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Abstract:  The ant colony optimization algorithm is based on the behaviour of real ants. This algorithm was introduced in the 

1990s with the aim of finding solutions to problems which simulates the decision-making processes through the use of ants 

artificial. This paper provides an overview of some of the previous studies and research progress on the traditional and 

specialized applications of the ACO algorithm towards scheduling and network problems, such as oil pipelines, water 

distribution system, and natural gas pipelines. 
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I. INTRODUCTION 

ACO algorithm was first introduced by an Italian 
researcher, Marco Dorigo in 1992 in his Ph.D. thesis[1]. He 
used ACO for the first time to solve the travelling salesman 
problem (TSP). The algorithm was then developed and 
applied to solve many other problems such as vehicle 
routing problem (VRP)[2, 13], quadratic assignment 
problem (QAP) [3], scheduling problem[4,12], data 
encoding in telecommunication systems [5], garbage 
collection[6], mapping problems [7], network model 
problem [8],  graph coloring problems [9], personal 
placement in airline companies [10] as well as job-shop 
problem [11]. Besides that, it has been successfully applied 
in finding the best solution for the complex problem in life 
such as the design of large communication networks, the 
scheduling of traffic in major cities and creating the ideal 
locations and stores of energy plants [12].There are also 
recent applications such as the development of emerging 
cells in the design of electronic circuits [13], the design of 
communication networks [14], and the problems of 
bioinformatics[9]. In recent years, some researchers have 

also focused on the application of ACO algorithms on 
multi-objective problems as well as dynamic or random 
problems, especially in the field of informatics and the field 
of biomedical applications such as protein folding [15] and 
multiple sequence alignment [16]. 

The ACO algorithm is an evolutionary learning 
algorithm that relies on observing ants behavior and can be 
applied to solve combinational optimization problems 
which categorizes into an NP-Complete problem [17]. The 
ant colony algorithm is an algorithm for finding optimal 
paths that are based on the behavior of ants searching for 
food. At first, the ants wander randomly. When an ant finds 
a source of food, it walks back to the colony leaving 
pheromones that shows the path of the food[9]. Ants are 
naturally able to find the shortest route from food sources to 
the nest, where they leave the chemical pheromone on the 
ground which serves as a guide to the rest of the ants to find 
the food. The choice of the path depends on the density of 
the pheromone [18], so the behavior of the ants stimulate 
the emergence of an algorithm which consists of a group of 
artificial ants as a group of agents. The selection of the path 
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depends on the density of the pheromone[19]. Following 
from there, this motivates the investigation of developing an 
algorithm which produces good quality solutions across 
different instances and problems which do not require 
extensive parameter tuning. This choice is governed by the 
following steps, as described in [22]: 
(a) Real ants follow a path between the nest and the food 

source. 

(b) An obstacle appears on the path: ants choose whether 

to turn left or right with equal probability.  

(c) Pheromone is deposited more quickly on the shorter 

path. 

(d)  All ants have chosen the shorter path.   

Fig.1: Behavior of ants [20] 

Theorem. Let p∗ (t) be the probability that ACO 𝑏𝑠, 𝜏𝑚𝑖𝑛  
(the best-so-far solution is used to update pheromones and 
that a lower limit) finds an optimal solution at least once 
within the first t iterations.  Then, for an arbitrarily small 𝜀> 
0 and for a sufficiently large t it holds that p∗ (t)  ≥1−𝜀, and 
asymptotically  
 

𝑙𝑖𝑚𝑡→∞ 𝑝 ∗ (𝑡) = 1.                                             (1) 

 

Proof. The proof of this theorem consists in showing that, 

because of  𝜏𝑚𝑖𝑛 > 0, at each algorithm iteration any generic 

solution, including any optimal solution, can be generated 

with a probability greater than zero. Therefore, by choosing 

a sufficiently large number of iterations, the probability of 

generating any solution, and in particular an optimal one, 

can be made arbitrarily close to 1 [21][22]. 
 

II. APPLICATION OF ACO ALGORITHM IN NETWORK 

PROBLEM 

This paper focuses on the application of ACO approach in 
the area of network and scheduling problem. The network 
problem discussed in this paper involves crude oil pipeline 
network, gas pipeline network, water pipeline network, 
travelling salesman problem and vehicle routing problem. 

