
COMPUSOFT, An international journal of advanced computer technology, 8(7), July-2019 (Volume-VIII, Issue-VII)

3242

Cite This Paper: Madhavi Devi B, Smriti agrawal, R Rajeshwar rao (2019).
Dynamic Budget: Threshold Based Resource Reservation Technique, 8(7),

COMPUSOFT, An International Journal of Advanced Computer Technology.

ISSN: 2320-0790, PP. 3242-3249.

This work is licensed under Creative Commons Attribution 4.0 International License.

DYNAMIC BUDGET-THRESHOLD BASED RESOURCE RESERVATION

TECHNIQUE
Madhavi Devi Botlagunta*

1
, Dr. Smriti Agrawal

2
, Dr. R Rajeshwara Rao

3

1
Research scholar, Jawaharlal Nehru Technological University, Kakinada

2
Associate Professor, Chaitanya Bharathi Institute of Technology, Hyderabad

3
Professor, JNTUK University College of Engineering, Vizianagaram

*Corresponding Author

Abstract: The effective utilization of the resources is recognized as essential tool not only for the cost effectiveness of the

system but also for the environment. Sharing of the resources improves its utilization but also creates contention among the

processes using it. This contention may lead to frequent deadlocks. Many deadlock avoidance techniques exist for avoiding the

deadlock while sharing the resources. However, all these technique suffer from two major limitations: 1) they assume that the

resource requirement for each process is known in advance; 2) overhead for decision making for resource granting to ensure that

any future deadlock must be avoided. This paper proposes a Dynamic Budget for Threshold based Resource Reservation

Technique for Deadlock Avoidance (DB-TRA) which extends the existing Threshold based Resource Reservation Technique for

Deadlock Avoidance (TRA) [24] technique. The existing TRA address the second limitation of excessive overhead for resource

granting by forward calculation to avoid deadlock. However, this TRA technique also suffers from the first limitation and assumes

that the resource requirement of each process is known in advance. The proposed DB-TRA technique address this limitation of the

deadlock avoidance techniques by proposing a dynamic budget which eliminates the need of prior knowledge of the resource

requirement of any process, the budget is adjusted dynamically to cater the need of the process. The proposed technique uses the

resource reservation as suggested in TRA for minimizing the overhead in granting of the requested resources. The simulation

result shows that the proposed DB-TRA technique performs better than existing deadlock avoidance technique.

Keywords: Deadlock; Deadlock handling; Deadlock Prevention; Deadlock Avoidance; Resource allocation; Banker‟s Algorithm;

Resource management.

I. INTRODUCTION

Modern computing systems composed of multiple

resources to serve multiple processes. Each process

performs a set of operations. Each operation may need one

or more resources. The resources acquired in one operation

may not be released before new resources are acquired for

the subsequent operation. These resources must be shared

for their effective utilization. Resource manager in

traditional computing systems often assigns fixed number

of resources to a process to satisfy its requirement. Such

type of static resource allocation often results in the

underutilization of resources. On the other hand, if the

resources are shared then if they are not properly managed

the system may end in a deadlock, where no process is able

to complete.

Available online on: https://ijact.in

Date of Submission

Date of Acceptance

23/02/2019

31/07/2019

Date of Publication 06/08/2019

Page numbers 3242-3249(8 Pages)

ISSN:2320-0790

https://ijact.in/index.php/ijact/issue/view/80

COMPUSOFT, An international journal of advanced computer technology, 8(7), July-2019 (Volume-VIII, Issue-VII)

3243

Sharing of resources is not only important in computing

systems but also in real world. Some of the real world

examples of shared resources are construction of building

by contractor, transportation systems, manufacturing

systems, engineering tools, real time systems and

controlled systems, etc. For example [22], a project of

constructing villas can be considered as a system, where

the contractor constructs for various clients. In this system

construction of each villa is a process. Each of these

processes can be divided into operations (foundation,

construction, interiors) requiring resources as money and

time to complete. The contractor has limited initial amount

to start and promises a time frame to deliver the completed

villa (along with the interiors). The client pays back the

construction cost only upon the completion of villa with its

interiors. Thus, if the contractor uses all his initial amount

for constructing the foundation for all the villas then he

may not be left with any amount for further construction

and interiors. The client will pay him back only on

completion of the interiors hence, this can lead to a

deadlock. On the other hand, if he finishes one villa at a

time the resources (money) in his account will be

underutilized and the time for completion of the project

will also increase. Thus, it is crucial to manage the

resources for their effective utilization.

This paper intends to develop a resource management

technique that will manage the resources in an efficient

way and also avoid deadlock. The proposed technique

reduces the overhead by pre-estimating the resource

requirements for a process and avoids the deadlock.

II. RELATED WORK

Coffman et. al. [3] and Holt [6] formalize the problem

of deadlocks in term of Graph-theoretic model and

identified the conditions for deadlock occurrence. Holt‟s

deadlock model was transformed into a finite state

automaton with the final states corresponding to deadlock

by Nutt [7].

