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Abstract: Tsunamis and their associated destruction have highlighted the need for real –time simulation system for accurately 

predicting wave spread. Such system would assist decision makers in their efforts to effectively contain potentially catastrophic 

event. The present work proposes a new model for spreading of waves based on two-dimensional cellular automata. This model 

introduces factors of propagation from diagonal and adjacent neighbor cells and includes, in a detailed form, the rate of wave 

spread. Further, the model is useful for both homogeneous and non-homogenous environments. Preliminary simulation results 

demonstrating the proposed scheme are presented. In this paper, some physically realistic ocean parameters have been 

considered 
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I. INTRODUCTION 

Tsunamis can savagely attack coastlines, causing 

devastating property damage and loss of life. As a 

consequence, the nations in the vicinity of the Indian Ocean 

are now working together to establish a tsunami warning 

system, which should be available very soon. Till now, no 

technology has been found to predict a tsunami event well 

in advance [1]. However, a tsunami travel tone atlas for the 

Indian Ocean was developed recently [2][3]. 

Specifically, the efforts to model the growth of 

tsunami wave front use wave propagation techniques based 

on Huygens’ Principle [4]. The main goal of this work is 

introduce a new model for predicting the spread of tsunami 

waves. It is based on a particular type of discrete dynamical 

system called two-dimensional cellular automata, 2D-CA 

for short. 2D – CA can be very effective at simulating 

complex physical systems. There are several models based 

on CA to model growth process in image processing, 

cryptography, epidemic propagation etc.[5][6][7].  The new 

mathematical model introduced in this paper, which is very 

easy to implement in software and in hardware. Moreover, 

the results seem to mimic the nature. 

2D – CA are discrete dynamical systems formed by a finite 

number of identical objects, called cells, arranged uniformly 

in a two dimensional space. They interact locally with each 

other. Each cell can assume a state such that it changes in 

every time step according to a specific local rule  

whose variables are the states of some cells (its 

neighborhood) at previous time steps. The states considered 

are 0 if the cell is not traversed or partially traversed and 1 if 

the cell is fully traversed.  

Once the tsunami is generated, its propagation is influenced 

by the depth of the ocean. The friction is important only in 

shallow water, where as in the deep ocean the effect is 

negligible. The dispersion effect is stronger in the direction 
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of tsunami propagation and toward deep waters where the 

wave speed is the largest [8]. Both the wave amplitude and 

energy increase significantly toward the shoreline [9].It is 

known that the propagation of the tsunamis depends on the 

relative magnitude of the speed of the running ocean and 

the critical wave speed in the shallow ocean. The study of 

water waves relies on several common assumptions.  

This means that the height cannot be higher that the initial 

height and reduces along the distance [10] [11].The size of 

the local tsunami also depends on how deep the earthquake 

ruptured within the earth [12][13]  

 

Tsunamis travel outward in all directions from the 

generating area, with the direction of the main energy 

propagation generally being orthogonal to the direction of 

the earthquake fracture. Their speed depends on the depth 

of water, so that the waves undergo acceleration and 

deceleration in passing over an ocean bottom of varying 

depth [14][15] 

Tsunami wave height increases rapidly in shallow water. 

But, as the tsunami reaches shallower coastal waters, wave 

height can increase rapidly [16] [17] .A trans-oceanic 

tsunami is one that propagates throughout the ocean in 

which it is generated and could cause loss of life and 

damage even far away from the epicenter area. For a 

tsunami generated by pure thrust faulting, only the primary 

wave fronts would be evident: one moving toward the deep 

ocean and one moving toward the local shoreline. In 

addition, there is a secondary wave front propagating to the 

northeast that is a continuation of the shoreward primary 

wave front. A slower moving tsunami is a physically higher 

tsunami. The waves scrunch together like the ribs of an 

accordion and heave upward. [18] 

                This paper has been developed tsunami wave 

simulation model using Java. It is used for finding the 

simulation models of the tsunami wave under two types of 

Tsunami, eight topological and wave conditions of 

Homogeneous and non-homogeneous oceans. 