A. Scheduling of Refined Products in a Pipelines 

The transfer of refined products is more efficient by using 
multi-product pipelines which is important in energy supply 
chain. A nonlinear programming model for a virtual and 
universal pipeline with one source and multi pumping 

stations was established to demonstrate the convergence, 
stability and scientific scope using the simplex methods and 
ACO algorithm. The latter showed a stable and compatible 
model in the problem of scheduling the injection of many 
types of products [23]. Also, the problem of pipeline 
scheduling of refined products sometime takes a long time 
to develop a plan for scheduling. Zhigang et al. (2016)[24] 
introduced a nonlinear programming model using the 
heuristic algorithms for refined products of single source as 
well as multiple stations and application on a realistic 
pipeline which starts from Mao and ends at Da Li in western 
China, where the time taken for the model is 31.70s and 
corresponds to the real state of the field. 
Crude Oil Pipelines Network 
The pipeline industry grew rapidly following the 
development of the electrically welded electrode tube in the 
1920s. This tube is stronger than the previous species, and 
can transport materials at higher pressures and, therefore, in 
larger quantities. The pipeline helped gas and oil companies 
to build economically viable pipelines with a length of more 
than 1,600 km. At present, these pipelines transport oil and 
gas from major production areas to refineries and 
distribution centers. 
The most common arrangement is finding the briefest way 
from a fixed origin Vi to a specified vertex Vj in a graph. As 
a rule, the total cost in the life expectancy for pipelines is 
the main issue for optimal design to the pipelines problem, 
hence the briefest way from the source vertex to the 
terminal vertex compares to the base total cost for the 
pipeline system. At the same time, the planner hopes to get 
a little of the process programs, which could be utilized in 
decision making. This is the reason why researchers see the 
design of the oil and gas pipelines as a complex engineering 
task. These pipelines span long distances, transports large 
quantities of oil and gas, and that any improvement in the 
design even if minor, will result in substantial savings in 
total cost [25].  
Oil pipelines extend may be of short distances, for example 
one mile or may be extended to a distance of more than 
1,000 miles. The transmission and distribution pipelines 
range in a diameter of between 8-24 inches or up to 48 
inches. These pipelines may be of simple connecting from 
one source to one destination or complex connecting from 
multiple sources to multiple destinations. All the major oil 
pipelines, which represent the transmission and distribution 
pipelines, are buried underground except for the gathering 
pipelines that remains above the ground [26]. 
Distribution networks consist of pipelines, tankers, ships 
and railways that transport refined petroleum products such 
as liquid gas, gasoline, jet fuel and heating oil, as well as 
large storage tanks for these products. These pipelines have 
several entry and exit points. The main objective is to 
ensure that the product is delivered to the customer in a 
timely manner, where they considered pipelines as the safest 
and least expensive method. 
Cafaro and Cerda, (2010) [27] proposed the formula of 
Mixed Integer Linear Programming (MILP) which is a 
continuous operational scheduling of one-way pipes that 
allows simultaneous injection of payments to provide 
warehouse requirements at the lowest total cost including 
backorder expenses. It has been selected as a problem target 
through an optimal schedule of all product pumping and 
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delivery operations at one time. The results showed the best 
capacity of the transport pipelines which reduces the time 
acquired to inject the required payments to the warehouse 
and thus the MINLP model often achieves the best pipelines 
schedules. 
Diverse kinds of methodologies were proposed to handle 
the single-source pipeline scheduling issues such as 
knowledge-based heuristic techniques including rigorous 
optimization models [28], decomposition frameworks [29], 
as well as discrete event simulation tools [30]. Rigorous 
optimization methods generally consist of solving a single 
MILP or MINLP mathematical model and are usually 
grouped into two classes: discrete or continuous, depending 
on the way the volume and time domains are handled. 
Discrete MILP-definitions isolate both pipeline volumes 
into countless item packs, and the arranging skyline into 
time interims of equivalent and settled length [31], [32], 
[33]. As a result, flow-rate variations due to the changes in 
pipeline diameter cannot be handled. 
Wang, (2015) [34] used an ant colony algorithm and genetic 
algorithm to establish a multi-objective programming model 
to improve the transmission networks of China's crude oil 
imports. The result showed that the very large crude carrier 
(VLCC) is less secure than the pipeline transport but is 
superior in long-haul crude oil transport. Taking this into 
consideration, multilayered networks should be established 
to transport crude oil imports, and to enhance land transport 
to reduce the environmental damage that may arise from 
seaborne transportation. 
Razavi, (2010) [35] used improved ACO algorithm, known 
as continuous ant colony algorithm (CACO), for 
multidimensional optimization. This algorithm has been 
successfully applied on three examples with different 
degrees of complexities in improving the petroleum 
engineering and estimating continuous parameters to solve 
process improvement regarding problems in petroleum 
engineering. The objectives are as follows: to determine an 
optimum number of phase separators and separators 
pressure in the oil industry, parameter estimation in history 
matching problem in petroleum reservoirs, as well as 
maximizing cumulative oil production. The results show the 
ability of the ACO algorithm in providing accurate and fast 
solutions. 

