COMPUSOFT, An international journal of advanced computer technology, 8(7), July-2019 (Volume-VIII, Issue-VII)

Available online on: https://ijact.in

Date of Submission	02/07/2019
Date of Acceptance	29/07/2019
Date of Publication	07/08/2019
Page numbers	3261-3268(8 Pages)

Cite This Paper: Akhilesh Nautiyal, Sunil Sharma (2019). A model to compute service life of rural roads using present pavement condition and pavement age, 8(7), COMPUSOFT, An International Journal of Advanced Computer Technology. ISSN: 2320-0790, PP. 3261-3268.

This work is licensed under Creative Commons Attribution 4.0 International License.

ISSN:2320-0790

An International Journal of Advanced Computer Technology

A MODEL TO COMPUTE SERVICE LIFE OF RURAL ROADS USING PRESENT PAVEMENT CONDITION AND PAVEMENT AGE

¹Akhilesh Nautiyal, ²Dr. Sunil Sharma

¹PhD research scholar, Civil Engineering Department, National Institute of Technology Hamirpur, Himachal Pradesh - 177005(INDIA)

²Assistant Professor, Civil Engineering Department, National Institute of Technology Hamirpur, Himachal Pradesh - 177005 (INDIA) E-mail: akhil.nauti09@gmail.com

Abstract: This paper presents a scientific approach to forecast Remaining Service Life (RSL) of low volume rural roads. A case study of twenty six roads constructed under Pradhan Mantry Gram Sadak Yojna in Hamirpur district of Himachal Pradesh state in India has been selected to implement the approach. Pavement age and Pavement Condition Index (PCI) are the key factors considered to predict RSL of each road. PCI is calculated from the pavement surface distress and roughness data. Bump Integrator is used to calculate the pavement condition based on surface roughness (PCIR)and seven major types of pavement surface distresses namely: alligator cracking, edge cracks, pothole, patching, ravelling, rutting and longitudinal cracks are used in calculating pavement condition index based on distresses (PCID). PCIO is defined as the overall PCI computed from assigning 40% weight to the PCID and 60% to the PCIR. A correlation equation is developed between the pavement age and the PCIO using linear regression analysis: $y = -25.62\ln(x) + 116.16$. However, this equation is valid in conditions similar to those in the study area. A correlation coefficient (r) of 0.8899 was obtained which shows that the curve is a good fit. The developed relationship can help plan repair and maintenance works based on RSL of each road.

Keywords: Pavement distress; international roughness index; linear regression analysis pavement maintenance; remaining service life.

I. INTRODUCTION

Road construction projects involve massive amounts of capital funds. More than two thousand roads have been constructed under Pradhan Mantry Gram Sadak Yojna (PMGSY) in the state of Himachal Pradesh in India. These roads need time to time maintenance. Due to the large number of roads and limited funds availability for road maintenance, the selection of roads for maintenance is critical. Roads are constructed with a designed life. However, low volume roads can have large service lives due to low traffic on these roads. Hence, a road should be maintained only when it has damaged to the extent that it is neither comfortable nor safe to drive on it. These roads are monitored regularly and any damages are recorded in a central database. If we can forecast expected Remaining Service Life (RSL) of these roads, we can plan their repair and maintenance judiciously [1]. RSL is calculated using performance characteristics of roads with respect to their age. Twenty six low volume rural roads constructed under PMSGY by Government of India have been taken as a case study to develop the model for predicting RSL of these roads. Roads constructed under PMGSY are low volume roads built primarily to connect habitations to the adjoining major roads. They carry very low traffic and therefore called low volume rural roads.

II. STUDY AREA

The study area comes under sub humid sub-tropical region with a maximum temperature of $37-39^{\circ}$ Celsius. In winters, the temperature drops down to a minimum temperature of about $3-5^{\circ}$ Celsius. The roads are spread over a small area of about 400 square kilometers. Hence, there are hardly any climatic variations among the roads. Figure 1 show the road map of all six blocks of Hamirpur district.

