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Abstract: Quantification of soil moisture movement and water uptake dynamics in the vadose zone for sound irrigation 

management requires the knowledge of soil hydraulic properties. Non-availability of complex and expensive instrumentation 

hinders identification of soil hydraulic and retention characteristics. The study presents the application of Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA) in identifying soil moisture retention θ(h) and hydraulic conductivity K(h) 

functions by inverting a SWAP model using observed near-surface soil moisture (0-10 cm). Two hydrologic cases, i.e. 

homogenous soil column with free drainage and with Shallow Groundwater Table (SGT) at the lower boundary, are considered. 

Study takes into account the agro-climatic data of Palampur (Himachal Pradesh), India. Results for both cases establish the 

applicability of GA and PSO in identifying soil hydraulic parameters. The identification of soil hydraulic parameters is more 

accurate when the soil column is draining in comparison to that with SGT. The comparative evaluation of simulated to the field 

observed soil moisture content indicates root mean square error of 0.0163 and 0.0297 for GA and PSO respectively. GA 

provides an effective alternative to estimate soil hydraulic properties using inverse approach in absence of experimental values. 

 

Keywords: Genetic algorithm, Particle Swarm Optimization, soil properties. 

I. INTRODUCTION 

Numerous geophysical, agricultural and hydrologic 

applications necessitate information of the soil hydraulic 

properties (SHP) of vadose zone as they indicate soil ability 

to transmit or retain moisture [1, 2]. For instance, they 

influence the segregation of precipitation and irrigation into 

runoff and infiltration at the soil surface, the available 

moisture in the plant root zone, the rate and amount of 

redistribution of moisture in a soil profile, the moisture 

uptake by roots, and capillary rise from shallow 

groundwater table (SGT), among numerous different 

processes between SGT and the soil surface [3, 4]. The 

SHP is additionally basic segments of mathematical and 

scientific models for foreseeing solute movement and site-

specific moisture flow in the subsurface [5]. 
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 Proper water balance assessment in the vadose zone 

is dependent on the suitable characterization of the soil 

hydraulic function [6,7]. Extensive in-situ and laboratory 

based methods are developed to determine the SHP [8,9]. 

However, the measurement of SHP is often difficult and 

complex because of time and instrumentation constraints 

[10]. Pedo-transfer functions approach uses bulk density, 

soil texture and carbon content for estimating SHP [11]. 

[12] focused on the need for developing a robust 

methodology that can be effectively utilized to estimate 

SHP for field applications. The inverse modelling approach 

is widely used in groundwater studies [13].  

 The assumption in inverse modelling method is that, 

any change in near surface soil moisture (NSSM) affects 

the soil moisture dynamics at the subsurface and, 

henceforth recommend the investigation of subsurface 

SHP. In general, observed soil moisture is used as a basis in 

inverse modelling using Soil Water Atmosphere and Plant 

(SWAP) model [14]. The simulation utilizes maximum and 

minimum base values of the Mualem-Van Genuchten 

(MVG) parameters [15,16]. Robust search algorithms and 

powerful optimization techniques, e.g. GA and PSO are 

suitable for investigating such problems [17,18].  

 [19] used Genetic Algorithm (GA) to identify the 

SHP, through the inversion of a SWAP model using soil 

moisture data from airborne remote sensing. The approach 

is however unsuccessful for the layered soil system with 

only certain parameters identified, where the identifiable 

SHP are the shape parameters of the Mualem-Van 

Genuchten functions and the vadose soil moisture content. 

SHP of van Genuchten equation have been estimated using 

Particle Swarm Optimization (PSO) [20,21]. Most of the 

studies used standard soil databases to SHP and validate 

their findings. In present study, experimental values of soil 

hydraulic functions and soil moisture characteristics (SMC) 

will be used for comparing and validating the simulated 

results.  
 Given the prominence of SHP in assessing various 
soil-water-plant related problems and the difficulties in 
estimating experimental values of these parameters, the 
present study aims at evaluating the performance of GA and 
PSO in determining the SHP using NSSM observations 
based on the inverse modelling approach. The objectives of 
the study are: (1) to investigate the potential of GA and PSO 
in solving inverse problem for estimating SHP, and (2) to 
evaluate comparative efficacy of methods by comparing 
simulated values with field observed soil moisture content 
values. 