B. Gas Pipelines Network 

Rothfarb and Goldstein (1970) [36]ponders the ideal plan of 
seaward flammable gas pipeline frameworks where three 
issues were examined. Firstly, the choice of ideal distances 
across a given pipeline; second is the structure of an ideal 
pipeline framework given the gas-field areas and 
conveyance prerequisites; while the third is the ideal 
extension of a current pipeline arrangement. The system is 
expected to have a tree (or arborescence). Stream of gas in a 
pipe is represented by the nonlinear weight drop 
requirements, with most extreme and least weights 
applying. The expense of a blower relies upon the way from 
the conveyance hub to the point of most prominent weight.  
 
In the previous study by  Arya & Honwad, (2017)[37] in 
solving the multiobjective gas pipeline transportation 
problem, a multi-objective ACO technique for pipeline 
optimization has been developed. The multi-objective of the 
problem is to minimize fuel consumption in compressors as 

well as to maximize the production. For validation of the 
technique used, it has been applied on some test problems 
reported in the literature. After validation, the technique has 
then been implemented in the gas pipeline transportation 
problem where an eighteen-node gas pipeline networks has 
been taken for analysis. The result obtained supports the 
industrial practice of maximizing the cost of an increase in 
fuel consumption in compressors. 

 

 

Fig. 2: Gas pipeline network [37] 
 

Another study by Mikolajkova (2018)[38], proposed a 
mixed integer linear programming model with the aim to 
improve the regional natural gas chains for those areas that 
cannot be supplied with natural gas through transport 
pipelines. The results show the role of the cost of the local 
and alternative fuels and the price margins at which it is 
achievable to fabricate a pipeline organize as opposed to 
providing the fuel by trucks to stockpiles associated with 
pipeline islands. The findings also give support to the 
decision maker in the energy sector leading to the optimal 
design of the gas supply chain. 

 

 
 

Fig. 3: Scheme of the pipeline and truck transportation of 

the gas in a local network [38]. 

 

Chebouba, (2006)[39]improved the ant colony optimization 
algorithm by hybridizing it with the genetic algorithm to run 
the natural gas pipeline efficiently and stable as well as to 
compare the results with the dynamic programming 
technique to reduce the amount of gas consumed as fuel to 
run the pressure stations located on the natural gas pipeline 
which connects two cities in Algeria.  The results showed a 
remarkable performance of the hybrid algorithm compared 
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to the linear programming with a shorter computation of 
time. 

C. Water Pipelines Network 

The first historic pipeline was built as part of the water 
distribution network (WDN) in ancient Rome. It was more 
than 612 km long and probably transported about 
1,200,000,000 liters of water per day. This pipeline was 
built in such a way to allow gravity to transfer water in the 
distribution system. In 1582, the first pumps for pipelines 
were installed in the London City water system, while in the 
19th century, pipelines began to become an important part 
of water distribution systems in many industrialized 
countries. 
In the past century, the use of algorithms as an evolutionary 
method of operation and optimization of WDN such as 
genetic algorithm has been observed[40]. The ACO 
algorithm was developed for the optimal design of WDN 
and its results were compared with the results of the genetic 
algorithm. The ACO algorithm was considered an 
alternative to the GA algorithm in terms of finding optimal 
solutions and computational efficiency [41]. 
Improvement of the water distribution network using the 
ACO algorithm were achieved since this algorithm has a 
good research capability and can meet the engineering 
requirements by avoiding the appearance of the pipeline 
diameter that does not meet the purpose. The results show 
that the ACO algorithm is capable of meeting the 
engineering requirements of the optimal design of the water 
distribution system[42]. Note that, the water distribution 
network plays an important role in improving people's 
livelihood and ensuring the economic construction. Because 
of the longer period and higher investment to pay for the 
investment in the WDN, the reasonable design and 
operation of the WDN directly affects the project’s 
investment, operating and management costs, as well as the 
system’s stability. The optimal design of the water 
distribution system is vital to provide investment, reduce 
energy consumption, as well as to enhance monetary and 
social advantages[43].  
Besides that, Holger (2004)[44]used ACO algorithm to 
improve the water distribution system (WDS) of a 14-pipes 
network used by Simpson et al. (1994), and compared the 
results with the GA algorithm. The results indicated that the 
ACO algorithm is better in reaching the optimal solution in 
terms of the number of appropriate assessments for the 
optimal design of the water distribution network.  
Apart from that, Maroua (2018)[45] proposed hybridization 
of the ACO algorithm with the K-means algorithm, called 
K-ACO algorithm to improve water distribution networks. 
The aim was to ensure that water distribution networks 
increase its life-span, as well as detecting hydraulic faults 
that can occur through industrial wireless sensor networks 
(IWDN) systems. 
The work of the hybrid algorithm is divided into two parts. 
Firstly, a WDN is divided into five groups of 80 sensors, 
while secondly, the ACO algorithm defines the shortest 
distance between the sensors and ensures the least amount 
of energy consumption to improve the WDN. 
In the past decade, numerous researchers have completed 
broad perspectives into the planning issue of water 
distribution network. One of these evolutionary algorithms 
was the particle swarm optimization (PSO) that was applied 