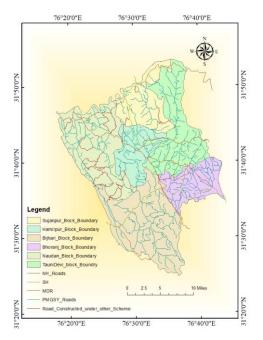


Figure 1: Road map of study area (Developed in ArcGIS 10.4)

III. PAVEMENT CONDITION

The capability of pavement to achieve a specific level of serviceability during application of traffic loadings is known as pavement condition. Pavement condition rating (PCR) has been used in condition records by the Ohio Department of Transportation since 1985 for their highway frameworks [2]. U.S. Army Corp. of Engineers calculated Pavement Condition Index (PCI) for the first time through a visual study of existing pavement distresses. PCI is an easy and economical measure to judge the condition of pavement surface. It is a numerical value usually computed from a manual survey of the pavement throughout the length of road. Surface quality of pavement in terms of roughness and other pavement distresses is used to assign a unique value to each road which is termed as its Pavement Condition Index (PCI).

3.1 Pavement condition Index

PCI is a numeric rating given to each road, which varies from 0 to 100 [3, 4]. Typical values of PCI and corresponding condition of road is shown in table 1. In this study PCI is mainly calculated by two approaches: (1) category, magnitude and severity of surface distresses (PCI_D) and (2) surface roughness and ride quality (PCI_R) .

Table 1: Rating to PCI range		
PCI range	Condition of Road	
0-40	Failed	
40-50	Very poor	
50-60	Poor	
60-70	Fair	
70-80	Good	
80-90	Very good	
90-100	Excellent	

 PCI_D includes evaluation of distress data: alligator cracking, edge cracking, longitudinal cracking, pothole, patching, rutting, and ravelling. Visual survey was done on twenty six roads to collect the distress data and determine PCI_D [5]. PCI_R was computed from pavement surface roughness data which can be measured by developing indirect techniques [6]. In this study, pavement roughness was obtained using Bump Integrator. Basic information of these roads was collected from the Public Works Department which is responsible for construction of these roads. The length and construction year of each road are shown in Table 2.

Table 2: General data

Road name	Road	Length	Construction year
	ID		
Mohin-darkpti	PR1	1.75	2007
Gaddi	PR2	0.96	2010
Salehar	PR3	5	2009
Jol sappar	PR4	3.25	2007
Bharmar	PR5	5.15	2004
Garne da galu to paniala	PR6	3.9	2002
Chalokhar to ree	PR7	5	2001
Patlander ranger road	PR8	6.5	2001
Lambri to nalhai	PR9	2	2002
Ansla bhadera	PR10	1.5	2002
Janglu kuthera	PR11	2	2007
Sai to galol	PR12	2.39	2013
Bara Batali	PR13	2.6	2001
Sukrala	PR14	5	2007
Rangas kangoo	PR15	6	2007
Darohi barnward	PR16	2.09	2010
Matani to saster	PR17	2	2009
Miharpura	PR18	1.3	2002
Matial tikkar	PR19	4	2010
Bhumpal to sadwan	PR20	3.21	2006
Kudiyar masiana	PR21	13	2007
Laleen	PR22	2.2	2001
Putriyal	PR23	2.35	2002
Patta jalari to man	PR24	4.06	2006
Saphal	PR25	1.5	2011
Lingwin khatwin	PR26	2.2	2001

3.1.1 Calculation of PCID

Seven types of major distresses in a pavement were measured individually and seven indexes namely: Pothole index, alligator cracking index, rutting index, longitudinal cracking index, patching index, raveling index, and edge cracks index were obtained [7].

Table 3: Severity levels of distress				
S.No	Distress	Severity Levels		
		Low	Medium	High
1.	Longitudinal cracks	Mean width of crack < 6mm	Mean width of the crack is 6mm to 19mm	Mean width of crack > 19mm.
2.	Alligator cracks	The cracks area that are no or only few inter- connecting cracks.	Interconnected cracks area is forming a complete pattern.	An area of interconnected severe cracks which forms a complete pattern.
3.	Edge cracks	Mean width of crack < 6mm,	Mean width of the crack is 6mm to 19mm	Mean width of crack > 19mm.
4.	Pothole	< 25mm depth	25-50mm depth	> 50mm depth
5.	Patching	Patch is of low severity of distress and ride quality is not much affected by the patch	Patch is of moderate severity of distress and ride quality is much affected by the patch.	Patch is of high severity of distress and ride quality is highly affected by the patch.
6.	Rutting	the patch. Rut depth 6mm to 12mm	Rut depth 12mm to 25mm	Rut depth >25mm
7.	Ravelling	No severity lo	evels are applicable	e in Ravelling