Broadly, there are four strategies to handle deadlocks;

ignorance, detection, avoidance, prevention. The easiest

solution is ignoring deadlock when it does not lead to

critical situation for specific application. Deadlock

detection methods try to detect and resolve them once they

occur. A deadlock avoidance (DA) method avoids

deadlocks in advance. The Deadlock Prevention (DP)

techniques ensure that any one of the four essential

conditions for deadlock does not occur.

Deadlock prevention affects the process itself and may

not be possible to implement in all the systems. The

deadlock avoidance techniques perform forward

calculations based on the prior knowledge of the resource

requirement for each process. One of the most popular

deadlock avoidance techniques was developed by Dijkstra

[4] as Banker‟s Algorithm for a single resource type.

Habermann [5] extended this Banker‟s Algorithm to handle

multiple resource types. Banker‟s algorithm assumes prior

knowledge of the maximum resource requirement for every

process in the system at any given time. Devillers [8]

assumed that the future resource requirement for each

process is represented as flowchart. Based on this flowchart

the operating system and the process behave as if they are

playing a game to find the deadlock and deadlock

avoidance states. A dynamic algorithm is presented by

Fontao [9] for DA. Frailey [10] presented a DA algorithm

implemented on MACE operating system, of CDC 6500 at

Purde University. Dixit and Khuteta[33]also assume prior

knowledge of the resource requirement for all processes.

They permit the resource requirement to change at run time

for avoiding deadlock. They stack the processes as per the

remaining Needs. Kawadkar et. al.[34]re-examined the

Banker‟s algorithm to consider the processes in the waiting

state. They prioritized the waiting processes based on the

resources they were holding and the resources they further

needed. They still assumed that the resources requirement

of each task is known is advance. Youming Li [28]

modified the Banker‟s algorithm making it „n‟ times faster

than the original. In this method a permutation matrix was

generated by counting sort for each resource type. The

process with highest position in the sorted sequence vector

was greedily selected. The storage requirement for

permutation matrix was high with respect of memory.

Further, the advance knowledge of the resource

requirement was also essential. Huang et.al. [40] proposed

resource management for broadcasting wireless systems

with limited frame length using a modification of Banker's

algorithm. As in Banker‟s algorithm a safety judgment is

made for effective allocation results. In case the system is

not in safe condition, adjustments were suggested get to a

more appropriate allocation result. Yin et. al. [42]

addressed the multithreaded programs to avoid deadlock by

using lock automation. They suggested to combining

offline static analysis and runtime execution control. They

created a control flow graph of a program, and then

translated it into a formal model which was then analysed

for to detect potential deadlocks. The deadlock avoidance

was performed run time.

Pyla and Varadarajan [30] examined the need of

deadlock handling in a multi-thread environment. They

proposed Sammati for deadlock detection and recovery in a

POSIX multi-threaded program. They suggested recovering

from a deadlock by rollback once it is detected. Gwad et.al.

[35] proposed a deadlock detection algorithm for threads. It

indicated the deadlock initiator thread in advance. The

resource allocation problem in grid systems is examined by

Zhang et. al. [36]. Based on atomic transaction they present

a fast co-allocation approach for the resources. Authors

[37, 42] suggested detecting deadlock in a multi-processing

system. However, they assumed that each request must be

for a single unit of a resource. Cahit [38] presented a

deadlock detection method using an undirected graph with

labels as 0 or 1. It assumes that the deadlock would occur

only if a cycle with alternating 0s and 1s is formed. Shiu et.

al. [39] presented a hardware unit for deadlock detection.

Xiao and Lee [27] used multiple units in parallel for

deadlock detection leading to a run time complexity of

O(log2(min(m,n))).All the deadlock detection techniques

COMPUSOFT, An international journal of advanced computer technology, 8(7), July-2019 (Volume-VIII, Issue-VII)

3244

detect deadlock after its occurrence and have as overhead

in terms of deadlock recovery as well. In deadlock recovery

some or all the processes are either rolled back and/or the

resources are pre-empted. These steps for deadlock

recovery may not be possible to implement in all systems

Authors [23, 24, 25, 26] proposed deadlock handling by

performing resource reservation where subsets of the

resources are reserved by the system and the remaining

resources are granted without any further checks. The

reserved resources can be used by a process only if it is

likely to complete and relinquish all the resources allocated

to it. These techniques have low time complexity making

them very efficient as compared to all the above reported

techniques. However, they still suffer with one of the

lacunas of the deadlock avoidance strategies, that is, prior

knowledge of the resource requirement. The proposed

technique aims to overcome this limitation by providing a

budget that can adjust and still ensure deadlock free

system.
III. SYSTEM MODEL

Dynamic resource allocation scheme assigns computing

resources to processes based on demand as and when

needed. Existing work has mainly concentrated on the

deadlock avoidance techniques. They assume that the

execution time and resource requirement for each process

is known in advance. This assumption is unrealistic at

times or has considerable overhead in real time scenarios.