to the WDN which regulates the variation of the speed 
round to fit the discrete pipe diameter for Hanoi water 
distribution network and the New York City water supply 
tunnel system [46].  

D. Travelling Salesman Problems  

The travelling salesman problem is one of the best-known 
NP-hard problems. The best known exact methods for 
solving TSP are dynamic programming, branch and bound 
method, implicit enumeration, explicit enumeration, and 
cutting plane method. These methods provide the best 
optimal solutions when the numbers of the nodes are 
between 40-80 nodes. As for the heuristic methods, particle 
swarm optimization, ant colony optimization, genetic 
algorithms, differential evolution, etc. are the evolutionary 
algorithms inspired by nature[47]. 
Dorigo and colleagues developed an ant colony system for 
solving the travelling salesman problem in 1991[48]. Ant 
colony optimization algorithms have been used to produce 
near-optimal solutions to the traveling salesman problem. 
The first ACO algorithm known as the Ant system, aimed to 
solve the travelling salesman problem where Dorigo 
developed a relatively simple algorithm to find the shortest 
path in a series of cities. The general algorithm is relatively 
simple and based on a set of ants, each making one of the 
possible round-trips along the cities. At each stage, the ant 
chooses to move from one city to another according to some 
rules given by:  

1. It must visit each city exactly once;  
2. A distant city has less chance of being chosen (the 

visibility);  
3. The more intense the pheromone trail laid out on an 

edge between two cities; the greater the probability 
that that edge will be chosen;  

4. Having completed its journey, the ant deposits more 
pheromones on all edges it traversed, if the journey 
is short;  

5. After each iteration, trails of pheromones evaporate. 
One of the exploratory methods of the ACO algorithm is 
Max-Min ant system (MMAS). It was used as an 
application to solve the 3D travelling salesman problem on 
a sphere to find the optimized time-cost. The result shows 
that ACO’s average results were better than the Discrete 
Cuckoo Search Algorithm (DCS) and GA’s average results 
[49].  
Apart from that, in 2008, Bountoux and Feillet[50]proposed 
a hybrid algorithm consisting of an ACO algorithm and 
local search to solve TSP problem called the dynamic multi-
dimensional anamorphic travelling ant (DMD-ATA).Results 
show the efficiency of the algorithm, which allows the 
finding of a large set of new best known solutions.  
In addition, in 2006, Pasti and Castro[51], used a meta-
heuristics for solving TSP based on a neutral network 
trained using ideas from the immune system. The network 
was self-organized and the learning algorithm aims at 
locating one network cell at each position of a city to be 
solved. This algorithm is known as the real-valued antibody 
network (RABNET).The results refer to the exponential 
growth of the processing time and a number of iterations for 
convergence in relation to the number of cities which 
requires further investigation; and modifies the algorithm to 
solve other types of combinatorial optimization problems 
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such as the multiple travelling salesman problem and 
capacitated vehicle-routing, etc.  
Apart from that, in 2007, Cheng and Mao[52]developed a 
modified ant algorithm known as the ant colony system 
travelling salesman problem with time windows (ACS-
TSPTW) based on the ACO technique to solve the TSP. The 
results showed that ACS-Time failed to determine feasible 
solutions for five cases of this problem, while ACS-TSPTW 
found feasible solutions for four of the five cases. In 
addition, ACS-TSPTW outperforms ACS-Time in six 
problems and obtains an equivalent performance as ACS-
Time in seven problems. The overall performance of ACS-
TSPTW is better than ACS-Time in seventeen out of the 
thirty-one problem instances. The lower bound results have 
shown that ACS-TSPTW obtains the optimum solution in 
three of the problem instances.  