II. MATERIAL AND METHODS  

2.1 Framework 

Study employs inverse modelling and utilizes the NSSM 

θ(t) data to estimate hydraulic conductivity K(h) functions 

and soil moisture retention θ(h) at the same time by 

considering the soil hydrologic model, utilizing GA and 

PSO. Inverse modelling necessitates a soil hydrologic 

model to perform iteratively until the solutions of θ(h) and 

K(h) get congregated [22]. NSSM at 10 cm depth is used 

for estimation of the SHP. The relation between the near 

surface and subsurface processes, allows the estimation of 

SHP in the root zone. This co-dependency is the principal 

assumption utilized as a part of near surface data 

assimilation studies. 

 Mathematically, the SHP can be obtained by finding 

a set of SHP „p‟ such that the differences between 

simulated θi(t, p) and observed θi(t) NSSM at soil layers i 

are minimized, where „t‟ is running indices for soil layers 

with time, and „p‟ corresponds to the SHP (MVG 

parameters). Parameter p = (pj=1. . . m) where pj = 

corresponding SHP in the individual soil layer having „j‟ as 

an index of parameter position and „m‟ as the maximum no. 

of parameters. Additive absolute form (equation 1) is 

selected as objective function because it produces better 

results than other forms (e.g., multiplicative and additive 

squared delta) considered for the particular problem [17]. 
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Where, Z(k) = objective function with }{ ,1 mjpk  , N = 

time domain, M = number of soil layers, and t = index for 

time. 

2.1.1 SWAP Model. The SWAP model, [14] is defined 

as a physically based agro-hydrological model that 

simulates the complex interactions among soil, water, 

atmosphere and plants. The core of the model is the 

Richards‟ Equation [23] (equation 2) incorporating a sink 

term. SWAP model uses implicit finite difference scheme 

for the numerical solution of Richard‟s equation [24], 
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Where, K = hydraulic conductivity (cm d1־), z = vertical 

soil depth (cm) taken positive upwards, h = soil moisture 

pressure head (cm), C = differential water capacity (cm1־), 

and S = sink term representing moisture extraction rate by 

plant roots (cm3 cm3־ d1־) computed using equation 3 [25], 
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Where, Zr = rooting depth (cm), Tpot = potential 

transpiration (cm d1־), and aw = reduction factor as function 

of (h) accounting for water stress. The soil hydraulic 

functions in SWAP are the MVG constitutive relationships 

as given in equations 4 and 5. 
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Where, Se = effective saturation, n = shape parameter 

accounting pore size distribution, m = 1 – 1/n, α (cm־
1
) = 

shape parameter accounting the bubbling pressure, Ksat (cm 

d־
1
) = saturated hydraulic conductivity, θres (cm

3
 cm־

3
) = 

residual moisture content, θsat (cm
3
 cm־

3
) = saturated soil 

moisture content, and λ = shape parameter accounting 

tortuosity in the soil generally taken as 0.5 [15]. The values 

of these parameters depend on the soil texture and are 

supplied as inputs to the simulation model. 

 Hysteresis, soil swelling, moisture repellence and 

shrinkage also affect soil moisture and solute transport, 

though, in the present work these options are not 

incorporated. The water balance is solved by considering 

top and bottom boundary conditions that are either flux or 

head controlled. The reference evapotranspiration (ET0) is 

estimated with FAO-56 Penman-Monteith equation [26]. 

SWAP uses the leaf area index (LAI) for partitioning ET0 

into the transpiration and evaporation from a cropped soil. 

 
2.1.2 Genetic Algorithm. The GA works on the 

mechanism of natural selection to explore decision search 

space for optimal solutions [27]. It has wide applicability in 

water resources systems and unsaturated moisture 

dynamics in porous media [28]. Application of GA in 

hydrologic sciences is comprehensively studied by [29]. 