The rest of the paper is organized as follows: In Section 2, 

the basic theory of two-dimensional cellular automata is 

presented. In Section 3, the new model is proposed. Several 

tests for the new models are checked and their simulations 

are shown in Sections 4 and finally, the conclusions and 

further work are presented in Section 5 

II. TWO DIMENSIONAL CELLULAR AUTOMATA  

 

Cellular automata (CA) are discrete dynamical system 

formed by a set of identical objects called cells. These cells 

are endowed with a state, which changes at every discrete 

step of time according to a deterministic rule. One of the 

most important CA is two-dimensional finite CA. More 

precisely, a two- dimensional finite CA can be defined as a 

4-uplet A = (C, S, V, F), where C is the cellular space 

formed by a two- dimensional array of r x s identical 

objects called cells:  𝐶 =  < 𝑖, 𝑗 > ,0 ≤ 𝑖 ≤ 𝑟 − 1,0 ≤ 𝑗 ≤
𝑠 − 1 , such that each of them can assume a state. The state 

of each cell is an element of a finite or infinite state set, S; 

if S is finite and  𝑆 = 𝑘 then S is taken to be  𝕫𝑘 =
{0,1,2, … . , 𝑘 − 1}  

The state of the cell < i , j > at time t is demoted by  𝑎ij
(t)

. 

The set of indices of the 2D – CA is the ordered finite 

subset 𝑉 ⊂ 𝕫 ⨯ 𝕫,  𝑉  =m, such that for every cell < i , j >, 

its neighborhood 𝑉𝑖𝑗  is the ordered sets of m cells given by   

𝑉𝑖𝑗 = {< 𝑖 + 𝛼, 𝑗 + 𝛽1 >, … , < 𝑖 + 𝛼𝑚 , 𝑗 + 𝛽𝑚 >

: (𝛼𝑘 ,𝛽𝑘  ) ∈ 𝑉. There are some classic types of 

neighborhoods, but in this work only the extended Moore 

neighborhood will be considered; that is, the neighborhood 

of every cell is given by the following set of Indies: 

Vm =
  −1, −1 ,  −1,0 ,  −1,1 ,  0,0 ,  0,1 , 1, −1 ,  1,0 , (1,1)}       

 

< i-1, j -1> < i-1, j > < i-1, j +1> 

< i , j -1> < i, j > < i, j +1> 

< i +1, j -1> < i+1, j > < i+1, j +1> 

Figure 1.1: Graphically the extended Moore neighborhood 

of a cell <i, j > 

In this case, we can distinguish two types of 

neighbor cells of      < i, j > : adjacent neighbor cells, 

{< i-1, j >, < i, j +1> , < i+1, j > , < i, j -1> } , which are 

given by    

      𝑉𝑀
𝑎𝑑𝑗

={( -1,0), (0,1), (1,0), (0,-1) } and diagonal 

neighbor cells { < i-1, j +1 > , < i+1, j +1> , < i+1, j - 1 > , 

< i-1, j -1> } given by the set 

  𝑉𝑀
𝑑𝑖𝑎𝑔

== {( -1,1), (1,1), (1,-1), (-1,-1) } 
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       The 2D – CA evolves deterministically in discrete time 

steps, changing the states of all cells according to a local 

transition function f:𝑆9
S. The updated state of the cell   < 

i, j > depends on the nine variables of the local transition 

function, which are the previous states of the cells 

constituting its neighborhood, that is :                                                   

𝑎𝑖 ,𝑗
 𝑡+1 

= 𝑓 𝑎𝑖+𝛼1,𝑗+𝛽1

 𝑡 , … . , 𝑎𝑖+𝛼9,𝑗 +𝛽9
 𝑡   

The matrix  𝐶(𝑡) =  

𝑎0,0
 𝑡  ⋯ 𝑎0,𝑠−1

(𝑡)

⋮ ⋱ ⋮

𝑎𝑟−1,0
(𝑡)

⋯ 𝑎𝑟−1,𝑠−1
(𝑡)

  is called the 

configuration at time t of the 2D – CA, and C
(0)

 is the initial 

configuration of the CA. Moreover ,the 

sequence. 𝐶 𝑡  
0≤𝑡≤𝑘

 is called the evolution of order k of 

the 2D – CA. 

