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Abstract: In the article authors develop an approach to calculating the statistic development probability for composite functions 
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  cwJT Pr . 

 

Keywords: stationary processes; casual Gaussian processes; Wiener process; the density of distribution of probabilities; additive 

functionality; return transformation of Laplace; calculating the successive approximations; accuracy assessment. 

 

I. INTRODUCTION 

In work the task about the calculating the density 

of distribution of probabilities of a random variable  wTJ

where is considered  wTJ   

   
T

dttuuJ

0

2

  (1) 

- functionality in space of L2 [6]  T,0 .  

Let  - trajectories of standard 

Wiener process on [0, T] with a population mean of E

  ttw 
2

. This task, as well as other tasks about the 

calculating the density of distributions of probabilities of 

casual values of additive square functionalities from 

trajectories of Gaussian casual processes, is classical.   

From the analytical point of view, Gaussian casual 

processes are, apparently, the simplest casual processes. It 

is connected with the fact that the Gaussian form of private 

multipoint distributions of Gaussian processes allows to 

calculate obviously characteristic functionality of each such 

process and to apply to their research well-developed 

analysis methods in Hilbert space [1,2]. Now the class of 

Gaussian casual processes, at least stationary, is well 

studied. For Gaussian processes, the problem about the 

calculating the characteristic functions for random variables 

such is essentially solved. On the basis of this method a 

large number of solutions of the specific objectives having 

   ; 0, , 0w t t T T 
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various appendices [3,4] is so far received). For example, 

the first such result for the simplest stationary Gaussian 

process (Ornstein-Ulenbek's process) was received still in 

[5]. However, the problem of restoration of the density of 

distribution on the basis of the turning-out formulas for 

characteristic functions remains the guaranteed accuracy 

which is still poorly investigated in sense of receiving the 

approximations with suitable for use in all range of change 

of a random variable. The usual approach to the solution of 

this task (see, for example, [6]) leads to approximate 

formulas for the density of distribution of f (x),   ,0x  

suitable for the assessment of probabilities of big evasion, 

i.e. in asymptotic area x   changes of values of a 

random variable.  

In this work we investigate a problem of calculating the 

successive approximations of the density of distribution of 

probabilities of f (x) for casual values of functionality (1) in 

any piece [0, M], > M> 0. 

 

II. MATERIAL AND METHODS 

As trajectories of standard Wiener process { w(t); t 

≥0},   ttw 
2

1 are continuous E   ttw 
2

 with 

probability, honor probably for each of them the random 

variable is defined  wTJ . 

We will proceed [2] of the following formula for 

the making function of a random variable (1)   

        2/12/1
expE


 TchwTJTQ  , 

   2
1 TQTQ   . 

The density of distribution of f (x) random variable

 wTJ  is defined by the return transformation of Laplace  

    







ci

ci
dTch

x
e

i
xf 





2/12/1

2

1
  (2) 

where c>0, and a section in the plane λ is made by a 

negative part of the valid axis. 

Let's enter density    xTfTxg
22

  at   ,0x

for which replacement of a variable of integration in (2) we 

receive  

       







ci

ci
dch

x
e

i
xg 





2/12/1

2

1
 

 
 

.

2/1

2/1
2exp1

2/1
2exp

2

1



 
















ci

ci
d

x

i







 (3) 

 

III. RESULTS AND DISCUSSION 

Let's prove the following theorem [7, 8].THEOREM. The 

density of g (x) is represented as the following absolutely 

meeting row 

 

 
   

 







































0

2

4

11
exp

4

1

2
!4

!21

3

2

l
l

x
l

l
l

l
l

x
xg


 (4) 

 for which N-y rest 

 
   

 







 






























Nl
l

x
l

l
l

l
l

x
xNg

2

4

11
exp

4

1

2
!4

!21

3

2

1


 

 it is estimated by the size  

 

 
 

  






























2

4

11
exp

4

1

2
!4

!2

3

2

1 N

x

N

N
N

N

x

xNg


   (5) 

 

PROOF: Let's put in (3) c=0 as the available features lie on 

a negative half shaft. We deform an integration contour in 

the contour of C consisting of consecutive passing of ways 

{ s-iε; s   0; }, { eis; s  









2
;

2


}, {-s+iε; s 

 ;0 }. Such deformation is possible since.  

              



2/1

Im2
2/1

Re2

2

12/12/1
2

2/1
 ichchchchch

      2/cos
2/12

12/cos
2/1

2

2

1
 RshRch  , 

where



i

eR  and on an arch of a circle
















 


 ;

2
;  

assessment for mo the module of sub integral expression in 

is carried out (3),  

 

  
 

   
,

2/1
2/cos

2/1

cosexp

2/12/1

exp









Rsh

xR

ch

x
  

guaranteeing at x> 0,    2/cos
2/1

R  the performance of 

a condition of Jordan on this arch at as much as small > 0, 

since 0cos  . The same takes place for an arch


















2
,;


  

 

In (3) we will make replacement of a variable of integration

q
2/1

 , then qdqdq 2,
2

  . At the same time the 

contour of C in the plane λ after the transition to a limit

0  to turn into a straight line { q=is, s  R } into the 

planes q. After these transformations we have: 
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  
 

 
.

