity machine (TPM) involving neural cryptography. In our paper, we provide a novel vectorized TPM (vTPM) in order to

develop a key. We have also provided a system to detect any unwanted listeners, as one of the weakness of the TPM algorithm is

Man in the middle attacks. We have further utilized this key for authentication between a sender and a receiver. The

authentication is carried out by means of H-MAC with the SHA-512 hashing mechanism. Finally, a comparison is drawn out

between the serial and vector implementation of the Tree Parity Machine.

Keywords: Vectorized Tree Parity Machine (vTPM), Neural Cryptography, Hashing, H-MAC, Man-in-the-middle-attack,

Parallelization

I. INTRODUCTION

Cryptography is the branch of computer science which deals
with various methods of protecting data in order to maintain
the four pillars of data protection. The four pillars of data
protection include confidentiality, authentication, integrity
and non-repudiation. Confidentiality aims to make sure that
data access can be provided only to a trusted user.
Authentication on the other hand looks into the identity of
the sender and receiver in our system. Integrity provides a
guarantee to the sender- receiver pair that the data has not
been tampered or altered in any way. Non-repudiation helps
to identify the sender even if the sender denies it.
HMAC either known as Hash message authentication code
or Hash-based message authentication code is one of the

well-established mechanisms for asserting the two major
cryptography principles of integrity and authenticity. This is
can be accomplished by using a MAC that needs a hash
function “H” and a secret key “K”. The major difference
between the other types of authentication and HMAC is it
signs the entire request.
The concept of Neural Networks draws inspiration from the
human nervous system. The neural networks consist of
different layers that are analogous to the neurons of the
human system. The first layer takes the input provided and
transmits it to the succeeding layers in a manner similar to
how neurons communicate with each other using synapses.
The number of layers in a system determines its complexity.
Each "synapse" has a weight as a parameter that is included
in the calculation of the input to the succeeding layer. The

Available online at: https://ijact.in

Date of Submission

Date of Acceptance

22/03/2019

14/06/2019

Date of Publication 21/06/2019

Page numbers 3140-3145(6 Pages)

ISSN:2320-0790

mailto:1smruti.chourasia2016@vitstudent.ac.in,2hrishikeshbharadwaj.c2016@vitstudent.ac.in
mailto:3queenie.das2016@vitstudent.ac.in
mailto:4krati.agarwal2016@vitstudent.ac.in
mailto:5lavanya.k@vit.ac.in
https://ijact.in/index.php/ijact/issue/view/80

COMPUSOFT, An international journal of advanced computer technology, 8(5), May-2019 (Volume-VIII, Issue-V)

3141

network has a learning process which aims to optimize the
outputs by updating of weights for each layer. This method
of learning is termed as a gradient descent mechanism. In
order to simulate real world scenarios and not merely
restrict to linear bounds of data a neural network employs
the use of a concept called activation function at the end of
each layer. The activation function helps to restrict the
values of output from a particular neuron into a bounded
range so as to maintain a coherent nature with a realistic
scenario.
The process of encryption and cryptanalysis that uses
stochastic algorithms in combination with neural networks
gives rise to a branch of cryptography called Neural
Cryptography. The Neural key exchange protocol is an
important part of this domain, and is a protocol that allows
the secure transfer of a shared key between the two parties
Alice and Bob. The basis for this lies in the usage and
synchronization of two Tree parity machine (TPM).
Since the Tree parity machine is a computationally intensive
algorithm, there arises a need to optimize and reduce the
computation time. In order to make the algorithm more
feasible we have utilized the concept of vector processing or
in short vectorisation. Vectorisation is a parallel processing
technique which uses multiple threads simultaneously on a
Single Instruction Multiple Data (SIMD) based processor to
process chunks of data with the same instruction. The Tree
Parity Machine can be undermined by Man-in-the-middle
attacks due to the fact that there can be any external agent
listening in on the transmission of output values.
In the following sections, we first encounter the mechanism
employed for neural key exchange. Following which we
present the vectorized implementation of this algorithm. We
also look into the Man-in-the middle-attacks that the Tree
Parity Machine is susceptible to. In addition, to the above
we also look into the utilization of the key generated by the
TPM for authentication using H-MAC. Finally, we discuss
the results of our vectorized implementation by contrasting
it against the serial version of the Tree Parity Machine.