Hence, this paper presents a deadlock free dynamic budget-

threshold based resource management technique. The main

goal is to dynamically allocate the resources to the

processes based on their budget calculated through

threshold to improve resource utilization and increase the

performance of the system.

The system is consists of „m‟ resources; 𝑅1, 𝑅2,
𝑅3 …𝑅𝑚 , with 𝛼1, 𝛼2,…𝛼𝑚 instances of each type.The

resources must be shared by ′𝑛′ independent processes,

𝑃1 , 𝑃2 , 𝑃3 …𝑃𝑛 . Various data structures used are as

described below:

 Actual Resource (Actual[i][j]):It is a two-dimensional

array of size 𝑛 × 𝑚. It is the accurate number of

resources requested by a process during its execution. If

Actual[i][j] equal k, then process 𝑃𝑖has requested k

instances of resources type 𝑅𝑗 so far. It is used to

initializes the budget if a process is aborted.

 Request (Request[i][j]): It is a two-dimensional array of

size 𝑛 × 𝑚. A process can be viewed as sub-processes.

These sub-processes within the process 𝑃𝑖while

executing request for resources. If Request[i][j] = k, it

implies k instances of resource type 𝑅𝑗 are requested by

the process 𝑃𝑖 for it‟s further execution.

 Allocation (Allocation[i][j]): The resources once

granted to a process for its execution are said to be

allocated to it. Allocation[i][j] is two dimensional array

𝑛 × 𝑚, specifying the number of instances of a resource

held by a process for its execution. That is, if

Allocation[i][j] = k, then process 𝑃𝑖 is permitted to use k

instances of resources type 𝑅𝑗 for it‟s exclusive use

during it‟s execution.

 Threshold (Threshold[i]): It is an array of m

elements, with Threshold[j]=⌈⌊Request[i][j]

∀i=1,2…n⌋, 0⌉. It is least instance of a resource

needed by one of the processes. That is, if threshold[j]

=k, then k instances of resource type 𝑅𝑗 are sufficient

for at least one process 𝑃𝑖 to complete its execution.

 Reserve Pool (Reserve[j]): An „m‟ element array,

where Reserve[j]=Threshold[j], these resources are

used by a process to complete and avoid deadlock.

 Available Pool (Available[j]): All the resources in the

system are divided into a reserve and available pool.

The available pool contains all resources that are both

unreserved resources and not allocated to any process.

Thus, if Available[j] = k, then „k‟ unreserved

instances of resource type 𝑅𝑗 are unallocated to any

process and thus, are available for possible allocation.

 Budget (Budget[i][j]): A two dimensional array𝑛 ×
𝑚, defining the resources anticipated to be needed by

a process. If Budget [i][j] = k, then process 𝑃𝑖 is
allotted a budget of „k‟ instances of resources 𝑅𝑗 in its

life time. However, this Budget [i] is changed

dynamically with the process 𝑃𝑖 resource request;

Budget[i][j] =Request[i][j] + Threshold[j] +

Allocation[i][j].

 Need (Need[i][j]): It is two-dimensional array 𝑛 × 𝑚,

quantifying the remaining resources a process is

expected to request. That is, if Need[i][j] = k, then k

more instances of resource 𝑅𝑗 are likely to be

requested to complete process 𝑃𝑖 ‟s execution.

Mathematically,

𝑁𝑒𝑒𝑑[𝑖][𝑗] = 𝐵𝑢𝑑𝑔𝑒𝑡[𝑖][𝑗] – 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛[𝑖][𝑗].
 Throughput: is the number of processes completing

per unit of time.

 Turnaround time: is the overall time a process takes

from the time it is submitted to the time it completes,

it includes the waiting time of the process for the CPU

or the I/O and execution

Safety Sequence [4]: “It is a sequence of process

⌌𝑃i , 𝑃(i+1), 𝑃(i+2) …𝑃𝑛 ⌍ which is considered to be safe if

for each process, with the current allocation the Needs of

all the processes can still be satisfied by the currently

available resources plus resources held by all processes

prior to it in the sequence”. Safety Sequence may not be

unique and can be estimated by algorithm suggested in [4].

Safe State [4]: “The system for which the Safety

Sequence exists indicating Budget of each process can be

satisfied is said to be in Safe State. That is, no deadlock is

expected in the future as long as the present state of the

system remains unaltered”.

Unsafe State[4]:“The system which is not in Safe State

is considered to be in Unsafe State, indicating that the

system is heading towards a deadlock”.