2/1

2exp1

2
2exp2




 


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










i

i
dq

q

qxq
q

i
xg


 

Let's pass to integration on a variable s, q = is, dq = with 

ids. We receive  

 
 

 



 


 













ds

is

isxs
sixg

2/1

2exp1

2
2exp2


  (6) 

In the last integral we will makeshift

  sxis 



1

4  of a variable of integration, therefore, we 

will receive:  

 

 
    
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
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
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



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
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

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xxisx
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1
2

1
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1
8
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42exp

2
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       
  

  .

2/1

2exp

2/1exp1

2
2exp1

4
1

16exp
2













 




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


dsis

x

xs
xisx



                      (7) 

 

In (7) we will spread out a denominator of sub integral 

expression in meeting at any x> 0 and any s  R row 

 

 
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l

l
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l
l
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x
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2

1

exp1 
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







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






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


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
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





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Its convergence is uniform in any strip [0, M] ×R the planes 

(x, s), M> 0. 

 

Substituting the last expression in (7), we will receive 

         
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1
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2
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


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
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x

l
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2
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


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


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





 
  

 

 

The shift of operators of summation and integration is 

based on uniform convergence of a row on s at any fixed x. 

 

In everyone composed the sums we will make a shift

s
x

il
s   on an integration variable, we will receive  

 

            (8) 

 

Let's present integral in the form of the sum of two integrals 

according to the expression standing in a pre-exponential 

bracket. The integral corresponding to the composed is 

addressing in zero,  

   

 
   

0
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l
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in a type of oddness of sub integral function. The integral 

corresponding to composed 
x

l 4/1
will be transformed as 

follows 

     

 

 
.

2/1
exp

4

1

0 2
!4

!212
exp

1





















 













x

ll
l

l l
l

l
l

dsxs
x

 

Substitution of this expression in (8) taking into account the 

value of integral of Poisson leads to formula (4).  

As a row (4) sign-variable Ng  does not surpass the 

rest of a row Ng first composed from among rejected. 

Therefore, the assessment takes place (5). 

 

INVESTIGATION. The assessment takes place [9] 

   2/5
2

2

3

1


 N
e

xNg . (9) 

 

PROOF: Let's find assessment of the rest of a row (4). For 

this purpose, we will write down on the basis of (4) 

expression for g(x) in shape: 
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0
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Where   
 
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,

4

1

2
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also, we will find a maximum on x functions  xNh . 

Equating zero a derivative on x this function: 
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We find the solution x  of this equation - a point of the only 

maximum of a function  xNh . 
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Let's estimate from the above coefficient Na , 

having made the received assessment of more transparent, 
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Then, as 1
3



, takes place        (9) 

Let's estimate the accuracy of the approximations 

of the probability of PR   cwTJ  received on the basis 

of functions Ng , N = 1 now   cwTJ  Ng . 2, … [6] As 

distribution density    xTgTxf
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Having designated the right part of inequality (5) by means 

of  xNQ , we have:  
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Our task is receiving the top assessment for 

evasion     cNPcwTJ Pr . Follows from inequality 

(5) that      xNQxNgxNQ  1 . Integrating ranging 

from 0 to with / T 2, we receive 
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Therefore,  
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it gives a required assessment 

          
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At last, to make an assessment (10) obvious, we 

will calculate the integral standing in the right part  
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Replacement of a variable of integration
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  leads to a formula 
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From here, using Erfc(x) <1, we find uniform in 

parameters with and T assessment 

 
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2
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Thinner assessment considering the size of 

parameters with and T, turns out the use of standard 

inequality of [10] Erfc(x)
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IV. CONCLUSION 

The task of calculating the characteristic functions for 

random variables of type (1) in Gaussian casual processes 

are essentially solved [5]. The task of the density 

distribution of f on the basis of characteristic functions 

formulas is studied insufficiently. Such a task involves 

acquiring approximations with guaranteed accuracy, 

applicable for the whole random variable change diapason. 

The task of calculating successive approximations for 

density distribution of f(x) probabilities for all random 

composite functions (1) on every [0, M],  >M > 0 interval 

has been considered.  Accuracy assessment for probability 

approximations of PR   cwTJ   received on the basis of

Ng , N = 1, 2… functions is presented. 
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V. SUMMARY 

An impression in the form of absolutely meeting 

row for a density of distribution of probabilities is gained:  
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    . 

The top assessment for evasion is also received 

    cNPcwTJ Pr  

. 

More exact assessment which considers the size of 

parameters with and T has an appearance  
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