II. LITERATURE REVIEW

Originally, the study and research of neural networks was

piloted by its potential of being a powerful memory

machine that can learn [1]. The basis of Neural

Cryptography is the notion that two neural networks can

synchronise by mutual learning.

In 2002, Kinzel et al. [2] proposed a secret key exchange

protocol as opposed to a public key exchange channel that

was proposed by Diffie and Hellman [3] in 1976. The key

exchange method consists of the two shallow neural nets.

Each party that is communicating has a neural network,

initially having random weights. The neural networks

update themselves at each round. The moment the two

networks synchronize we can infer the key from their

mutual output bits. Once synchronized, the common

identical weights gained from the two parties are used as

the encryption key. In [2], it is also shown that an attacking

party using an identical neural network having the same

learning procedure has very low chances of synchronizing

their neural network with that of another party. For key

generation over a public channel, this protocol was the first

one which was based on number theory.

However, in 2002 itself, Klimov et al. [9] broke this system

by attacking it with three different techniques- probabilistic

analysis, genetic algorithms, and geometric considerations.

Klein et al. [4] in 2004 presented the usage of neural nets in

key exchange systems in public channels. However, in

contrast to the previous efforts Klien et al. used a chaotic

synchronisation system. The alternate output is used to

train the network and are synchronised through a chaos

synchronised system resulting in equal time dependent

weight vectors. This type of synchronization made the

system more secure.

The use of neural cryptography for the generation of secret

key was suggested by N. Prabakaran [7] based on

synchronisation of Tree Parity Machines (TPM). This

system has two identical systems that are dynamic and start

from different initial conditions. These identical systems

are synchronised using common input values resulting in

providing a common vector as the input to the network.

After the calculation of their outputs, their weight vectors

are updated when a similar mutual output is observed at

every step. The initial random values of the weight vectors

are generated by PRNGs (Pseudo-Random Number

Generators). No exchange of input or output vectors occurs

through the public channel until the weight vectors of the

two networks are matched and this matched vector is used

for the process of encryption and decryption as the secret

key.

In [5], Kinzel et al. describe a Tree Parity Machine (TPM)

as a novel type of shallow neural net with forward feed

having input (N) neurons, hidden (K) neurons, and a range

(L) of weights. There are two neural networks, one

belonging to each party. These networks receive a common

input that has been randomly generated. In each step, they

learn the outputs that are common to both of them. This

results in the concept of synchronisation by mutual learning

as mentioned in [6]. The two neural machines are

synchronised to the same weight vector which is time

dependent. This concept of synchronisation is used for

generation of a secure secret key in [4] and [8].

Our proposed system implements an authentication system

using HMAC and SHA-512 hashing mechanism.

As presented in [10], HMAC is a mechanism for message

authentication that uses cryptographic hashing functions.

This mechanism can be used with any iterative hashing

function like MD-5 and SHA-1. The performance of the

HMAC is essentially dependent on the underlying hashing

function.

The NIST launched the Hash Standard [11] in 2002, which

detailed SHA-512, SHA-384 and SHA-256. NSIT [11]

describes the full description of these Secure Hashing

Algorithms. SHA-512 produces a 512-bit message hash,

while SHA-256 gives a 256 bit hash message.