 In present study, GA is used as a tool to find the 

solution of the unknown parameter set for the inverse-

modelling-based on NSSM observations, considering the 

SHP of the MVG functions as unknowns stated as k = {α, 

n, θres, θsat, Ksat, λ}. Since λ = 0.5 (assumption) [Mualem 

1976]; and defining pj = 1, m-1 = {α, n, θres, θsat, Ksat} (refer to 

equation 1), hence k = {pj = 1, m-1, λ}. The parameters p‟(pj = 

1,m-1) are the only ones disseminated in GA. The maximum 

range of the parameter values is designed to indulge a 

variety of soils textures [30]. The fitness function is 

)(/(1)'( kZpf  . 

2.1.3 Particle Swarm Optimization. The PSO is a 

“population based stochastic global optimization method” 

[31]. [32] Comprehensively reviewed the 

application/ability of PSO for resolving optimization 

problems in different fields of engineering and sciences. A 

PSO problems consist in finding the optimal solution 

vector X, which corresponds to the minimum value of a 

nonlinear objective function f(X), with X = [x1,x2,…,xr]
T
 

where r is the dimension. The objective function domain is 

limited to the interval X ∈ [Xmin, Xmax] where Xmax = [x1max, 

…,xrmax]
T
 and Xmin = [x1min, …,xrmin]

T
 are the upper and 

lower bounds of the interval [33]. 
  
The goal for objective function (see equation 1) which 

resembles to the current position of a certain particle is to 

be placed in the best position (i.e. the global minima). 

During the process, each particle is processed through an 

iterative process where the current position Xi
k 
is simplified 

to the new position as Xi
k+1 

= Xi
k
 + Vi 

k+1
, based on updated 

velocity of particle given as Vi 
k+1 

= wk Vi
k
 + c1 r1(Pi-Xi

k
) + 

c2 r2(Pg-Xi
k
). Here, k and i represents the iteration and 

particle numbers respectively. Pi represents the best 

location attained till now by the particle, Pg is the best 

location attained by neighboring particles, r1 and r2 are two 

random causes in the (0, 1) interval which generates variety 

of the swarm, wk = inertia weight and c1 and c2 = constants 

weighting the "cognitive" and “social" component of the 

method respectively. 

  

In present study, PSO is applied to solve the sets of 

unknown parameter. The SHP of the MVG functions are 

the unknowns expressed as k = {α, n, θres, θsat, Ksat, λ}. The 

first search is done for all parameters for a wide range of 

values (Table 1). The process continues with gradually 

smaller ranges for n, α, θres, θsat, and Ksat. It is probable, that 

for each iteration, the final value of objective function is 

smaller than in the previous one. 

 

Table 1. Range of the Mualem-Van Genuchten 

Parameters for GA and PSO [30] 

Parameters 

Search Space 

Minimum 

value 

Maximum 

value 

α 0.0060 0.0330 

n 1.200 1.610 

θres 0.061 0.163 

θsat 0.37 0.550 

Ksat 1.84 55.70 

 

2.2 Model domain and Flow conditions 
 

In the present study, estimation of the SHP in a soil column 

adopting the NSSM assimilation technique is performed 

based on the inverse modelling approach [19, 34]. The 

numerical simulation is performed for two cases, i.e., case 

1 i.e. soil column with free drainage and case 2 i.e. soil 

column with a SGT (i.e., -100 cm and -150 cm from the 

ground surface). In case 1 (Figure 2), the initial pressure 

head distribution in the soil profile, is recommended 

uniformly at -150 cm. For the case 2 (Figure 2), profile is 

recommended with initial pressure head distribution in 

hydrostatic equilibrium with the initial SGT depths. The 

bottom flux (positive upward) is estimated using h (z = -

100 & z = -150, t > 0) = 0 cm. The soil type considered for 

simulations in SWAP model is silt loam. From these data, 

simulated values of daily soil moisture are generated using 

SWAP (forward mode). All SWAP simulations are 

performed across the crop-growing season for a period of 

175 days, as detailed in field experiments section. 
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Figure 1. Location of the experimental site CSK 

Agriculture University Palampur, India  

 

 

Figure 2. Flow conditions and Model domain 

incorporated in the field experiments 
 

 

 

2.3 Study Area and Field Experiments 

Field investigations were carried out in CSK Agriculture 

University, at Palampur in the Indian state of Himachal 

Pradesh (Figure 1), located at Latitude 32°6' North; 

Longitude 76°32' East with an average height of 

1250 meters (above mean sea level). Study area has wet-

temperate agro climate, having average annual rainfall of 

250 cm and average temperature ranging from 15 to 19
0
C. 