COMPUSOFT, An international journal of advanced computer technology, 8(7), July-2019 (Volume-VIII, Issue-VII)

3245

IV. DYNAMIC BUDGET FOR THRESHOLD BASED RESOURCE

RESERVATION TECHNIQUE FOR DEADLOCK AVOIDANCE

(DB-TRA)

The present work aims to propose a new deadlock

management technique for systems where no prior

knowledge about number of processes or their behavior is

available. This contrasts with the existing deadlock

Avoidance Techniques [24, 26, 28] where number of

processes is assumed to be fixed and each process must

declare its maximum resource requirement. This estimation

of the maximum resource requirement must be made before

the process starts executing and has an overhead. Further,

the existing techniques do not allow a process to modify its

resource requirement once declared at its inception.

Present work extends Deadlock Avoidance technique

namely Threshold Based Resource Allocation Technique

(TRA) [24] to overcome its limitation. The TRA technique

assumes that the overall resource requirement (Max[i][j])

for every process is known prior to its execution. This

technique has low overhead as it reduces the safety

sequence estimation overhead for deadlock avoidance by

reserving a portion of the resources. The deadlock is

avoided by granting these reserved resources. The

estimation of the resources to be reserved is based on a

threshold of Threshold[j]=⌈⌊Need[i][j] ∀i=1,2…n⌋, 0⌉
where Need[i][j]= Max[i][j]-Allocation[i][j]. TRA

endeavored that at least one process P has sufficient

resources for its completion. Once this process P,

completes it can relinquish all the resources it was holding.

TRA considers only the Available Pool to take the decision

of granting the resources incurring minimal overhead. That

is, if sufficient resources are available in the Available pool

the process request for resources is granted without any

further checks. However, in case the Available pool does

not contain sufficient resources then the reserve pool

resources could be used such that the all the resources this

process will ever need (i.e. Need[i]) to complete are

granted. On completion this process will release all the

resources allocated to it. Thus, the deadlock is avoided.

The assumption that the resource requirement is known

in advance is serious limitation of most of the deadlock

avoidance techniques as this estimation has considerable

overhead. The present work proposes a dynamic budget

(DB-TRA) technique to overcome the limitation of TRA

technique of assuming that the maximum (Max[i][j])

resources required by each process is known in advance.

The DA-TRA proposes an initial budget of resources to

be given to each process. This budget is initialized with no

prior knowledge of the process resource requirement rather

on the current request made by it. However, this budget is

updated to accommodate the resource requests made by a

process. The safety sequence test ensures that the system is

deadlock free with the proposed budget. Thus, every time

the process makes a new resource request within the budget

allotment is done as per the TRA technique [24] using

available resources and reservation pool. However, if the

requested resources are beyond the budget granted to a

process then the budget is modified to accommodate the

new request. To ensure the deadlock Free State, the safety

sequence is estimated. If the system is safe the requested

resources are granted. However, if the safety sequence does

not exist the process state is stored (check pointed) and

queued in the pending state with its budget updated to the

actual resource request. This process may be aborted to

prevent the hold and wait condition which may lead to a

deadlock. However, this can be postponed till some process

requests for the resources held by this pending process.

This will reduce the repercussions of over budgeting.

The following example illustrates the working of the

proposed technique.

Example 1: Consider a system with four resource types

{R1, R2, R3,R4} with instances {8,13,11,10} respectively.

At time T0 processes arrive with their resource requests as

shown in table 1. The resource actual requirement to

complete is not known though. The budget for each process

is initialized using Budget[i][j]=Request[i][j] +

Threshold[j] + Allocation[i][j] where Request[i][j] is the

resources requested by each process Pi, Threshold[j] is

initialized as ⌈⌊Request[i][j] ∀i=1,2…n⌋, 0⌉ and

Allocation[i]={0}. Thus, Threshold = {1, 2, 1, 2} and the

budgets are estimated as shown in the table 1.

All the requests are granted and Allocation, Request

and Need matrixes are updated accordingly. Eventually, the

resources remaining are {3, 6, 5, 4} from which {1, 2, 1, 2}

will be in the Reservation pool and remaining {2, 4, 4, 2}

will be in the Available pool. The Safety Sequence is {P1,

Table 1: Process arrival at time T0

Actual requirement

(not known)
Allocation Request at time T0

Budget at time T0

(allocation+request+threshol

d)

Need at time T0

 R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

P1 0 0 1 0 0 0 0 0 0 0 0 0 1 2 1 2 1 2 1 2

P2 2 7 5 0 0 0 0 0 0 2 1 0 1 4 2 2 1 4 2 2

P3 6 6 5 2 0 0 0 0 4 3 1 2 5 5 2 4 5 5 2 4

P4 4 3 5 4 0 0 0 0 1 0 2 4 2 2 3 6 2 2 3 6

P5 0 6 5 0 0 0 0 0 0 2 2 0 1 4 3 2 1 4 3 2

Before Allocation : Available Pool ={7, 11, 10, 8} Reserve Pool ={1, 2, 1, 2}

After Allocation : Available Pool ={2, 4, 4, 2} Reserve Pool ={1, 2, 1, 2}

COMPUSOFT, An international journal of advanced computer technology, 8(7), July-2019 (Volume-VIII, Issue-VII)