Each type of distress is evaluated manually in terms of its extent and severity. A severity level is then assigned in terms of low, medium and high based on percentage area affected as shown in table 3. Figures 2-8 show the percentage low, medium and high severity level of each distress type on each road. Figure 9 shows a combined graph of all distresses for each road.

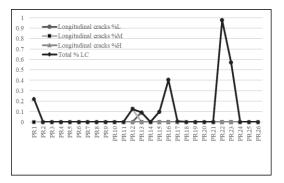


Figure 2: Percentage area of longitudinal cracks

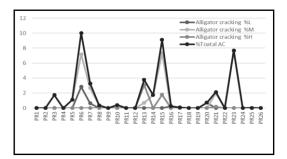


Figure 3: Percentage area of alligator crack

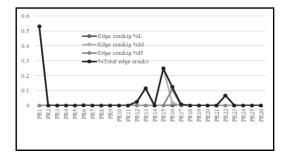
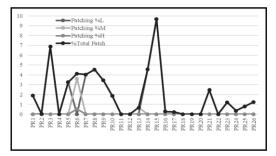



Figure 4: Percentage area of edge crack

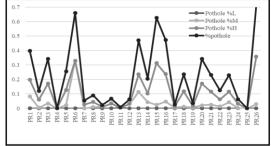


Figure 6: Percentage area of potholes

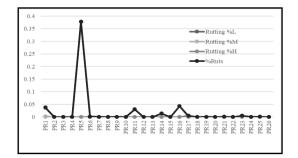


Figure 7: Percentage area of rutting

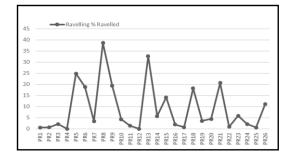


Figure 8: Percentage area of Ravelling

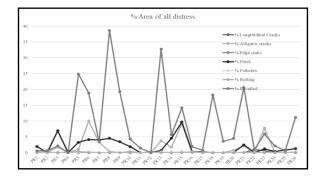


Figure 9: Percentage areas of all distress for all roads

Longitudinal cracking index

Longitudinal cracks are formed mostly in the lay-down direction of the road or parallel to the centre line of road. Longitudinal cracking index was calculated using the following formula obtained from FWHA:

$$LCI=100-40 (((\%L)/350) + ((\%M)/200) + ((\%H)/75))$$
(1)

Where, %L, %M, and %H are percentage areas of low, medium, and high severity levels; 350 is the Maximum Allowable Extent (MAE) for low severity of distress, 200 is MAE for medium severity distress and 75 is MAE for high severity distress.

Alligator cracking index

Repeated traffic movement causes fatigue failure of pavements due to which interconnected cracks are formed on the road surface. These interconnected cracks are known as alligator cracks. Alligator cracking index is calculated using the following formula:

$$ACI=100 - 40 (((\%L)/70) + ((\%M)/30) + ((\%H)/10))$$
(2)

Pothole index

Potholes are vertical depressions in the pavement which are less than 750 mm in depth. Pothole index is calculated using the following formula:

Edge cracking index

Edge cracks are usually found 0.3 to 0.5 meters away parallel to the external edge of the pavement. Edge cracking index is calculated using the following formula:

$$ECI=100 - (20(((\% L)/15.1) + ((\% H)/7.5)) + 40((\% M)/1.9))$$
(4)

Patching index

Patch is a portion of pavement which is substituted by a new material to repair the damaged portion of the pavement. Patch will always come under the category of defect no matter how well it is laid and performing. Patching index is calculated using the following formula:

Rutting index

Vertical deformations along the wheel path are known as rutting, it is a permanent deformation. Rutting is measured using a 3 meter straight edge. Rutting index is calculated using the following formula:

(5)

(6)

(7)

$$RI=100 - 40 (((\% L)/160) + ((\% M)/80) + ((\% H)/40))$$

Raveling index

Raveling is surface disintegration of the pavement caused by loss of binder from the aggregate-binder mix. It is calculated from the following formula:

Distress PCI

All the indices are combined into a common index named as PCID computed from the following formula. Table 4 shows each type distress index and PCID

PCID=100-((100-LCI)+(100-ACI)+(100-ECI)+(100-PI)+(100-PHI)+(100-RI)+(100-RAI)) (8)

 Table 4: Various condition indices

Road ID	LCI	ACI	ECI	PI	PHI	RI	RAI	PCID
PR1	99.9	100	99.3	99.0	99.4	100	99.7	97.3
PR2	100	100	100	100	99.8	100	99.6	99.4
PR3	100	97.7	100	96.6	99.4	100	98.8	92.4
PR4	100	100	100	100	100	100	100	100
PR5	100	98.5	100	98.4	99.5	99.9	85.8	82.2
PR6	100	88.8	100	97.9	99.6	100	89.2	75.5
PR7	100	96.1	100	98	99.9	100	98.0	92.0
PR8	100	99.5	100	97.7	99.8	100	77.9	75.0
PR9	100	100	100	98.3	100	100	88.9	87.2
PR10	100	99.8	100	99.1	100	100	97.5	96.3
PR11	100	100	100	100	100	100	99.2	99.2
PR12	100	100	100	100	100	100	100	99.9
PR13	100	86.8	99.8	99.7	99.4	100	81.3	66.9
PR14	100	97.7	100	97.7	99.7	100	96.7	91.8
PR15	100	83.1	99.3	95.2	98.8	100	91.9	68.3
PR16	100	99.9	97.7	99.9	99.2	100	98.9	95.4
PR17	100	100	100	99.9	100	100	99.6	99.4
PR18	100	100	100	100	99.6	100	89.6	89.1
PR19	100	100	100	100	99.9	100	98.0	97.9
PR20	100	99.6	100	100	99.4	100	97.5	96.4
PR21	100	96.7	100	98.8	99.6	100	88.2	83.3
PR22	99.9	100	99.8	100	99.8	100	99.4	98.9
PR23	99.9	95.6	100	99.4	99.7	100	96.6	91.2
PR24	100	100	100	99.8	99.9	100	98.8	98.5
PR25	100	100	100	99.6	100	100	99.7	99.3
PR26	100	100	100	99.4	98.6	100	93.7	91.7

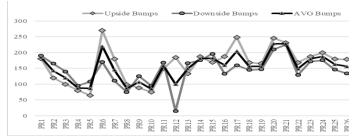
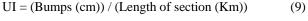
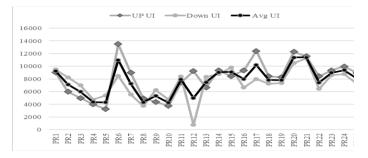
3.1.2 Roughness PCI calculations

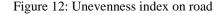
Apart from pavement distresses which are usually present locally, surface roughness is an important parameter of pavement performance. Roughness is the measurement of riding quality which in turn is the effect of total surface undulations. Bump integrator shown in figure 10 is used to measure pavement surface undulations from which PCIR is determined using IRC SP: 16-2004 [8].

Figure 10: Bump Integrator with Recorder

Bumps count in road sections

Bump integrator's recorder is set to give reading on every 200 m, so after every 200m bumps on upside and downside of the road are recorded and average of these two sides reading is taken as the bumps count for a particular road. The average bumps in cm for each road is shown in figure 11.


Figure 11: Bumps on road

Unevenness index (UI)

UI is computed from the total bumps in cm and total length in km of the road section in which test is performed as given in equation 9. The UI for all twenty six roads is shown in figure 12.

International roughness index (IRI)

IRI is a scale for roughness based on the simulated response of a generic motor vehicle to the roughness in single wheel path of road surface. A relationship as shown in equation 10 given by Central Road Research Institute (CRRI) between unevenness index and International Roughness Index has been used to evaluate IRI of road [9, 10]. IRI is defined separately for the left wheel path and the right wheel path and the average of these two IRI values is taken as the IRI of the road as shown in equation 11. Table 5 shows IRI values corresponding to different severity levels of roughness and figure 13 shows IRI values of each of the twenty six roads selected in the present study.