As the number of cells of the 2D – CA is finite; boundary 

conditions must be considered in order to assure the well 

defined dynamics of the CA. One constant several 

boundary conditions. But in this work, we will consider 

null boundary conditions: 

If  𝑖, 𝑗 ∉  
 𝑢, 𝑣 ,

0 ≤ 𝑢 ≤ 𝑟 − 1,0 ≤ 𝑣 ≤ 𝑠 − 1
 , 𝑡𝑒𝑛   𝑎𝑖𝑗

 𝑡 = 0.  

A very important type of 2D – CA is linear 2D – CA, 

whose local transition function is as follows: 

𝑎𝑖𝑗
 𝑡+1 

=  𝜇𝛼𝛽  

(𝛼 ,𝛽)∈𝑉𝑚

𝑎𝑖+𝛼 ,𝑖+𝛽
(𝑡)

                        

 Where𝜇𝛼𝛽  ∈ ℝ+, 𝑎𝑛𝑑(𝛼, 𝛽) ∈ 𝑉𝑀 . Note that every CA 

endowed with a local transition function of the form given 

by (1), has an infinite state set : 

 

𝑆 =  0,∞  ] Nevertheless, if finite state sets must be 

considered, for example,𝑆 = 𝕫𝑘  

then a discretization function must be used with the local 

transition function as follow: 

𝑎𝑖 ,𝑗
 𝑡+1 

= 𝑔   𝜇𝛼𝛽  

 𝛼 ,𝛽 ∈𝑉𝑚

𝑎𝑖+𝛼 ,𝑖+𝛽
 𝑡  , 𝑤𝑖𝑡 𝑔:  0,∞ ⟶ 𝕫𝑘  

 

A. The C A Based Model for Spreading of Ocean Waves 

The basic model 

The basic model for spreading of waves based on a two – 

dimensional linear cellular automata with extended Moore 

neighborhoods, null boundary conditions and infinite sate 

set is described as follows. 

         

Figure 1.2. Two – dimensional linear cellular automata 

with extended Moore neighborhoods model 

The waterfront in ocean can be interpreted as the cellular 

space of a 2D – CA by simply dividing it into a two 

dimensional array of identical square areas of side length L. 

Then each one of these areas corresponds to a cell of the 

CA    ( See Fig. 1.1). The State of a cell < i,j > at a time t, is 

defined as follows: 

𝑎ij
 t =

𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑑  𝑎𝑟𝑒𝑎  𝑜𝑓<𝑖 ,𝑗>

𝑡𝑜𝑡𝑎𝑙  𝑎𝑟𝑒𝑎  𝑜𝑓<𝑖 ,𝑗>
 Consequently, 

0 ≤ 𝑎𝑖𝑗
 𝑡 ≤ 1. 𝑖𝑓 𝑎𝑖𝑗

 𝑡 = 0 then the cell     < i,j > is said to be 

not traversed at time .t ; If 0 ≤ 𝑎𝑖𝑗
 𝑡 ≤ 1 then the cell < i,j > 

is called partially traversed at time t ; and finally , if 

𝑎𝑖𝑗
 𝑡 = 1, the cell is said to be completely traversed at time 

t. 

The CA used in this model will be a linear CA. That is , the 

state of a cell <i,j> at any time (t + 1) depends on the states 

of its neighborhood cells at time t; More specifically, it can 

be expressed as  

𝑎𝑖𝑗
 𝑡+1 

=  𝜇𝛼𝛽  

(𝛼 ,𝛽)∈𝑉𝑚

𝑎𝑖+𝛼 ,𝑖+𝛽
(𝑡)

                       (1) 

Where 𝜇𝛼𝛽 ∈ ℝ+ are parameters involving some physical 

magnitudes of the cells  As each cell of the CA, < i,j > 

represents as small square area of the ocean, then it is  

endowed with the three following parameters : the rate of 

spread of wave (𝑅𝑖𝑗 ), the wave speed  𝑊𝑖𝑗   and  the height 

(𝐻𝑖𝑗 ). 

The rate of spread of wave in < i,j >,(𝑅𝑖𝑗 ), determines the 

time needed for this cell to be completely traversed . It can 

be noted that if the cell < i,j > stands for waterless area, 

then 𝑅𝑖𝑗 = 0, 𝑎ij
 t = 0 for every t. 