The soil is classified as mountainous soil with texture 

predominantly varying from loam to silt loam. 

 The field experiments were conducted on wheat 

crop (Triticum aestivum) from 20
th

 November 2014 to 14
th
 

May 2015 for a period of 175 days under controlled 

conditions and were repeated during next crop season for 

validation purpose. The NSSM (0-10 cm) data is obtained 

daily using a Time Domain Reflectometer from a lysimeter 

setup. The Lysimeters (200 cm deep with surface area of 

1m
2
) were installed in an open field to neglect boundary 

effects and to simulate actual field conditions. The soil in 

lysimeter is similar to adjoining soil strata. Daily 

meteorological parameters i.e., air temperature, 

precipitation, solar radiation, wind speed and humidity used 

in the study are recorded by the weather station installed at 

CSK Agricultural University Palampur (HP). 

2.3.1 Soil Parameters. Samples of Soil are obtained 

from different depths in the experimental site for detailed 

soil investigations. Grain size analysis [35] reveals that the 

soil texture as silt loam. Bulk particle density, density and 

porosity (saturated moisture content θsat) are 2.65 g cm
-3

, 

1.51 g cm
-3

 and 0.43, respectively. The residual moisture 

content (θres) is obtained using pressure plate apparatus and 

is equal to 0.061 corresponding to the moisture content at 

1500 centibars. MVG parameters α and n are estimated as 

0.012 cm
−1

 and 1.39, respectively, using a nonlinear 

optimization algorithm E04FDF [36]. Field value of 

saturated hydraulic conductivity (Ksat) determined through 

Guelph permeameter is 30.5 cm d
-1

. In the present study, 

experimental SMC curve is obtained using the pressure 

plate apparatus. 

2.3.2 Crop Parameters. LAI, an important input for 

SWAP model was observed by the direct method suggested 

by [37]. LAI varied from 0 to 2.15 (m
2
/m

2
) on last day of 

crop period with a maximum value of 4.26 (m
2
/m

2
) on 88

th
 

day after sowing the crop. Entire crop period is divided into 

initial, mid-season and end season crop stages based on 

LAI. Crop coefficient (Kc) values are 0.28, 1.12 and 0.36 

for initial, mid-season and end season crop growth stages, 

respectively. Daily Kc is deduced from stage specific values 

using graphical interpolation. Crop evapotranspiration 

(ETc) is estimated as the product of daily Kc and ET0 [26]. 

III. RESULTS AND DISCUSSION 

3.1 Case 1: Homogenous Free-Draining Column 

 

Table 2 presents the summarized results of the GA and 

PSO solutions for Case (1). The values of SHP are 

computed and compared with the experimental values of 

the parameters. In case of GA, the shape parameters i.e., α 

and n are closely identified, while the scale parameters i.e, 

θres, θsat, and Ksat, exhibited small variations. It is observed 

that shape parameters which describe nonlinearity, have 

better predictability as compared to the scale parameters 

which describe the relative magnitude, for explaining the 

moisture retention and hydraulic conductivity functions for 

silt loam soil considered in the study. 

 

Table 2. Solutions of the GA and PSO to the NSSM 

Observations for Silt loam for Case 1: Homogenous, 

Free-Draining soil Column 

Parameter 
Experimental 

Values 

Obtained Value 

GA results PSO results 
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α 0.012 0.013 0.016 

n 1.39 1.42 1.46 

θres 0.061 0.069 0.073 

θsat 0.430 0.452 0.48 

Ksat 30.5 31.62 35.138 

  
As evident from Table 2, solution of PSO for the NSSM 

observations for Case (1) indicates that the estimated 

values of SHP followed almost similar pattern, as in case of 

GA, but with greater variations from the experimental 

values as compared to GA based values. In comparison to 

estimated values of α, n, θres, and θsat, estimated Ksat shows 

larger variation to experimental value, which indicates the 

general insensitivity of PSO in Ksat estimation.  