Also, Dong et al., (2012) [53] proposed a new hierarchic 
model of swarm intelligence algorithms to solve TSP, which 
combines both GA and ACO together in a cooperative 
manner called Cooperative Genetic Ant System (CGAS) to 
improve the performance of ACO. The results of simulation 
shows that CGAS has a better performance from other GA 
and ACO algorithms for solving TSP in terms of 
consistency and capability of achieving the optimal solution, 
and quality of average optimal solutions, particularly with 
respect to TSP problems. 

Meanwhile, Gunduz and Kiran, (2015) [54]proposed a 
new hierarchic model of swarm intelligence algorithm to 
solve the TSP problem. The swarm intelligence algorithm 
used in their study was divided into two types as path 
improvement and path construction based method. The path 
construction based on ACO algorithm produced better 
solutions but took more time to achieve a good solution. 
Meanwhile, the path improvement based on artificial bee 
colony technique quickly produced results but did not 
achieve a good solution in a reasonable time. Therefore, 
their hierarchic method which consists of ant colony 
optimization - artificial bee colony (ACO-ABC) was 
proposed to achieve a good solution in a reasonable time. 
ACO was used to provide better initial solution for ABC 
that uses path improvement technique in order to achieve 
optimal or near optimal solution.  

E. Vehicle Routing Problem (VRP) 

The VRP formulation was first introduced by Dantzig and 
Ramser in 1959 as a generalization of the Travelling 
Salesman Problem (TSP) presented by Flood [55]. Pillac, et 
al., [2] believed that dynamic routing offers other concepts 
such as productivity and service or profit. Other important 
concepts were such as the response time. Customers may 
request for services with as little time as possible. Dynamic 
routing is designed to reduce the delay between the time of 
the demand and the arrival time. 

 

Fig. 4: Example of dynamic vehicle routing [2]. 

Previous studies of the VRP focused on creating a multi-
objective model with a time window including the cost of 
fixed vehicles, operating cost, loss of lifespan and default 
cost. This was mentioned by researchers in their study 
where they applied generation of ACO with ABC 
customers’ classification strategy to solve the problem. The 
computational results show that the ACO with targeted 
customer classification is 20.8 % faster and with 5.9% cost 
reduction [56]. 

The VRP is a kind of NP-hard problem applied in many 
areas of communication, logistics, manufacturing, 
transportation, and others. The traditional VRP problem 
consists of using a group of vehicles in a single warehouse 
to meet the client's request for a particular commodity in 
delivering the goods to customers [57].Different heuristic 
algorithms have been proposed for achieving great solutions 
in sensible running time, but not necessarily the optimal 
solution. These algorithms include the ACO [58][59], tabu 
search (TS) [60], simulated annealing (SA) [61], and genetic 
algorithm (GA)[62][63]. 

In terms of exact algorithms, Arunapuram et al., 
(2003)[64] proposed an exact algorithm for solving the full 
truckload vehicle routing problem (FTVRP). The authors 
introduced a column generation method that takes 
advantage of the special structure of the linear programming 
sub-problems at the nodes of the branch-and-bound tree. 
The algorithm also took into consideration the time-window 
constraints and waiting costs. However, the exact algorithm 
is unable to solve the instances when the number of lanes 
exceeds 200. 

Apart from that, Liu, et al., (2010)[65]utilized an 
assignment choice and directing issue in which a truck-load 
bearer undertook from shippers and different partners has to 
make a choice between a private vehicle or an outside 
transporter to serve each errand. The authors build up a 
memetic algorithm (MA) to solve the issue, where the 
computational results show that the proposed algorithm is 
effective and yield better results in a shorter time. 

In addition, Sun, (2012)[66]proposed an adaptive PSO 
algorithm and GA algorithm with near neighbor interactions 
to solve it with a variant of the full truckload vehicle routing 
problem(FTVRP) in which vehicles were not required to 
return to the depot after they finish their task. The 
computational results demonstrated that the proposed 
algorithm is effective and feasible.  

Also, Li & Lu (2014)[67]proposed a hybrid genetic 
algorithm to solve FTVRP in which there are more than one 
delivery points corresponding to the same pickup point, 
where one order is allowed to be served several times by the 
same vehicle, or different vehicles. Computational outcomes 
demonstrated that the genetic algorithm dependent on the 
improved sweep algorithm is a superior technique to solve 
this issue.  

Besides that, Karim and Adil (2017) [68] was the first to 
propose the ACO approach to solve the full-truck load 
selective multi depot vehicle routing problem at time 
windows constraints (FT-SMDVRPTW). The motivation 
was based on using ACO algorithm metaheuristic for 
constructing the sets of routes related to the trucks while 
expanding the increased profit, which was implemented for 
solving the basic vehicle routing problem FT-SMDVRPTW 
and modified the algorithm to incorporate a robust 
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optimization methodology. Results show that the proposed 
approach may obtain a high quality solution within a short 
period of computational time. 