The importance of this parameter lies in the fixing up of the 

size of the time teps, 𝑡  Suppose that the ocean is 

homogeneous, i.e., the value of the rate of wave spread is 

the same for all cells: 
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𝑅𝑖𝑗 ≠ 𝑅, 0 ≤ 𝑖 ≤ 𝑟 − 1,0 ≤ 𝑗 ≤ 𝑠 − 1 Then, it is easy to 

check that if all cells in the neighborhood of < i,j > are not 

traversed at time t except only one adjacent neighbor cell, 

then the time needed for < i,j > to be completely traversed 

is 
𝐿

𝑅
  (See Fig 2.1 (a)) 

Similarly, if all cells in the neighborhood of < i,j > are 

traversed at time t except only one diagonal neighborhood 

cell then the time needed for < i,j > to be completely 

traversed is  2𝐿
𝑅

  

(See Figure 2.1(a), (b) ) 

 

Figure 2.1. Propagation from a neighbor cell to the cell     

<i, j> 

Thus, the size of time step is taken to be 𝑡 =
𝐿

𝑅
  

Consequently, if all cells in the neighborhood of < i,j >  are 

not traversed at time t except only one adjacent cell which 

is completely traversed, then at time (t + 1) , the cell < i,j > 

is completely traversed : So,𝑎𝑖𝑗
 𝑡+1 

= 1. On the other hand, 

if the only completely traversed cell at time t is diagonal 

neighbor cell of < i,j >, then 𝑎𝑖𝑗
 𝑡+1 

= 𝜆 < 1. 

Nevertheless, almost all real oceans are non homogenous. 

In this case, the time step size is taken to be the time 

needed for the cells with the larger spread rate to be 

completely traversed. That is 

𝑡 =
𝐿

𝑅
, 𝑅 = 𝑚𝑎𝑥{𝑅𝑖𝑗 , 0 ≤ 𝑟 − 1,0 ≤ 𝑗 ≤ 𝑠 − 1}     (2) 

 Other factor to be incorporated to the model is the wave 

speed and direction due to its important influence to the 

spreading of waves. 

The effects of the wave on a cell < i,j >, is given by the 

following 3 x 3 positive matrix ,called the wave matrix of < 

i,j >. 

𝑊𝑖𝑗 =  

𝑤𝑖−1,𝑗−1 𝑤𝑖−1,𝑗 𝑤𝑖−1,𝑗+1

𝑤1,𝑗−1 1 𝑤𝑖 ,𝑗+1

𝑤𝑖+1,𝑗−1 𝑤𝑖+1,𝑗 𝑤𝑖+1,𝑗+1

  It can be observed that        

if no wave is propagation on < i,j >, then 𝑤𝑖+𝛼 ,𝑗+𝛽 = 1 with 

 𝛼, 𝛽 ∈  𝑉𝑀 ;  

if ,for example , the wave is propagation from north 

towards south, then the coefficients 

𝑤𝑖+1,𝑗+1, 𝑤𝑖−1,𝑗  𝑎𝑛𝑑 𝑤𝑖−1,𝑗+1 must be larger than the rest of 

the coefficients of 𝑊𝑖𝑗  and so on. The values of such 

coefficients stand for the magnitude of the wave. 

Finally, the height differences between various points in the 

wave front also affect the spreading of waves. It is well 

known that waves show a higher rate of spread when they 

descend a downward slope and a smaller rate of spread 

when they climb up an upward slope. If 𝐻𝑖𝑗  stands for the 

height of the cell < i,j >, then 𝐻𝑖𝑗  is the height of the center 

point of the square area which is represented by the cell and 

it is supposed that this height is the same at every point of 

the cell. The effect of such parameter in the spreading of 

waves given by the following 3 x 3 matrix 

𝛷𝑖𝑗 =  

𝑖−1,𝑗−1 𝑖−1,𝑗 𝑖−1,𝑗+1

1,𝑗−1 1 𝑖 ,𝑗+1

𝑖+1,𝑗−1 𝑖+1,𝑗 𝑖+1,𝑗+1

  Where  

𝑖+𝛼 ,𝑗+𝛽 = 𝜱 𝐻𝑖𝑗 −𝐻𝑖+𝛼 ,𝑗+𝛽  𝑎𝑛𝑑 𝜱 

is usually taken to be a linear function. 