IRI=UI/720

Avg. IRI= (Left wheel path IRI + Right wheel path IRI)/2 (11)

Table 5: IRI Severity levels		
Type of Road	IRI	
No noticeable roughness	<90	
Small level of roughness	90-126	
Road of average roughness	126-190	
Road with above average roughness	190-253	
Road with severe roughness	253-380	
Not usable	>380	

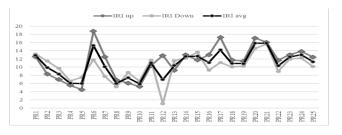
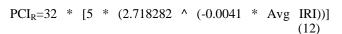



Figure 13: IRI of each of the 26 roads

Roughness PCI

Roughness PCI is basically defined as the extent of unevenness in a particular road section, therefore to calculate this extent IRI values of each roads are used to calculate roughness PCI. The PCIR for all twenty six roads is shown in figure 14.

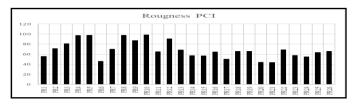
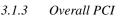



Figure 14: Roughness PCI of all 26 roads

After calculating PCI_D and PCI_R separately, we need to combine these to compute overall PCI denoted by PCI_O . FHA norms are used which give 40% weight to PCIR and 60% to PCI_D as give by equation 13 [11, 12]. Table 6 and figure 16 show the PCI_O value computed for each road in the present study. The PCI_O , PCI_R , and PCI_D for all twenty six roads are shown in figure 15.

$$PCI_{O} = 0.4(PCI_{R}) + 0.6(PCI_{D})$$
 (13)

Table 6: Pavement condition index of each road

PCI	PCL	PCIo
		80.66324
,,,_,,,,,,		88.06989
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		87.77563
		98.88541
	,	88.40852
		63.59296
		83.17696
		84.01697
0.120222		87.2191
		97.20071
	• • = .	85.45241
99.89614	90.45705	96.1205
66.94788	68.21848	67.45612
91.83923	56.98403	77.89715
68.34001	56.59596	63.64239
95.437	64.33235	82.99514
99.35773	50.00302	79.61585
89.14218	65.49673	79.684
97.90455	65.75832	85.04606
96.42225	43.7027	75.33443
83.30488	43.6281	67.43417
98 94072	68 60805	86.80765
		77.72724
		81.06901
		84.90497
,,, <u> </u> , . .		81.29563
	91.83923 68.34001 95.437 99.35773 89.14218 97.90455 96.42225	97.29435 55.71659 99.40077 71.07356 92.4334 80.78897 100 97.21353 82.16841 97.76869 75.51253 45.71361 92.02194 69.9095 75.03447 97.49071 87.20211 87.24458 96.33776 98.49513 99.18917 64.84727 99.89614 90.45705 66.94788 68.21848 91.83923 56.98403 68.34001 56.59596 95.437 64.33235 99.35773 50.00302 89.14218 65.49673 97.90455 65.75832 96.42225 43.7027 83.30488 43.6281 98.4072 68.60805 91.21926 57.48921 98.47482 54.96031 99.27441 63.35081

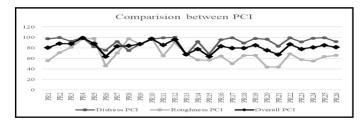


Figure 15: PCI_D, PCI_R and PCI_O of 26 roads

IV. REMAINING SERVICE LIFE

RSL can be defined as the total time in years a road can serve with effective and smooth movement of traffic [13, 14]. There are various methods to estimate the RSL like fatigue test [15- 17] or to develop a relationship between the quantities of failures per mile to the remaining equivalent single axle loads on the road. Dossey et al [18] and Ferregut et al. [19] applied Simulated Neural Networks to evaluate RSL in Texas. AASHTO proposed a technique in 1986 to evaluate RSL of overlay which involves Non Damaging Test (NDT) to calculate the current pavement condition. In the present study, linear regression analysis is used to plot a relationship between pavement age and present pavement condition. Information related to construction year of road and year of last maintenance was obtained from Himachal Pradesh Public Works Department (HPPWD) Hamirpur. Pavement age was determined using equation 14. Pavement age of each of the twenty six roads is shown in table 7.