3246

Table 2: Process arrival at time T1 when process P2 makes the request (0, 3, 2, 0)

Actual requirement

(not known)
Allocation Request at time T1

Budget at time T0

(allocation+request+threshold)
Need at time T0

R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

P1 0 0 1 0 0 0 0 0 0 0 0 0 1 2 1 2 1 2 1 2

P2 2 7 5 0 0 2 1 0 0 3 2 0 1 7 4 2 1 5 3 2

P3 6 6 5 2 4 3 1 2 0 0 0 0 5 5 2 4 1 2 1 2

P4 4 3 5 4 1 0 2 4 0 0 0 0 2 2 3 6 1 2 1 2

P5 0 6 5 0 0 2 2 0 0 0 0 0 1 4 3 2 1 2 1 2

Before Allocation : Available Pool ={2, 4, 4, 2} Reserve Pool ={1, 2, 1, 2}

After Allocation : Available Pool = { 2, 1, 2, 2} Reserve Pool ={1, 2, 1, 2}

P2, P4, P3, P5}. Thus, the system is in safe state.

Suppose at time T1, process P2 with Need of {1, 2, 1,

2}, requests for {0, 3, 2, 0} resource instances. In other

words, P2 requests for resource R2 and R3 more than its

presumed budget. However, the proposed DB-TRA

technique allows a process to modify its Budget as

Budget[2][j]=Request[2][j] + Threshold[j] +

Allocation[2][j]. In this case the Budget of process P2 will

be modified from {1,4, 2, 2} (from table 1) to {1,7,4,2}(in

table 2) which in turns modifies the Need. However, before

the request can be granted the safety sequence is estimated

as {P1, P2, P3, P4, P5} based on which the request is

granted. Thus, the system is in safe state at time T1.

Suppose at time T2, Process P4 requests for {1, 0, 1, 2}

resource instances whose Need is {1, 2, 1, 2}. At this time

(Request<=Need) all the requested resources are within the

Budget already allocated. The existing TRA technique [24]

is used to take the decision and the safety sequence is not

estimated. The requested resources {1, 0, 1, 2}are available

in the Available Pool and are thus granted. The safety

sequence is not needed for deadlock avoidance in TRA

technique, however to prove that the system is in deadlock

free the safety sequence is estimated as {P1, P2, P4, P3,

P5}.

The proposed DB-TRA technique can be stated in the

form of an algorithm as follows:

Algorithm: Safety Sequence Algorithm can be found at

[4]:

Algorithm: Dynamic Budget for Threshold based

Resource Reservation Technique for Deadlock Avoidance

(DB-TRA):

// Input: Available[j]=[𝛼𝑗]; {System has ‘𝑚’ resource types, i.e.,𝑅1,

𝑅2 , 𝑅3 …𝑅𝑚 , with 𝛼1 , 𝛼2 ,…𝛼𝑚 instances of each type.}

Begin

1. Initialize Threshold[j] =Reserve[j]=⌈⌊Request[i][j] ∀i=1,2…n⌋,

0⌉∀ j=1, 2, …m

2. Initialize Budget [i][j]= Allocation [i][j] = Need[i][j]=

{0}∀i=1,2…nand ∀ j=1, 2, …m //initially no budget or resources

are allocated to any process

3. Available[j]= Available[j]-Reserve[j] ∀ j=1, 2, …m

4. For (Request[i][j] by a process Pi)

Do

a. If Request[i][j]>Need[i][j] for any j = 1, 2, … m //

indicating that the estimated budget is not sufficient for this

process and must be modified

I. Budget[i][j] = Allocation[i][j] + Request[i][j]+

Threshold[i][j] //Budget is what a process already

holding plus what it wants more and some resources

that it might want in future.

II. If Safety Sequence exists// indicates that this new

Budget will not lead to a deadlock

i. Accept process Pi

ii. If(Request[i][j]<=Available[i][j])

a. Allocate(Allocation, Request, Available, 0) //

Allocate the requested amount from the

Available pool only

else

b. Allocate(Allocation, Need, Available,

Reserve)// Allocate all the resources as per

the budget and expect this process to complete

iii. Request[i][j] ={0}

Else

iv. Save the status and insert the process Pi in pending

queue

v. Budget[i][j] =Allocation[i][j] +

Request[i][j]//preventing starvation due to over

budgeting

Else

b. If (Request[i][j]<=Need[i][j] &&

Request[i][j]<=Available[i][j])//indicates that the process

requests resources within its budget and they are also

available in the system

I. Allocate(Allocation, Request, Available, 0) // Allocate

the requested amount from the Available pool only

II. Request[i][j] ={0}

Else //indicating that the processes has requested resources

within its budget but they are not available in the Available

queue and the resources from the Reserve pool must be used

I. Allocate(Allocation, Need, Available, Reserve)

II. Request[i][j] ={0}

5. When a Process completes and releases resources.

End

COMPUSOFT, An international journal of advanced computer technology, 8(7), July-2019 (Volume-VIII, Issue-VII)