III. APPLICATION OF ACO ALGORITHM IN SCHEDULING 

PROBLEM 

This paper highlights the scheduling problem which consists 
of transportation scheduling, overhauling gas turbine 
engines, train routing and timetabling problem.  Modern 
facilities for different products consist of assembly units and 
a number of parts that may reach thousands or tens of 
thousands which require a special approach to regulate the 
production process in a limited time and at the lowest cost. 

 Various optimization techniques and metaheuristic 
techniques have been used to optimize the production 
scheduling where ACO algorithm is one of the 
metaheuristic techniques that has been used to solve the 
problem of multi-objective in manufacturing company. The 
problem of scheduling production in mathematical terms is 
a problem with multiple and somewhat complex solutions. 
An approximate solution can be found by heuristics, Monte 
Carlo method or solved by exact method such as Gomory's 
cut and mathematical programming [69]. The main 
optimality criteria are readjustment time minimization [70], 
total throughput time minimization [71], the minimum cost 
of schedule execution criteria [72], and etc. The optimum 
production schedule searching can be performed using 
dynamic programming, linear programming, evolutionary or 
combinatorial algorithms [73].The results of the analysis of 
multi-objective optimization algorithms and the current 
methods were to obtain the best solutions to real production 
problems in a relatively short time with the modification of 
the ant algorithm to enhance the best tracks found. 

Jiang, (2017) [74]developed the production scheduling 
of oil refinery by using the disadvantages and advantages of 
ant colony algorithm. Since the ant colony algorithm has 
many advantages in solving combinatorial optimization 
problems, it is commonly used in commercial, academic, 
and industrial fields. Paying attention to the production of 
the oil refinery introduces the advantages of ant colony 
algorithm which is then used to optimize the traditional 
scheduling method to make the oil refinery satisfy the 
market demand, and save production costs. It can also 
improve the technology and increase the economic 
efficiency and management level. 

The Artificial Bee Colony algorithm (ABC) was applied 
to solve the Flexible Job-Shop Scheduling Problem (FJSP) 
on the basis of the criteria of reducing the maximum total 
completion time [79]. The proposed algorithm focused on 
balancing the global exploration with the local exploitation, 
one of the stages of the algorithm, by focusing on several 
stages in reaching the final solution. In the first stage, 
several strategies have been incorporated to generate the 
first quality and diversified solution based on the method of 
searching for food sources of bees. In the second stage, the 
machines are assigned, and the sequences of operations are 
determined by designing a research tool to generate new 
adjacent food sources for the artificial worker bees. In the 
third phase, a local (primary) research strategy based on the 
critical path, which was incorporated into the framework of 
the research, was proposed with a view to develop the focus 
of control bees. In the meantime, a mechanism was 

proposed to modernize the population through the 
generation of bee’s explorer in order to enhance the research 
behavior and to avoid inappropriate convergence in 
algorithm solutions, through a multi-stage approach and 
strategies to solve FJSP problems. The results were then 
compared with simulated tests of other techniques such as 
particle swarm optimization (PSO) (Ho et al., 2007)[75], 
Tabu Search technology [76], simulated annealing (SA) 
[76], and genetic algorithm (GA) [77]. The proposed 
algorithm has proven to provide more efficient and robust 
solutions [78]. 

It is important for cloud users to provide effective task 
scheduling technology as cloud computing relies on the 
expected pricing model [79]as well as to end the cloud 
user's tasks as quickly as possible in cloud computing 
environments (Motavaselalhagh et al., 2015)[80]. SACO 
algorithm with slave ants is a novel ACO algorithm that 
produce timetable assignments of cloud clients to virtual 
machines (VMs) in cloud computing environments in an 
efficient manner by avoiding long pathways, and solves the 
NP hard problems in an effective way [18]. 

A new approach to the ACO algorithm was proposed to 
solve the resource-constrained project scheduling problems, 
such as single machine tardiness, flow-shop, and job-shop, 
using two methods of pheromone evaluation to find the best 
solutions. The results showed the efficiency of the proposed 
algorithm with some changes in the performance’s 
evaluation[81]. 

A. Supply Chain Management in Transportation 

Scheduling problem 

Supply chain management (SCM) has become a potentially 
valuable way of securing competitive advantages and 
improving organizational performance in a highly 
competitive market[82]. In a supply chain management, 
supply, schedule plan, logistics, and demand are the four 
interrelated and inseparable elements. The management 
effect of SCM mainly depends on the important element 
which is the scheduling of vehicle transport times. The 
transportation vehicle scheduling problem in SCM has been 
widely discussed by numerous researchers and practitioners.  

