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Abstract:  The review describes the main principles as well as advantages and disadvantages of the modern brain-computer 

interfaces applied in robotic devices. The invasive and non-invasive devices based on the origin of a signal, invasiveness and 

location of probes are discussed in the paper. The description of some electrical (EMG, EEG, etc.) and chemical (fMRI, fNIRS, 

etc.) methods to detect neural activation are concerned. Spatial resolution of electrical neural interfaces is rather low, therefore one 

of their main disadvantage is the difficulty in detecting the exact region of activation. The main disadvantage of chemical neural 

interfaces is long reaction time. Unfortunately, none of the non-invasive methods today allows inventing an effective neural 

interface for interactive control of robotic devices. Modern invasive methods are rather harmful; therefore, they are unacceptable 

in studies with humans for ethical reasons. In this respect, the most promising is the use of the combined brain-computer non-

invasive interfaces, combining sensors of both electrical and chemical activity of the nervous system. In combined neural 

interfaces the disadvantages of one method are compensated by the advantages of another one. The main area of practical use of 

neural interfaces in robotics in the foreseeable future will be devices for the rehabilitation of persons with disabilities. The use of 

neurointerfaces for other robotic devices will have only scientific significance until the advent of new safe invasive 

neurointerfaces, since non-invasive neurointerfaces do not have significant advantages over traditional control systems for healthy 

people. 
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I. INTRODUCTION 

Interfaces used in brain-computer interaction are 

specifically designed to exchange information between the 

brain and nervous system and an electronic device in a real-

time mode. Currently, they are increasingly applied in 

robotics. However, only cases with special BCI applications 

are considered in the majority of published scientific papers 

within this area.  

Since cognitive activities of humans are accompanied 

by the activation of corresponding neuron assemblies, the 

operation principle of most modern neural interfaces is 

based on applying brain mapping to detect neural correlates 

of cognitive processes. It is known that cognitive activity is 

carried out through the exchange of brain neuron electrical 

impulses. At the same time, the electrical activity of neurons 

can also arise due to the chemical processes occurring in 

them. Successful identification of brain activation in the 
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area of interest allows interpreting it as a mental command 

to perform a particular action. By stimulating the 

corresponding neuron ensembles, it is also possible to 

implement neurofeedback. 

 

Aim: In the present paper our aims are to review the 

applications of BCI in robotics, and to identify the most 

promising ways of their development nowadays.  

 

II. CLASSIFICATION OF MODERN BRAIN-COMPUTER 

INTERFACES IN ROBOTICS 

Despite the fact that neurotechnologies have started 

developing rapidly only recently there is a great diversity in 

existing brain-computer interfaces [1-4]. The most 

important parameters of neural interfaces’ classification for 

robotic devices are invasiveness (invasive and non-

invasive), location of probes (in central or peripheral 

nervous system), and the origin of a signal (electrical or 

chemical) (Fig. 1). 

Invasive neural interfaces are based on the technique 

when probes are implanted inside nervous system with a 

help of surgery. Such interfaces detect the neuronal activity 

rather successfully. When an invasive neural interface is 

applied, an operator can usually give immediate mental 

commands to the control system to perform the required 

actions. Nowadays only invasive interfaces allow getting a 

feedback, sending information to the brain directly. Among 

pitfalls are the high probabilities of the harm to humans’ 

health. Moreover, such interfaces are easily accreted with 

connective tissue after a while, neurons that transfer the 

signal die, and it leads to the necessity of repeated surgery. 

Therefore, the use of invasive neural interfaces among 

healthy people is unacceptable for ethical reasons. On 

contrary non-invasive neural interfaces are installed on skin 

surface and do not cause harm to humans. However, their 

sensitivity is worse than that of invasive interfaces. 
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Figure 1. Classification of the mostly used brain-
computer interfaces in robotics by location of the probes 

and the origin of a signal 
According to the origin of a signal they can be divided 

into neural interfaces that are based on the analysis of 

electrical or chemical activity of the neurons. The oldest and 

the most common ones are neural interfaces based on the 

analysis of neural oscillations, or brainwaves that can be 

regarded as repetitive patterns of neural activity in the 

central nervous system. The most important advantage of 

these neural interfaces is temporal resolution. However, 

their spatial resolution is rather low; therefore one of the 

main disadvantages in electrical neural interfaces is the 

difficulty in detecting the exact region of activation [1, 2, 3]. 