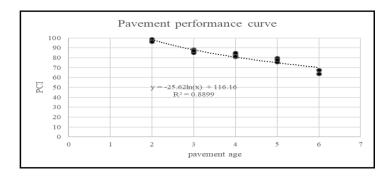
Pavement age = (Current Year - Year of Last Maintenance)
(14)

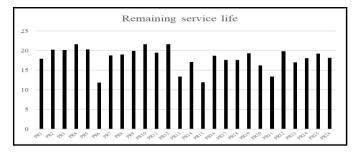
Table 7: Pavement age of each road

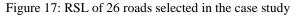
Road ID	YEAR of first construction	Served life	Last maintenance done	pavement new age
PR1	2007	11	2014	4
PR2	2010	8	2015	3
PR3	2009	9	2015	3 3
PR4	2007	11	2016	2
PR5	2004	14	2015	3
PR6	2002	16	2012	6
PR7	2001	17	2014	4
PR8	2001	17	2014	4
PR9	2002	16	2015	3
PR10	2002	16	2016	2
PR11	2007	11	2015	3
PR12	2013	5	2016	2
PR13	2001	17	2012	6
PR14	2007	11	2013	5
PR15	2007	11	2012	6
PR16	2010	8	2014	4
PR17	2009	8	2013	5
PR18	2002	16	2013	5
PR19	2010	8	2015	3
PR20	2006	12	2013	5
PR21	2007	11	2012	6
PR22	2001	17	2015	3
PR23	2002	16	2013	5
PR24	2006	12	2014	4
PR25	2011	6	2014	4
PR26	2001	17	2014	4

4.1 Relationship between PCIO and Served life

A correlation between PCIO and pavement age was developed to calculate the RSL of a pavement. A PCIO value of 40 is assumed as terminal PCI value which indicates that the road requires immediate reconstruction and movement of traffic is not safe on such roads. Total Service Life (TSL) of a road in terms of PCI value is the duration in years in which the PCI value falls to 40 from 100 (PCI of a newly built road). Figure 16 shows the pavement performance curve from which the following equations are derived.




Figure 16: Pavement performance curve


Pavement age = $-25.62\ln(x) + 116.16$, where x is current PCI which varies from 0 to100.

Total Service Life = $-25.62\ln (40) + 116.16$, where 40 is the terminal PCI after which the pavement is assumed to be failed.

Hence, $RSL = 25.62 \ln(PCIO) - 25.62 \ln(40)$ (15)

RSL of all the twenty six roads selected in the present study is shown in figure 17.

V. CONCLUSION

Equation RSL = $25.62 \ln(PCI_0) - 25.62 \ln(40)$ gives the relationship between RSL and the overall PCI of low volume rural roads with climate and traffic conditions similar to those in study area. This relationship is applicable within acceptable error to most of the low volume roads in the state of Himachal Pradesh. A correlation coefficient of 0.8899 shows that the curve is a good fit. The study concludes that the maximum pavement age for the roads of Hamirpur district is 21.65 years. Maximum and minimum areas of various types of distresses are: patching -9.67% & 0%, Ravelling -38.61% & 0%, longitudinal cracking -0.97% & 0%, Potholes-0.35% & 0%, Edge cracking -0.53% & 0%, and alligator cracking -10.01% & 0%. Average bumps value per 200 m is ranging from 85.2 cm to 228.2 cm. All roads fall under PCIO range of 98.88 to 63.59, ranging from fair to excellent. PCIO value of 40 is considered as terminal PCI below which full depth reclamation or reconstruction should be done. This means that these roads are not in need of reconstruction at present and only need specific repairs depending on major distress types on each road. Prediction of RSL is important for optimum benefits of maintenance program with respect to efficient fund utilization and service to road users.