Researchers have attempted to study different 
transportation problem with various algorithms. For 
example, Schyns (2015)[83], Mavrovouniotis & Yang 
(2015)[84]and Kuo et al. (2016)[85] studied the dynamic 
vehicle routing problem (DVRP) with different constraints 
and proposed an improved algorithm based on Tabu Search 
and ACO, respectively. Also, Ardjmand, et al. (2015)[86], 
Escobar, et al. (2014)[87] and Ardjmand, et al. (2016)[14] 
used genetic algorithm and TS algorithm to research on the 
location-routing problem (LRP). Apart from that, Kalayci & 
Kaya, (2016)[88] as well as Zhou, et al. (2016)[89]used a 
hybrid algorithm by combining local search and genetic 
algorithm to solve VRP with simultaneous delivery and 
pickup. Also, Schweiger & Sahamie (2013) [91] and Lin, et 
al. (2015)[16] addressed the reverse logistics network 
design problem. Other types of transportation vehicle 
scheduling problems had also been widely discussed by a 
number of researchers (see for example 
[92][93][94][95][96][97][98][99]. 
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B. Overhauling Gas Turbine Engines 

In the late 1970s,a diagnosis was given for the 
performances of gas turbines by isolating and evaluating the 
changes in the performance of the engine unit, engine faults, 
the problems of the devices, and the knowledge of the 
parameters measured along the path of the gas in the engine 
[100]. 

Note that, changes in the engine speed are required to 
determine the fundamental change in the engine’s operation. 
This is done by using the Kalman filter to estimate multiple 
engine errors at the same time. In the past decade, artificial 
neural networks (ANN) have been used as a device to 
identify the same errors with the Kalman filter and the two 
methods have shown an acceptable success[101]. 

Furthermore, some researchers have addressed the 
problem of median filter weight optimization where 
algorithms for calculating the integer weights of weighted 
median filters were proposed[102]. Both recursive and non-
recursive filters were considered but the study focused on 
center weights. A numerical approach for the optimization 
of recursive median filters was presented in the study of 
[103]. They found that higher integer weights led to 
duplication in the filter and low integer space was sufficient 
for the given problem. Filter design spaces can often be 
multimodal which means that there can be more than one 
minimum point. Therefore, the gradient-based numerical 
optimization can settle into a local minimum point. To 
address this issue, the use of global optimization methods in 
filter design has grown substantially. Also, particle swarm 
optimization was used to solve the parameter estimation 
problem of nonlinear dynamic rational filters [104]. Besides 
that, genetic algorithms have also been used for optimizing 
stack filters using a root mean square error (RMSE) 
approach.  

On the other hand, ACO was used for the design of 
infinite impulse response (IIR) filters [105]. Since the error 
surface of IIR filters are generally multimodal, global 
optimization methods such as ACO are well suited for their 
design. ACO is a relatively new approach in solving 
combinatorial optimization problems. Note that a heuristic 
method is an approach to solve problems that employ a 
practical method which is not guaranteed to be optimal or 
perfect, but sufficient for the immediate goals. Heuristics 
are often treated as rules of thumb or educated guesses. 
Since ACO is a heuristic method, it provides satisfactory 
solutions, unfortunately these solutions may not prove to be 
optimal and the convergence of such methods cannot be 
guaranteed. Raikar & Ganguli (2017)[105]in their paper 
addressed the problem of finding the integer weights of 
weighted recursive median (WRM) filters using ACO. The 
algorithm is demonstrated for signals simulating jet engine 
single (abrupt) and gradual faults. The WRM filter is 
demonstrated for abrupt and gradual faults in gas turbines 
and is found to yield noise reduction of 52–64 % for 
simulated noisy signals considered in the paper. 

C.  Train routing problem and timetabling 

Railways play a major role in transporting passengers and 
cargoes in many countries in the world, especially in the last 
fifty years. Many methods have been developed to solve the 
problems of train tracks such as the linear programming, 
simulation and meta-algorithms. At present, evolutionary 

algorithms have been applied on different types of 
scheduling, routing and timing with good results 
obtained[106][107][108].  