As a consequence, if we incorporate All these parameters 

to the model defined by ( 2 ) , then 

𝜇𝛼𝛽  𝑤𝑖+𝛼 ,𝑗+𝛽𝑖+𝛼 ,𝑗 +𝛽  ,   ∀  𝛼, 𝛽 ∈ 𝑉𝑀                    (3) 

and the evolution of the cell < i,j > is given by 

𝑎𝑖𝑗
 𝑡+1 

= 𝑎𝑖𝑗
 𝑡 +  𝜇𝛼𝛽  

 𝛼 ,𝛽 ∈𝑉𝑀
𝑎𝑑𝑗

𝑎𝑖+𝛼 ,𝑖+𝛽
 𝑡 

 

+𝝀  𝜇𝛼𝛽  

(𝛼 ,𝛽)∈𝑉𝑀
𝑑𝑖𝑎𝑔

𝑎𝑖+𝛼 ,𝑖+𝛽
(𝑡)

 

 It may be remarked that, during the evolution of the CA, 

some cells can probably assume a state greater than 1. In 

these cases, the states must be taken to be equal to 1. 

B. The New Model 

In this work we propose that the propagation of 

waves from a diagonal neighborhood cells, for example < i-

1,j-1 >, ;to ;the main cell < i,j >, is supposed to be circular,; 

as is shown in Figure.2.2 
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Figure.2.2. Propagation from a diagonal neighbor cell to 

the   < i,j > 

As a consequence, after a time step, the traversed area of < 

i,j > are not traversed at time t, except a diagonal neighbor, 

say    < i-1,j-1 >, which is completely traversed 𝑎𝑖−1,𝑗−1
 𝑡 =

1 , then 

𝑎ij
 t+1 

= λ =
πL2

4L2 =
π

4
≈ 0.785. 

 

As a consequence, the transition function of the 2D – CA 

given by 

𝑎𝑖𝑗
 𝑡+1 

= 𝑎𝑖𝑗
 𝑡 +  𝜇𝛼𝛽  

(𝛼 ,𝛽)∈𝑉𝑀
𝑎𝑑𝑗

𝑎𝑖+𝛼 ,𝑖+𝛽
(𝑡)

    

+0.785  𝜇𝛼𝛽  

(𝛼 ,𝛽)∈𝑉𝑀
𝑑𝑖𝑎𝑔

𝑎𝑖+𝛼 ,𝑗+𝛽        
(𝑡)

       (4) 

 Where 0 ≤ 𝑖 ≤ 𝑟 − 1,0 ≤ 𝑗 ≤ 𝑠 − 1. Note that the 

transition function is only valid for homogenous oceans. In 

the case of non homogenous ocean, the size of the time step 

is given by the expression (3) and consequently we have to 

incorporate a new factor in the transition function: the; rate 

of wave spread 𝑅𝑖𝑗 = 𝑅; If all neighborhood cells are not 

traversed at time t except only one adjacent cells, them 

after a time step the traversed area of  < i,j > is 
𝑅𝑖𝑗 𝐿

2

𝑅
; 

Consequently,           𝑎ij
 t+1 

=
𝑅𝑖𝑗

𝑅 < 1
  . If the traversed 

neighbor cell is diagonal cell, then the traversed area of < 

i,j > after a time step is 
𝜋𝑅 𝑖𝑗 𝐿

2

4𝑅2  𝑎𝑛𝑑 𝑎ij
 t+1 

=  
𝜋𝑅𝑖𝑗

2

4𝑅2  .Further, 

this new fact is incorporated in the model ad follows:  

𝑎𝑖𝑗
 𝑡+1 

=
𝑅𝑖𝑗

𝑅
𝑎𝑖𝑗

 𝑡 +   𝜇
𝛼 ,𝛽  

𝑅𝑖+𝛼 ,𝑗+𝛽

𝑅
(𝛼 ,𝛽)∈𝑉𝑀

𝑎𝑑𝑗

𝑎𝑖+𝛼 ,𝑖+𝛽
(𝑡)

 

+  𝜇𝛼𝛽  

(𝛼 ,𝛽)∈𝑉𝑀
𝑑𝑖𝑎𝑔

𝑎𝑖+𝛼 ,𝑖+𝛽
(𝑡) 𝜋𝑅𝑖+𝛼 ,𝑗 +𝛽

2

4𝑅2
𝑎𝑖+𝛼 ,𝑖+𝛽

(𝑡)
 

with  0 ≤ 𝑖 ≤ 𝑟 − 1,0 ≤ 𝑗 ≤ 𝑠 − 1 

 

Moreover, it is also possible to incorporate, in a very 

simple manner, changes in both wave speed and direction. 