 Comparative evaluation of GA and PSO based 

solutions indicate that for Case (1), parameter assessment 

using GA is found to be relatively effective in estimating 

the parameter mean values of α, n, θres, and θsat. The 

estimated Ksat is relatively variable for present case but falls 

within the acceptable range. The effect of variability of 

estimated parameters on θ(h) and K(h) functions is studied 

by plotting SMC and hydraulic conductivity curve. 

 

  

Figure 3. Soil moisture 

retention curve θ(h) for 

Homogenous, Free-Draining 

soil Column 

Figure 4. Hydraulic 

conductivity function K(h) 

for Homogenous, Free-

Draining soil Column 

 The derived SHP are used as inputs in the SWAP 

(forward simulations) to translate them into soil hydrologic 

states. Figures 3 and 4 show the derived θ(h) and K(h) 

functions for a silt loam soil. The GA estimated θ(h) values 

match well with the experimental values (SMC), and 

indicate strong agreement at the drier end of the SMC 

curve. PSO estimated θ(h) values, however show poor 

agreement with experimental values for larger range. The 

GA estimated K(h) agreed well with experimental values 

for a larger range, as compared to PSO estimated K(h) 

values. However, both GA and PSO estimated K(h) values 

in the saturated range, i.e., Ksat values, does not match 

much accurately with the average Ksat, since the macro-

pore effect is not considered in the inverse analyses. 

Nevertheless, the derived θ(h) and K(h) reproduced the 

NSSM variation dynamics well, when used in the forward 

modelling with SWAP. 

3.2 Case 2: Homogenous Column with Shallow 

Groundwater Table 

Tables 3 and 4 show the summarized results of the NSSM 

observations using GA and PSO, in the presence of SGT at 

a depth of 150 cm [Case 2 (a)] and 100 cm [Case 2 (b)] 

from the ground surface, respectively. It is clearly visible 

from Tables 2, 3 and 4 that estimated parameters using GA 

and PSO follow the same pattern of agreement with the 

experimental values for Cases (1), (2a) and (2b) i.e., GA 

estimated values show better agreement with the 

experimental values as compared to PSO estimated values. 

However, a visible trend can be clearly noticed that the 

SHP in free draining soil column are identified better, than 

those estimated for the scenarios with SGT at -150 and -

100 cm. Additionally, as the SGT is lowered, the GA and 

PSO estimated values of the parameters at the -150 cm are 

identified better than those at the -100 cm, signifying that 

the parameter estimations is influenced by the upward 

flows from SGT. 

 

Table 3.  Solutions of the GA and PSO to the 

NSSM Observations for Silt loam for Case 2 (a):  

Homogenous Soil Column with SGT (-150 cm) 

 

Parameter 
Experimental 

Values 

Obtained Value 

GA results PSO results 

α 0.012 0.015 0.018 

n 1.39 1.47 1.57 

θres 0.061 0.074 0.089 

θsat 0.430 0.48 0.52 

Ksat 30.5 34.91 40.140 

 

 
Table 4. Solutions of the GA and PSO to the NSSM 

Observations for Silt loam for Case 2 (b):  

Homogenous Soil Column with SGT (-100 cm) 

Parameter 
Experimental 

Values 

Obtained Value 

GA results PSO results 

α 0.012 0.018 0.02 

n 1.39 1.53 1.60 

θres 0.061 0.081 0.102 

θsat 0.430 0.50 0.54 

Ksat 30.5 38.40 47.21 
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 It is drawn from the above analysis that GA 

estimated values of SHP show better agreement with 

experimental values as compared to PSO estimated values 

for deep as well as SGT, indicating that GA as a method is 

more effective for such investigations. However, the 

agreement between estimated and experimental values 

shows a decline with the rise of SGT at the bottom 

boundary, which characterizes generation of upward flows. 

The θ(h) and K(h) curves are plotted for Case 2 (a) and 2 

(b), to analyze the effect of variability of estimated 

parameters. 