COMPUSOFT, An international journal of advanced computer technology, 8(5), May-2019 (Volume-VIII, Issue-V)

3142

III. METHODOLGY

A. Tree Parity Machine

It is a key exchange algorithm analogous to the Diffie-

Hellman protocol. TPM relies on a neural network with a

single hidden layer. The tree comprises of input (N)

neurons and hidden (K) neurons. This results the TPM to

have K*N number of weights from the neural network. We

restrict the weights between the bounds {-L, …, -2, -1, 0, 1,

2, …, L}, where L is a parameter of the TPM.

Suppose that there are two machines Alice and Bob, which

require the generation of a common key. The two machines

Alice and Bob are initialized with random weights and

provided the same parameters (K, N, L). Initially, the

weights are different due to the random initialization. In

order to exchange the key between Alice and Bob, we

require the updation of weights in such a manner so as to

synchronize the two machines, thereby, having the same

weights for Alice and Bob.

The output function Tau (𝜏) is calculated as follows:

 𝐼𝑛𝑝𝑢𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 𝑥𝑖 ,𝑗 = −1,0,1

(1)

 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 𝑤𝑖 ,𝑗 = {−𝐿, … , 0, … , 𝐿}

(2)

𝜎𝑖 = 𝑠𝑖𝑔𝑛(𝑥𝑖 ,𝑗

𝑁

𝑗 =1

× 𝑤𝑖 ,𝑗)

Where,

(3)

𝑠𝑖𝑔𝑛 𝑥 =

−1 : 𝑥 < 0
0 : 𝑥 = 0
1 : 𝑥 > 0

(4)

𝜏 = 𝜎𝑖

𝐾

𝑖=1

(5)

We use the following three mentioned algorithms to update

the weights in the TPM, each of them varying slightly to

the other.

 Hebbian

 𝑤𝑖
+ = 𝑤𝑖 + 𝜎𝑖𝑥𝑖𝜃(𝜎𝑖𝜏)𝜃(𝜏𝐴𝜏𝐵) (6)

 Anti-Hebbian

 𝑤𝑖
+ = 𝑤𝑖 − 𝜎𝑖𝑥𝑖𝜃(𝜎𝑖𝜏)𝜃(𝜏𝐴𝜏𝐵) (7)

 Random walk

 𝑤𝑖
+ = 𝑤𝑖 + 𝑥𝑖𝜃(𝜎𝑖𝜏)𝜃(𝜏𝐴𝜏𝐵) (8)

Fig. 1: Architecture of Neural Network for Tree Parity Machine

B. Vectorization of TPM

Simple TPM uses for loops for updating the values in the

rules, this serialised implementation starts lagging once

there is an increase in the size of the neural network. In

real life scenario we need large authentication key to ensure

high security and hence we vectorized the serial

implementation using the “NumPy” library [12].

NumPy arrays are densely packed arrays of homogeneous

type. Numerous reasons motivated us to implement this,

first and foremost the process of vectorization, a powerful

ability within NumPy helped to express operations as

occurring on entire arrays rather than their individual

elements. In this method, for loops was replaced with array

expressions. Secondly, use of Broadcasting feature of

NumPy that helped us compute over two arrays of different

shapes. Lastly, NumPy used very less memory to store data

[12].

Algorithm to Synchronize:

Step 1: Initialize values K, N, L

Step 2: Initialize a random Weight Matrix of

Dimension K*N for Alice and Bob

Step 3: Get a Common Input vector for Alice and Bob

X

Step 4: Calculate the Output Function Tau for Alice

and Bob:

Step 5: If Tau for Alice equals Tau for Bob:

 Update Weights based on Update rule

 Else:

 Go back to Step 3

Step 6: If Weight matrix for Alice equals Weight

matrix for Bob:

 Generate Key

 Else:

 Go back to Step 3

COMPUSOFT, An international journal of advanced computer technology, 8(5), May-2019 (Volume-VIII, Issue-V)

3143

Matrix A(4,1) Matrix B(1.3) Matrix C (4,3)