It can be modeled by simply varying the wave matrix 

involving time: 

𝑊𝑖𝑗 =

 
 
 
 
 𝑤𝑖−1,𝑗−1

(𝑡)
𝑤𝑖−1,𝑗

(𝑡)
𝑤𝑖−1,𝑗 +1

(𝑡)

𝑤1,𝑗−1
(𝑡)

1 𝑤𝑖 ,𝑗+1
(𝑡)

𝑤𝑖+1,𝑗−1
(𝑡)

𝑤𝑖+1,𝑗
(𝑡)

𝑤𝑖+1,𝑗 +1
(𝑡)

 
 
 
 
 

 So, evolution of the 

cell the< i,j > with non constants wave Conditions given by 

𝑎𝑖𝑗
 𝑡+1 

=
𝑅𝑖𝑗

𝑅
𝑎𝑖𝑗

 𝑡 +  𝑤𝑖+𝛼 ,𝑗+𝛽  
 𝑡 

 𝛼 ,𝛽 ∈𝑉𝑀
𝑎𝑑𝑗

 

+𝑖+𝛼 ,𝑗+𝛽  
(𝑡) 𝑅𝑖+𝛼 ,𝑗+𝛽

𝑅
 𝑎𝑖+𝛼 ,𝑖+𝛽

 𝑡 
 

+  𝑤𝑖+𝛼 ,𝑗+𝛽  
 𝑡 + 𝑖+𝛼 ,𝑗+𝛽  

(𝑡)

(𝛼 ,𝛽)∈𝑉𝑀
𝑑𝑖𝑎𝑔

𝜋𝑅2
𝑖+𝛼 ,𝑗+𝛽

4𝑅2
 𝑎𝑖+𝛼 ,𝑖+𝛽

 𝑡   (5) 

 

Finally, we can discretize the states of energy ;cell of the 

2D – CA in order to obtain a new 2D – CA with discrete 

state set. As our goal is to study the spread of the Wave 

front, we will consider a        2D – CA whose state set is 

𝑆∈𝑍 , by setting  

𝑠𝑖𝑗
 𝑡 =  

0, 𝑖𝑓 0 ≤ 𝑎𝑖𝑗
 𝑡 < 1

1, 𝑖𝑓        𝑎𝑖𝑗
 𝑡 ≥ 1

  for 0 ≤ 𝑖 ≤ 𝑟 − 1,0 ≤ 𝑗 ≤ 𝑠 − 1 

That is the local transition function is 

 𝑎𝑖𝑗
 𝑡=1 

= 𝑔  
𝑅𝑖𝑗

𝑅
 𝑎𝑖𝑗

(𝑡)
+ ⋯  Where g:[0,∞]⟶𝕫 such that 

𝑡 ⟶ 𝑔 𝑡 =  
0, 𝑖𝑓 0 ≤ 𝑡 < 1
1, 𝑖𝑓        𝑡 ≥ 1

  

III. VALIDATION OF THE PROPOSED MODEL 

To check whether our model satisfies some tests, we will 

consider four basic tests, which are classified into two 

classes: homogeneous ocean tests and non homogeneous 

ocean tests. In both classes of tests, we must consider flats 

and non-flat oceans weather conditions (wave speed and 

direction).  

If a homogeneous flat ocean with wave conditions is 

considered, the model must yield a circular wave front. If 

there are some weather conditions,; the wave speed and 

direction must effect the ocean wave front. Furthermore, if 

the homogeneous ocean is non-flat, the topographic 

conditions must be reflected in the dynamic of wave front 

since, as is mentioned earlier, waves show a higher rate of 

spread when they descend a downward slope and a smaller 

rate of slope when they climb up an upward slope. 
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On the other hand, if the ocean is non homogeneous, the 

wave front must be of circular shape. It advances with the 

same speed in all directions, in the areas whose rate of 

wave spread is equal to R (See equation (4)); and this speed 

must decrease in the areas with another rate of wave 

spread. 