  

Figure 5. Soil moisture 

retention curve θ(h) for 

Homogenous Column with 

SGT (150 cm) 

Figure 6. Hydraulic 

conductivity function K(h) 

for Homogenous Column 

with SGT (150 cm) 

 
 

Figure 7. Soil water retention 

curve θ(h) for Homogenous 

Column with SGT (100 cm) 

Figure 8. Hydraulic 

conductivity function K(h) 

for Homogenous Column 

with SGT (100 cm) 
 
 The pattern of derived θ(h) and K(h) curves agreed 

well with experimental values for the NSSM dynamics 

under the presence of SGT. The GA estimated θ(h) curve 

matched fairly with the corresponding experimental SMC, 

and showed substantial agreement at the drier end of the 

retention curve for both the cases, i.e., with SGT at a depth 

of 150 cm and 100 cm (Figures 5 and 7). In case of PSO, 

the moisture retention curve shows deviation from the 

experimental values based SMC for larger range. GA and 

PSO based hydraulic conductivity function shows 

unsatisfactory agreement with the experimental curve at the 

wetter end, whereas, it shows satisfactory agreement at the 

drier end (Figures 6 and 8) for both the cases, i.e., 2(a) and 

2(b), though agreement is better for case 2 (a).  The 

difference is larger for estimated K(h), particularly in the 

range signifying Ksat, where GA and PSO based curves do 

not match well with the experimental curve, as is also 

indicated by the relatively high difference between the 

estimated values of parameter Ksat and that of the 

experimental value of Ksat (Tables 3 and 4). While 

comparing GA and PSO based K(h) curves, GA based 

curves agree better with experimental curve. 

3.3 Field Validation 

For validation, field crop experiments on wheat were 

conducted from December 2015 to May 2016. Moisture 

content at the depth of 10 cm is measured using a TDR. GA 

and PSO estimated SHP for case 1 only, are considered for 

validation of simulated soil moisture content. NSSM 

observed in field for depth 0 – 10 cm is used for field 

validation of SWAP simulated soil moisture [17]. The 

comparison between the SWAP simulated and observed 

soil moisture is carried out in order to assess the 

performance of GA and PSO in estimating SHP. Two 

statistical parameters, Mean Absolute Error (MAE) and 

Root Mean Square Error (RMSE) are calculated for 

quantitative evaluation of the comparison. The parameters 

RMSE and MAE are calculated as: 






n

t

simobs
n

RMSE

1

21
    

 (8) 






n

t

simobs
n

MAE

1

1
     (9) 

Where, θobs is the observed soil moisture for the time (t), 

θsim is the simulated soil moisture with time index (t) and n 

is maximum number of observations. 

 

Figure 9: GA and PSO Simulated soil moisture vs 

Observed soil moisture at 10 cm depth 

 
The variation of simulated soil moisture to the field 

observed moisture for 0-10 cm depth is shown in Figure 9. 

Qualitative analysis indicates that the simulated NSSM 

(SWAP) in case of GA agree closely with the observed soil 
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moisture, as compared to PSO. In quantitative evaluation of 

GA and PSO based simulations, the values of statistical 

parameters are found to be MAE = 0.0127 and RMSE = 

0.0163 in case of GA, and MAE = 0.0245 and RMSE = 

0.0297 for PSO based results. This indicates qualitative as 

well as quantitative superiority of GA based results over 

PSO. It is drawn from above discussion that GA based 

estimation of SHP using NSSM observations is a 

dependable alternative to complex and costly experimental 

procedures. 

IV. CONCLUSION 

Algorithms such as GA and PSO have vast applicability in 

determining soil hydraulic properties (SHP). Study 

investigates an indirect approach of utilizing near-surface 

soil moisture observations into an inverted SWAP model 

for deriving SHP in vadose zone, in absence of 

experimental values. In the study, GA is able to represent 

the optimization problem very well and SHP estimated 

agree reasonably well with experimental values as 

compared to that of PSO. The GA estimated shape 

parameters α and n of the Mualem-Van Genuchten function 

are well identifiable parameters in free draining soil 

column. There are difficulties in the estimation of the SHP 

when the soil profile is significantly controlled by the 

upward flux from SGT. The quantitative evaluation 

between observed and simulated soil moisture over the 

crop period, for free draining soil, implies the efficacy of 

GA based approach over PSO based approach for 

estimating SHP based on near surface observed soil 

moisture data. The approach can be extended to other crops 

since the subsurface moisture dynamics are highly 

governed by crop root growth. 
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