Fig 2: Sample of Broadcasting in Numpy

C. Countering Man-in-the-Middle

The eavesdropper (Eve) has also been incorporated in this

implementation. Knowing the initial vector, it is almost

impossible to synchronise the exact same weights. But if

the man in the middle is able to do so, we check by

utilising the synchronisation values. In our implementation

we have introduced a third machine Eve to check for any

interception. For each round of update between Alice and

Bob we compare the Output value 𝜏 of Alice and Bob with

the output value 𝜏 of Eve. In the case there is a match we

update the weights for Eve using the same method as used

for Alice and Bob. Finally, we check the weights between

the Two synchronised Machines Alice and Bob and our

third external listener Eve. In the case that there is 100%

synchronisation between all the machines, we can conclude

that Eve knows the secret key between Alice and Bob. We

terminate here and exit to prevent intrusion.

D. Key Generation from Weights

E. H-MAC from Generated Key

The Hash based Message Authentication Code (H-MAC) is

then used for authentication purpose using the key

generated. The message is padded to the left with an input

signature. This entire message along with the padding

forms the input for a hash function.

Take M to be the original message and H to be the hashing

function. L is the number of blocks in M, K is the secret

key that will be used in hashing, IV is a constant value

forming the initial vector and Yi is the i
th

 block number of

the original message M, where the range of i falls from

[1, L].

The following is the generation of Si, the input signature

and So, the output signature.

 𝑆𝑖 = 𝐾+ 𝑥𝑜𝑟 𝑖𝑝𝑎𝑑 (9)

 𝑆𝑜 = 𝐾+ 𝑥𝑜𝑟 𝑜𝑝𝑎𝑑 (10)

where, 𝐾+ = zeros padded to K from the left resulting in

 a length of b bits,

 𝑜𝑝𝑎𝑑=01011100,

 𝑖𝑝𝑎𝑑=00110110

Each taken b/8 times repeatedly.

IV. RRESULTS AND DISCUSSION

A. Comparison of Serial and Parallel Implementation

In our study of neural cryptography for authentication, we

have analysed and compared the serial and parallel

implementations of the Tree Parity Machine. We have

implemented the algorithm in Python on the Google Colab

open source platform. The processor which we used was 2

Intel Xeon Processors running at 2.30GHz and having 12

cores each. When ran on the same initial parameters K, N

and L we obtained a significant speed up. The minimum

speed up we obtained was 243 times for k = 5 and n = 5,

and the maximum speed up obtained was around 50,000

times for K = 49 and N = 49.

We ran the comparative time calculation for K, N in the

range of 5 to 50 each. We found that the parallel vectorized

implementation provided us with an almost constant output

time of about 0.002s. On the other hand, our serial

implementation depended heavily on the parameters K and

N with a max time going above 12s.

Sr. No. K N Serial Time

(in s)

Parallel Time

(in s)

1 5 5 0.03738 0.00015

2 10 10 0.22837 0.00015

3 25 25 1.16199 0.00017

4 45 45 8.85800 0.00024

Table 1: Values for Serial and Parallel Execution and corresponding K, N

 𝑀𝐴𝐶 = 𝐻(𝑆𝑜 ||ℎ 𝑆𝑖 ||𝑀) (11)

Algorithm to generate key:

Step 1: Initialize string object (str) to all possible

characters key can have,

 [A-Z,0-9]

Step 2: keySize = length(str) / L

Step 3:keyLength = K * N / keySize

Step 4: Loop variable i from range 1 to keyLength

 Repeat,

temp =1

from range (i-1*keySize) to (i*keySize-1)

temp = temp + W[j] + L

Append str[temp] to Key

Step 5: Return Key

COMPUSOFT, An international journal of advanced computer technology, 8(5), May-2019 (Volume-VIII, Issue-V)

3144

Fig. 3: Plot of the time taken by serial and vectorised implementation for

various values of K, N

Figure 3 provides us a comparison of the time taken for the

varying values of K and N. As we can evidently see from

the graphs, the vectorized implementation provides a

significantly larger time advantage and takes almost

negligible time to execute and generate the key. We can

also observe that there is not a linear increase in the serial

execution time. An approximation would show that there is

an exponential increase in the execution time, one may

attribute this to the exponentially increasing number of

linkages when we increase the values of K and N.