An algorithm using the java language has been 

implemented for the computational and graphical 

represented of the wave fronts. The hypothetical models 

used are modeled by means of a bi dimensional array of 

1024 x 1024 cells.  In the initial configuration, there is a 

circular traversed area of radius 10 whereas the rest cells 

are not traversed, and 500 evolutions of the cellular 

automata are calculated. 

In the following figures, only the wave fronts at times t = 

10 k, with  𝑘∈𝑍 ,0≤ 𝑘 ≤ 50 are shown. 

First of all, suppose that the ocean is spreading in a 

hypothetical homogenous ocean, then 

𝑅𝑖𝑗 = 𝑅∈𝑍 for every (i,j.) 

If the Ocean is flat and no wave is propagation, then one 

can suppose that 

 Φij =  
h h h
h 1 h
h h h

 = Wij =  
1 1 1
1 1 1
1 1 1

 ,where  

∈𝑍 , 0≤ 𝑖 ≤ 1023,0 ≤ 𝑗 ≤ 1023  

and for the sake of simplicity, we can also consider h = 1. 

In this case, the wane front is circular as is shown in Figure 

3.1 

Now suppose that the ocean is non-flat and there is wave 

propagation according to the following matrices: 

 Φij =  
1.5 1 0.5
1.5 1 0.5
1.5 1 0.5

 = Wij =  
0.5 0.5 0.5
1 1 1

1.5 1.5 1.5
  

with 0≤ 𝑖 ≤ 1023,0 ≤ 𝑗 ≤ 1023. 

Then, the evolution of the wave front is shown in Figure 

4.2  

Finally, in Figure 4.1 the evolution of the ocean 

wave front without weather and topographic condition of 

homogeneous ocean is shown. If the wave is propagation 

and the front in non-flat, then according to (5), the 

evolution of the wave front is shown in Figure 4.2.  

 
           Traversed out Cell 

           Traversing Cell 

Figure 3.1. A Tsunami wave front a new cell state 

IV. THE PROPOSED MODEL SIMULATION 

RESULTS 

If a homogeneous flat ocean with wave conditions is 

considered, the model must yield a circular wave front. In 

some weather conditions, the wave speed and direction must 

affect the ocean wave front. Furthermore, if the 

homogeneous ocean is non-flat, the topographic conditions 

must be reflected in the dynamic of wave front since, as is 

mentioned earlier, waves show a higher rate of spread when 

they descend a downward slope and a smaller rate of slope 

when they climb up an upward slope. 

A. Homogeneous Ocean Test 

          
 

                    Epicenter of Tsunami wave in ocean 

                       Traversing Cell 

                      

 

Figure 4.1.Homogeneous simulation results 

 

B. Non- Homogeneous Ocean Test 
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                       Barriers in Ocean area 

 

Figure 4.2 Non-.Homogeneous simulation results 

 

 
Figure 4.3.User Interface of the Tsunami Wave 

Simulation Model platform 

V. CONCLUSION AND FUTURE WORK 

In this work, a CA based model for the study of the 

dynamic of a Tsunami Wave front has been presented. 

Basically we have proposed a circular spreading of the 

wave front, when it comes from a diagonal cell. The model 

determines the dynamic of the wave front in both 

homogenous and non homogeneous oceans with weather 

and based topography conditions. Moreover, several tests 

have been checked in order to determine the goodness of ht 

e proposed method. 

Further work may be aimed at designing a 

Hexagonal cellular automata based model to simulate the 

Tsunami wave propagation. Moreover, some changes in the 

notion of the state of the cell can be studied. In this sense, a 

similar CA model will be designed in which the stats of the 

cell will be defined by means of transfer of energy, instead 

of the transfer of fractional traversed area. 

Furthermore, due to the fact that the behavior of some 

discrete models has discrepancies with the corresponding 

conditions model, it will be of interest to study how to 

decrease these discrepancies. Then further works to be 

considered are.  

1. Consider new temporal coordinates and not only 

spatial coordinates. 

2. Study the influence of new variables, like 

magnitude of wave, in wave propagation. 

3. Finally, it will be interesting to explore other cases 

using probabilistic updating rules. 
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