ACKNOWLEDGEMENT

The work presented in this paper was supported by State Council for Science, Technology & Environment (SCSTE), Himachal Pradesh, INDIA and National Institute of Technology, Hamirpur, INDIA. Authors would like to acknowledge Ministry of Human Re-source Development (MHRD), India, for financial support to carry out this research.

VI. REFERENCE

- Al-Suleiman, T. I., & Shiyab, A. M. (2003). Prediction of pavement remaining service life using roughness data: case study in Dubai. International Journal of Pavement Engineering, 4(2), 121-129.
- [2] Morse, A. A., and Miller, D.W. (2004). "Pavement Design and Rehabilitation Manual." The Ohio Department of Transportation, Columbus.
- [3] Shah, Y. U., Jain, S. S., Tiwari, D., & Jain, M. K. (2013). Development of overall pavement condition index for urban road network. Procedia-Social and Behavioural Sciences, 104, 332-341.
- [4] Tawalare, A., & Raju, K. V. (2016). Pavement Performance Index for Indian rural roads. Perspectives in Science, 8, 447-451.
- [5] Setyawan, A., Nainggolan, J., & Budiarto, A. (2015). Predicting the remaining service life of road using pavement condition index, Procedia Engineering, 125, 417-423.
- [6] Huang, Y. H. (1993). "Pavement Analysis and Design", Prentice Hall, New Jersey.
- [7] Federal Highway Administration, 'Pavement distress identification manual for NPS road inventory system", Department of transportation, United States, 2006-2009
- [8] IRC SP20. 2002. "Rural Roads Manual." New Delhi India.
- [9] Park, K., Thomas, N. E., & Wayne Lee, K. (2007). Applicability of the international roughness index as a predictor of asphalt pavement condition. Journal of Transportation Engineering, 133(12), 706-709.
- [10] Dalla Rosa, F., Liu, L., & Gharaibeh, N. G. (2017). IRI Prediction Model for Use in Network-Level Pavement Management Systems. Journal of Transportation Engineering, Part B: Pavements, 143(1), 04017001.
- [11] Prasad, J. R., Kanuganti, S., Bhanegaonkar, P. N., Sarkar, A. K., & Arkatkar, S. (2013). Development of relationship between roughness (IRI) and visible surface distresses: a study on PMGSY roads. Procedia-Social and Behavioural Sciences, 104, 322-331.
- [12] Mubaraki, M. (2016). Highway subsurface assessment using pavement surface distress and roughness data. International Journal of Pavement Research and Technology, 9(5), 393-402.
- [13] Gedafa, D. S., Hossain, M., Miller, R., & Van, T. (2009). Estimation of remaining service life of flexible pavements from surface deflections. Journal of Transportation Engineering, 136(4), 342-352.
- [14] Baladi, G. Y., Dawson, T. A., Dean, C. M., Haider, S. W., & Chatti, K. (2011). The theoretical and actual trends of the remaining service life (No. 11-1990).
- [15] Witczak, M. W. and Bell, K. R. (1978). "Remaining life analysis of flexible pavements." Association of Asphalt Paving Technologies Proceeding, Vol. 47, 229-269, Minneapolis, Minnesota

- [16] Carson, J. M., and Rose, J. L. (1980). "An ultrasonic non-destructive test procedure for the early detection of fatigue damage and the prediction of remaining life." Materials Evaluation, 27-34, American Society for Nondestructive Testing, Evanston, Illinois.
- [17] McNerney, M. T., McCullough, B. F., Stokoe, K. H., Lee, N., Bay, J. and Wilde, J. (1997) "Prediction of remaining life on airport pavements", Conference Proceedings: Air-craft/Pavement Technology in the Midst of Change, 77-93, Seattle, Washington.
- [18] Dossey, T., Easley, S. and McCullough, B. F. (1996). "Methodology for estimating remaining life of continuously reinforced concrete pavements." Transportation
- [19] Ferregut, C., Abdallah, I., Melchor, O., and Nazarian, S. (1999). "Artificial neural networkbased methodologies for rational assessment of remaining life of existing pavements. Development of a comprehensive, rational method for determining of remaining life of an existing pavement." Report No.TX-99 1711-1, Texas Department of Transportation, Austin, Texas.