3247

Allocate(Allocation, To_Allocate, Available, Reserve)

// Allocates the resources from the Available or Available and

Reserve Pool

Begin

1. For (j=1 to m)

a. Available[j]=Available[j] + Reserve[j] // merge the two

pools

b. Available[j]=Available[j] – To_Allocate[i][j]

c. Allocation[i][j]= Allocation[i][j] + To_Allocate[i][j]

d. Need[i][j] = Budget[i][j] – Allocation[i][j]

e. Reserve[j]= min(Available[j], Threshold[j])

f. Available[j]=Available[j]-Reserve[j]

End

V. SIMULATION AND RESULTS

The process sets were synthesized and simulations are

performed on them to assess the proposed: Dynamic

Budget for Threshold based Resource Reservation

Technique for Deadlock Avoidance (DB-TRA).

Comparisons are done with the existing Banker‟s

Algorithm (BA) and Threshold based Resource Allocation

(TRA) techniques.

The comparison is done based on the Average

Turnaround time which is the average of the times the

processes take to complete from the time they were

submitted for execution. A resource pool with up to 10

resource types was created with 0 to 20 instances for each

resource type was generated randomly. Processes (1 to 100)

were generated with random execution time and resource

requirement.

Both existing Banker‟s Algorithm as well as Threshold

based Resource Allocation TRA assumes that the resources

required by a process are known in advance. This resource

requirement estimation overhead is also taken into account

in the simulations performed. As stated in the literature

review section above there are multiple techniques [21] for

performing this estimation, the simplest and most

frequently used is Stop Watch Method. Present simulations

also use this method.

The effect of process load on the average turnaround

time can be seen in the figure 1.The increase in process

load implies more processes in the system, hence higher

contention for the resources. Higher contention may lead to

more frequent deadlocks if not managed properly. It is

observed that the average turnaround time increases for all

the techniques as the load increases. DB-TRA eliminates

the overhead for estimating the resources required by all

the processes in the system. Further, DB-TRA also uses a

resource reservation pool which reduces the overhead of

safety sequence test for decision on granting resource

allocation. The overhead saved prevents process

accumulation. Lower accumulation of process in turn

reduces the wait time of a process and also distributes the

resource request. Hence, the proposed DB-TRA technique

facilitates faster completion of the processes reducing the

turnaround time as indicated in the figure 1.

VI. CONCLUSION

With the advancement in technology, the resources are

shared extensively among processes. This sharing improves

resource utilization but also creates contention among the

processes using it. The resource contention may lead to

frequent the deadlocks. Many effective deadlock avoidance

techniques exist for avoiding the deadlock, but they are not

popular as they have considerable overhead for 1)

estimating the resource requirement of a process and 2)

forward calculation for avoiding deadlocks in future. An

existing Threshold based Resource Reservation Technique

for Deadlock Avoidance (TRA) [24] suggests reserving a

pool of resources for avoiding deadlock. They show

considerable reduction in the overhead by eliminating the

need for looking forward if a deadlock is likely in future.

However, the TRA technique still suffers from the

overhead for estimating the resource required by a process.

This paper proposed a Dynamic Budget for Threshold

based Resource Reservation Technique for Deadlock

Avoidance (DB-TRA) which extends this existing

Threshold based Resource Reservation Technique for

Deadlock Avoidance (TRA) [24] technique. The proposed

DB-TRA technique suggest a budget which eliminates the

need of prior knowledge of the resource requirement of any

process, the budget is adjusted dynamically to cater the

need of the process. The proposed technique uses the

resource reservation as suggested in TRA for minimizing

the overhead in granting of the requested resources. The

simulation results shows that the proposed DB-TRA

technique perform better than existing deadlock avoidance

as well as TRA technique[24].

VII. REFERENCES

[1]. Havender, J.W., Avoiding Deadlock in Multitasking

Systems, Ibm Systems Journal, 7(2):74–84(1968).

[2]. Dijkstra, E.W., Cooperating Sequential Processes, in

Programming Languages, Genuys F. Editor, London,

Academic Press, 1965.

[3]. Coffman, E.G., Elphick, M.J, Shoshani, A., Systems

Deadlocks, Acm Computer Surveys, 3(2):67-

78(1971).

[4]. Dijkstra, E.W., The Structure Of The

Multiprogramming System, Communication Of The

Acm, 26(1):341-346 (1968).

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

A
V

. T
U

R
N

A
R

O
U

N
D

 T
IM

E
→

PROCESS LOAD →

F I G U R E 1 : P R O C E S S L O A D V S . A V G .
T U R N A R O U N D T I M E

BA TRA DB-TRA

COMPUSOFT, An international journal of advanced computer technology, 8(7), July-2019 (Volume-VIII, Issue-VII)

3248

[5]. Habermann, A.N., Prevention of System Deadlocks,

Communications of the ACM, 12(7):373– 377(1969).