Railway traffic activities have been steadily increasing 
in the most recent decades. Railroad foundation chiefs need 
to confront this ever increasing request guaranteeing a good 
quality of administration. This, added to the restricted space 
and assets accessible to construct a new framework in 
bottleneck zones, has invigorated lately the advancement of 
productive routes for enhancing the dependability of the 
activity. This dependability comprises in the ability to run 
trains following a predefined plan. Ordinarily, a various 
leveled basic leadership approach is embraced when 
arranging railroad tasks, bringing about a progression of 
tractable issues for which man-made brainpower and 
activities look into methodologies that have been proposed. 
These issues can be gathered in three dimensions: vital, 
strategic and operational[109]. 

Railways may face unanticipated emergency problems 
such as an increase in the number of passengers or strong 
winds that hinder train traffic. An anticipation of these 
problems must be dealt with seriously and effectively, so 
that the real-time railway traffic management problem 
(rtRTM) achieves to schedule methods and routing tracks in 
order to reduce the delay that may occur. The rtRTM 
problem is affected by the number of alternative routes 
available for each train.  The ACO algorithm is used to 
solve the train routing selection problem (TRSP) system at 
two levels. The Tactical Level depends on data and time of 
calculation, while the Operational level depends on the 
traffic with a specific calculation time. The results showed 
that the performance of ACO-TRSP is more effective 
compared to the other proposed techniques, so the 
implementation of ACO algorithm on TRSP allows 
improvement of the performance to (rtRTM)problem [110]. 

In the previous related literature, the real-time train 
routing selection problem is formulated as an integer linear 
programming formulation solved via an algorithm inspired 
by the ant colonies behavior [97]. This problem is solved 
starting from a subset of routing alternatives and computing 
the near-optimal solution of the simplified routing problem 
[97]. They studied on how to select the best subset of 
routing alternatives for each train among all possible 
alternatives to improve the state of the art in terms of the 
minimization of train consecutive delays. 

Apart from that, railway rolling stock planning is a basic 
schedule in railway transport, which assigns physical train 
units to a given timetable services and determines a roster of 
the train units [8]. This planning also involves a scheduling 
of periodical inspection for the train units. They proposed 
ACO based approach to solve this planning problem. A 
study by Gholami & Sotskov, (2012)[111]solved the 
problem of the train schedule, in which genetic algorithm 
was developed to guide and schedule trains to achieve an 
effective timetable and trajectories which may reduce train 
delays in the transmission from source to destination. Many 
countries in the world have only one railway route, 
connecting two consecutive stations, where one train can 
move from station No. 1 to station No. 2 while the train 
remains at station No. 2 waiting for the arrival of the train 
from Station No. 1 and vice versa. This delay causes an 
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increase in fuel consumption and material losses to the 
railway company. 

 

 

Fig. 5: Case of a train delay arising in a single-road railway. 

[111] 
 
Tormos et al., (2008)[112]used GA for timetabling to 

optimize the new trains on a railway line, which is working 
or not working, on other trains with fixed timetables. The 
schedule for the new trains is obtained using GA that 
includes a guided process to build the initial population. 
Vincent  and Minlong,(2009)[113] proposed a simulation 
strategy in light of the GA to solve the speed railroad 
timetabling issue. A two-row table is made, where the first 
row represents the type of the train while the second row 
represents the departure time of the train, and the number of 
columns in the table is the same as the number of trains to 
be scheduled.  

Apart from that, Wegele & Schnieder, (2004)[114] 
suggested an algorithm to construct a timetable using a 
branch-and-bound algorithm developed to obtain an initial 
solution where a GA has been used to improve the current 
solution iteratively. The goal of this issue was to minimize 
the annoyance to passengers. An innovative GA to construct 
a feasible train timetable in terms of a train order was 
introduced by Liu & Kozan, (2011)[115]. In particular, the 
proposed algorithm comprises of several recursively used 
procedures like blocking-time-determination, best-starting-
time determination, conflict checking procedure, tune-up 
procedure, conflict-eliminating procedure, as well as fine-
tune procedure to ensure the plausibility of a timetable by 
fulfilling the blocking, no-wait, deadlock-free, and conflict-
free constraints. 

IV. CONCLUSION  

This paper reviews the introduction of the ACO algorithm, 

some applications, and research progress related to the work 

of this algorithm which focuses on the applications on 

pipeline networks (oil, gas, and water), as well as their 

applications in scheduling problems (transportation 

scheduling problem, job-shop scheduling problem, 

overhauling gas turbine engines, as well as train routing 

problem and timetabling). The ACO algorithm approach is 

capable of finding the near optimal solution for improving 

the oil, gas and water line networks as well as improving 

scheduling problems but sometimes require a longer 

computing time when dealing with big data. Future work 

may be carried out focusing on the recommendation of 

hybrid ACO with other algorithms strategy that combines 

two or more algorithms to produce less computing time 

with high-performance efficiency. 
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