However, when we observe the Vector time of execution,

we can observe that the changes are barely noticeable and

be in the order of 0.01 to 0.1 seconds that dwarfs when

compared to the drastic change in serial execution time.

This gives us the belief that vector execution time remains

constant, but the following section delves into the variation

of execution time for the vectorized implementation.

B. Comparing the execution time against the variation of

parameters N, K and L

In a bid to see how the parameters influence the working of

the vectorized implementation, we have compared the

exaction times for synchronization of the tree parity

machine by varying each of the parameters N, K and L

independently.

When we varied the parameter K we kept the values of L

and N fixed as we calculated the execution time for a range

of K = (5 to 50). The value of L was fixed as 5 for

convenience and N was taken for 4 different values of 10,

20, 30 and 40. From Fig 4. We can see that there is a

general increase in the execution time as the number of

Hidden Neurons K increases. This increase in execution

time is not a very significantly large increase as the

increase is in the order of 0.1 seconds.

Fig.4: Plot of the vectorized time taken versus K for a fixed L = 5 and N =

10,20,30 and 40 respectively.

Next, the variation of N keeping K and L constant gave us

results that were different. No apparent increase in the

values could be found leading one to believe that the

variation of N doesn‟t affect the vectorized execution time.

This can be seen from Fig. 5 where the values randomly

oscillate within a small bounded value. Here again we have

fixed L as 5 for convenience and taken four cases of K.

Fig.5: Plot of the time taken versus N for a fixed L = 5 and K =10, 20, 30

and 40 respectively

Finally, we look at the effect that L has on the execution

time. We take a single case of N = 15 and K = 8 and vary

the values of L over an interval of 5 to 50. We can clearly

observe from Fig 6. that there is a randomness in the

execution times and the variation is very minimum (order

of 0.01 seconds). Since the variation has no definitive

increasing pattern and the order of change is also negligibly

small we can safely conclude that L bears no effect on the

execution time in the vectorized implementation.

Fig.6: Plot of the time taken versus L for N = 15 and K = 8.

Thus, from our observations we can conclude that the

maximum range of the weights (L) and the number of input

neurons (N) bear no significant effect on the variation of

execution time in the vectorized implementation. We can

also safely conclude that the number of hidden Neurons (K)

has a fairly significant effect on the execution time. We can

see a gradual increase in the execution time of the

vectorized implementation with an increase in the value of

K.

C. Man-in-the-Middle Attack

We can observe that the man in the middle attacks can be

effectively detected as the implementation exits as soon as

an intrusion is detected. This is achieved by simultaneously

COMPUSOFT, An international journal of advanced computer technology, 8(5), May-2019 (Volume-VIII, Issue-V)

3145

running a third Tree parity Machine „Eve‟ alongside

„Alice‟ and „Bob.‟ We detect an intrusion if and only if the

weights of „Eve‟ match those of either „Alice‟ or „Bob‟

during any of the cycles of synchronization. Once a match

occurs, we can say that „Eve‟ which emulates an external

Man in the middle has hijacked the synchronization. Thus,

terminating the whole key exchange process and starting

afresh. This method may not be most optimal as it may

result in a precarious scenario where the key is never

exchanged, but provides a failproof method to prevent the

synchronization of a third party. There by, providing a road

block to all Man-in-the-middle attacks.

D. Authentication using HMAC

The key generated is different each time the TPM is run

and is known only to Alice and Bob. Using vTPM, we can

generate really long keys of several characters in a short

duration of time, thus, providing a larger security against

brute force attacks such as the Birthday Attack. The Hash

Code generated is 512 bits as predefined by the SHA-512

hash function used.