[6]. Holt, R.C., Some Deadlock Properties of Computer

Systems, ACM Computing Surveys, 4(3):179-196

(1972).

[7]. Nutt, G.J., Some Application of Finite State Automata

Theory to the Deadlock Problem, Technical Report

CU-CS-017-73, Department of Computer Scince,

University of Colorado at Boulder, Colorado, 1973.

[8]. Devillers, R., Game Interpretation of the Deadlock

Avoidance Problem, Communication of the ACM,

20(10):741-745(1979).

[9]. Fontao, R.O., A Concurrent Algorithm for Avoiding

Deadlocks, Proceedings of the Third ACM

Symposium on Operating Systems Principles, 72–79

(1971).

[10]. Frailey, D.J., A Practical Approach to Managing

Resources and Avoiding Deadlock, Communications

of the ACM, 16(5):323–329(1973).

[11]. Ghaffari, A., Rezg, N., XIe, X.L., Design of a live and

maximally permissive Petri net controller using the

theory of regions. IEEE Transactions on Robotics and

Automation,19(1):137-142 (2003).

[12]. Huang, Y.S., Jeng, M.D., Xie, X.L., Chung, S.L.,

Deadlock prevention policy based on Petri nets and

siphons. International Journal of Production Research,

vol.39 (2):283- 305 (2001).

[13]. Huang, Y.S, Jeng, M.D., Xie, X.L, Chung, D.H,

Siphon-based deadlock prevention policy for flexible

manufacturing systems, IEEE Trans. System, Man,

Cybern. A, System, Humans,36(6):1248-1256 (2006).

[14]. Li, Z.W, Zhou, M.C., Elementary siphons of Petri

nets and their application to deadlock prevention in

flexible manufacturing systems, IEEE Trans. on

System, Man, and Cybern., part A, 34:38-51(2004).

[15]. Park, J., Reveliotis, S.A., Deadlock avoidance in

sequential resource allocation systems with multiple

resource acquisitions and flexible routings. IEEE

Transactions on Automatic Control,46(10):1572-1583

(2001).

[16]. Tricas, F., Garcia Valles, F., Colom, J.M., Ezpeleta,

J.,An iterative method for deadlock prevention in

FMSs, 5th Workshop Discrete Event System, R. Boel

and G. Stremersch, Eds., Ghent, Belgium,139-

148(2000).

[17]. Tricas, F., Garcia-Valles, F., Colom, J.M., Ezpeleta,

J.,A Petri net structure-based deadlock prevention

solution for sequential resource allocation systems,

IEEE International Conference Robot. Autom.,

Barcelona, Spain, 271-277 (2005).

[18]. Uzam, M., An optimal deadlock prevention policy for

flexible manufacturing systems using Petri net models

with resources and the theory of regions. International

Journal of Advanced Manufacturing Technology,

19(3):192-208(2002).

[19]. Uzam, M., Zhou, M.C., Iterative synthesis of Petri net

based deadlock prevention policy for flexible

manufacturing systems. In Proc. IEEE International

Conference on Systems, Man, and Cybernetics, 4260-

4265(2004).

[20]. Xie, X.L., Jeng, M.D., 1999. ERCN-merged nets and

their analysis using siphons, IEEE Trans. Robot.

Autom., 15(4):692-703(1999).

[21]. David B. Stewart, “Measuring Execution Time and

Real-Time Performance” in Embedded Systems

Conference, Boston, September 2006.

[22]. Kees van Hee, Alexander Serebrenik, Natalia

Sidorova Marc Voorhoeve, Jan van der Wal.,”

Scheduling-free resource management” in Science

Direct, Data & Knowledge Engineering 61 (2007) 59–

75

[23]. Smriti Agrawal, B Madhavi Devi, Ch. Srinivasulu, "A

Total Need Based Resource Reservation Technique

For Effective Resource Management”, in Int'I Journal

of Computer Applications, Volume 67, April 2013.

[24]. B Madhavi Devi, Smriti Agrawal, Ch. Srinivasulu,

"An Efficient Resource Allocation Technique for Uni-

Processor System", in Int' Journal of Advances in

Engg & Tech (IJAET) Vol. 6 II, March 2013.

[25]. B Madhavi Devi, Smriti Agrawal, Rajeshwar Rao,

“EFFECTIVE RESOURCE MANAGEMENT

TECHNIQUES USING RESERVATION POOL” in

IEEE International Conference on Recent Advances

& Innovations in Engineering" (ICRAIE-2014), May

09-11, 2014. IEEE Conference Record # 33681.

[26]. Shubham Kumar and Saravanan Chandran, “Modified

Execution Time based Resource Reservation

(METRR) Algorithm”, presented at ICBIM 2016, 9-

11, January 2016, ISBN: 978-1-5090-1228-2, NIT

Durgapur, INDIA.