Given below is an example of the Key and corresponding

Hash Code after HMAC:

Output Key from vTPM is ILOTLLFPVQLJHBBLM

Message to Encrypt: This is a secure message

Generated Hach

Code:82cd30996750cbdf3d473fa9b1277e8301ed0ab0

a7f8be48d4ae06129b7a8fff169cdca09709b14aa0ce3c

ba354782fe02a803fa22fe1e505752ffb3f7b0e95a 137

The advantage of using vTPM as a key generator is the

large size of keys that can be generated in a short amount

of time.

V. CONCLUSION

In our paper, we have successfully implemented a

vectorized version of the Neural Cryptography method of

Tree Parity Machine (vTPM). It was also shown that the

processing time decreases drastically even for large

computations when using vTPM. This can be utilised in

communication systems which need high security. Since

the length and strength of the key is variable, it is highly

adaptive and we can optimise the security for a given need.

Future prospects of this project include prevention of Man-

in-the-middle attacks as we have already detected and

avoided them. Another aspect that can be improved on is

the key generation method as it relies on the hashing of a

predefined set of characters.

VI. REFERENCES

[1] Rosen-Zvi, Michal, Ido Kanter, and Wolfgang Kinzel.

"Cryptography based on neural networks—analytical

results." Journal of Physics A: Mathematical and

General 35.47 (2002): L707.

[2] Kanter, Ido, Wolfgang Kinzel, and Eran Kanter. "Secure

exchange of information by synchronization of neural

networks." EPL (Europhysics Letters) 57.1 (2002): 141.

[3] Diffie, Whitfield, and Martin Hellman. "New directions

in cryptography." IEEE transactions on Information

Theory 22.6 (1976): 644-654.

[4] Einat Klein, Rachel Mislovaty, Ido Kanter, Andreas

Ruttor, and Wolfgang Kinzel. 2004. “Synchronization of

neural networks by mutual learning and its application to

cryptography.” In Proceedings of the 17th International

Conference on Neural Information Processing

Systems (NIPS'04), L. K. Saul, Y. Weiss, and L. Bottou

(Eds.). MIT Press, Cambridge, MA, USA, 689-696.

[5] Kinzel, Wolfgang, and Ido Kanter. "Neural

cryptography." Proceedings of the 9th International

Conference on Neural Information Processing, 2002.

ICONIP'02.. Vol. 3. IEEE, 2002.

[6] Kinzel, Wolfgang, and Ido Kanter. "Interacting neural

networks and cryptography." Advances in Solid State

Physics. Springer, Berlin, Heidelberg, 2002. 383-391.

[7] Prabakaran, N., and P. Vivekanandan. "A new security

on neural cryptography with queries." International

Journal of Advanced Networking and Applications 437,

Volume: 02, Issue: 01, Pages: 437-444 (2010)

[8] Jogdand, R. M., and Sahana S. Bisalapur. "Design of an

efficient neural key generation." International Journal of

Artificial Intelligence & Applications (IJAIA) 2.1

(2011): 60-69.

[9] Klimov, Alexander, Anton Mityagin, and Adi Shamir.

"Analysis of neural cryptography." International

Conference on the Theory and Application of

Cryptology and Information Security. Springer, Berlin,

Heidelberg, 2002.

[10] Bellare, Mihir, Ran Canetti, and Hugo Krawczyk.

"Keying hash functions for message

authentication." Annual International Cryptology

Conference. Springer, Berlin, Heidelberg, 1996.

[11] NIST. “Secure Hash Standard,” PIPS PUB 180-2, 2002.

[12] Van Der Walt, Stefan, S. Chris Colbert, and Gael

Varoquaux. "The NumPy array: a structure for efficient

numerical computation." Computing in Science &

Engineering 13.2 (2011): 22.