[27]. Xiang Xiao, Jaehwan John Lee.: A parallel multi-unit

resource deadlock detection algorithm with

O(log2(min(m, n))) overall run-time complexity. J.

Parallel Distrib. Comput. 71. pp. 938–954. (2011)

[28]. Youming L, “ A Modified Banker‟s Algorithm”, in

Springer Innovations and Advances in Computer,

Information, Systems Sciences, and Engineering pp

277-2819(2012)

[29]. Hongwei Wang ; Jinfeng Tian; Mingqi Li ; Weixin

Mu; Xiangchuan Gao,” Banker's algorithm based

resource allocation in next generation broadcasting

wireless systems(2015) . IEEE Proc Int‟l Conf

Communications and Networking in China

[30]. H. K. Pyla and S. Varadarajan. Avoiding deadlock

avoidance. PACT ‟10, pages 75–86, New York, NY,

USA, 2010. ACM

[31]. Operating systems: design and implementation,

Andrew s. tanenbaum, prentice hall, 2006.

[32]. Aida.O.Abd EI-Gwad, Ahmed.I.Saleh, Mai.M.Abd-

EIRazik. "A Novel Scheduling Strategy for an

Efficient Deadlock Detection" IEEE. 2009

[33]. Kshipra Dixit, Ajay Khuteta, “A Dynamic and

Improved Implementation of Banker‟s Algorithm” in

International Journal on Recent and Innovation

Trends in Computing and Communication,2017,

ISSN: 2321-8169 Volume: 5 Issue: 8 pg 45 – 49

https://link.springer.com/book/10.1007/978-1-4614-3535-8
https://link.springer.com/book/10.1007/978-1-4614-3535-8
https://link.springer.com/book/10.1007/978-1-4614-3535-8
https://ieeexplore.ieee.org/author/37085774691
https://ieeexplore.ieee.org/author/37061570600
https://ieeexplore.ieee.org/author/37291657900
https://ieeexplore.ieee.org/author/37085777189
https://ieeexplore.ieee.org/author/37085777189
https://ieeexplore.ieee.org/author/37085777189
https://ieeexplore.ieee.org/author/37085362766
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7492447
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7492447
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7492447

COMPUSOFT, An international journal of advanced computer technology, 8(7), July-2019 (Volume-VIII, Issue-VII)

3249

[34]. Pankaj Kawadkar, Shiv Prasad, Amiya Dhar Dwivedi,

“Deadlock Avoidance based on Banker‟s Algorithm

for Waiting State Processes” in International Journal

of Innovative Science and Modern Engineering

(IJISME) ISSN: 2319-6386, Volume-2 Issue-12,

November 2014

[35]. Aida. O. Abd El-Gwad, Ahmed. I. Saleh, Mai. M.

Abd-ElRazik. “A Novel Scheduling Strategy for an

Efficient Deadlock Detection” IEEE. 2009

[36]. Zhang, C., Liu, Y., Zhang, T., Zha, Y., Huang, K., “A

Deadlock Prevention Approach based on Atomic

Transaction for Resource Co-allocation”, First

International Conference on Semantics, Knowledge

and Grid (SKG'05), 37-39(2005).

[37]. Kim, J. Koh,“An O(1) Time Deadlock Detection

Scheme in Single Unit and Single Request

Multiprocess System”, Proc. IEEE Region 10 Conf.

(TENCON ‟91), pp. 219-223. (1991)

[38]. Cahit, “Deadlock Detection Using (0, 1)-Labelling of

Resource Allocation Graphs”, IEEE Proc. Computers

and Digital Techniques, pp. 68-72. (1998)

[39]. Shiu, P. Y. Tan, Mooney, “A Novel Parallel Deadlock

Detection Algorithm and Architecture”, Proc.Int‟l

Conf. Hardware Software Codesign (CODES ‟01),

pp. 73-78. (2001)

[40]. Huang, Y.S., Lin, J.H., Hsu, C.N., “Comparison of

deadlock prevention policies in FMS based on Petri

nets siphons”, In Proc. IEEE International Conference

on Systems, Man, and Cybernetics, 4867-4872(2004).

[41]. Kim, J., “Algorithmic Approach on Deadlock

Detection for Enhanced Parallelism in

Multiprocessing Systems”. Proc. Second AIZU Int‟l

Symp. Parallel Algorithms/Architecture Synthesis

(PAS ‟97),pp. 233-238. (1997)

[42]. Yin,W., Stephane, L., Terence, K., Manjunath, K.,

Scott, M., “The Theory of Deadlock Avoidance via

Discrete Control”, 36th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming

languages, PoPL,202- 214(2009).

[43]. Zhishuo Zheng , Deyu Qi, Mincong Yu,

XinyangWang ,Naqin Zhou, Yang Shen, and Jing

Guo, “Optimizing Job Coscheduling by Adaptive

[44]. Deadlock-Free Scheduler, Hindawi Mathematical

Problems in Engineering, Volume 2018, Article ID

1438792, 18 pages.