Based on the electrodes’ disposition within neural 

interfaces, they can be divided into two subgroups: central 

system interfaces and peripheral nerve interfaces. 

The neural interfaces based on the analysis of the 

peripheral nervous system electrical activity include 

electromyography (EMG) sensors and extraneural 

electrodes. Non-invasive EMG sensors are located on the 

skin at any point of the body, except for the upper part of 

the skull. Normally they capture electrical impulses from 

muscles, but they can also detect much weaker electrical 

signals from the peripheral nervous system (in this case, the 

method is called electroneurography). EMG sensors are 

widely used nowadays to control bionic limb prostheses 

using residual stump muscles because the signals perceived 

by them mainly reflect information are about motor activity 

[5-9]. Currently, there is a large number of industrially 

manufactured designs of bionic limb prostheses controlled 

by EMG sensors. The feedback in such prosthetic control 

systems can be implemented, for example, by providing 

electrical impulses provision to the skin around the stump. 

Electromyography is the most successful example of 

neural interface use in robotics. However, its possibilities 

are rather limited, for example, rehabilitation of the 

paralyzed people, and sometimes impractical – for example, 

manipulator control.  

The main advantage of invasive extra- and intra-neural 

electrodes [8, 10, 11] is the possibility of more effective 

feedback implementation within bionic prostheses. The 

difference between extra and intra-neural electrodes is that 

the former ones are attached to the nerve from the outside, 

and the latter ones are inserted into it. Due to the above-

discussed disadvantages of all invasive neural interfaces, 

interfaces based on extra- and introneural electrodes are not 

applied widely in robotic devices. However, there is a 

successful experience of applying these invasive neural 

interfaces in creating "Cyborg Insects" [11, 12] to control 

the behavior of beetles, dragonflies, butterflies, etc. The 

main principle is that electrical impulses are supplied into 

the nervous system of an insect via extra- or intraneural 

electrodes, and the movements are defined by remote 

control or some program. Cyborg insects are a very 

promising alternative to mechanical mobile microrobots in 

agriculture, military affairs and other fields, but all these 

neurotechnologies are still on the experimental, but not 

prototype level. 

Neural interfaces based on central nervous system electrical 

activity analysis include electroencephalography- and 

electrocorticography- based BCI. During 
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electroencephalography (EEG), electrodes are mounted on 

the skin of the upper part of the skull and record electrical 

signals from cortical and subcortical regions of the brain. 

The electrodes positions on the head are usually identified 

in accordance with international system "10-20" (Fig. 2). 

 

 

Figure 2: EEG electrode installation system 

EEG is one of the oldest methods in brain research 

[13]. The attempts to apply EEG for BCI have had a long 

history. However, regarding applications in robotics, they 

are in most cases unsuccessful. Since electrical impulses 

propagate at the speed of light and are significantly distorted 

when passing through the skin and bones of the skull, it is 

almost impossible to detect the activity of individual neuron 

ensembles using EEG sensors. In this regard, integral brain 

electrical activity, or various electrical rhythms are analyzed 

in EEG-based neural interfaces. In this case a complex set 

of easily recognized mental signals, such as predetermined 

alternation of relax-concentrate commands, but not thoughts 

to fulfill any action are used as commands to the control 

system.  

Most frequently EEG was used to control bionic 

prosthetic limbs and exoskeletons in order to rehabilitate 

disabled people [1, 2, 3, 8, 14]. EEG-based neural interfaces 

were also applied to control manipulators [15], mobile 

robots [16] and wheelchairs [17], multicopter [18], etc. 

Various methods were used to recognize control commands, 

including artificial neural networks [19, 20]. However, the 

error of control command recognition in EEG-based 

interfaces usually exceeds 50%. In this regard, EEG-based 

neural interfaces have been practically applied only when a 

large percentage of control system errors is uncritical: in the 

neural communication devices, for example the NeuroChat 

hardware and software for text typing for paralyzed people 

and in numerous games and simulators. 

Electrocorticography - an invasive neurointerface, 

installed in the cerebral cortex - demonstrates high 

efficiency [8, 10]. Electrocorticography makes it possible to 

register the activity of individual neuron ensembles 

accurately. There are successful experiments on manipulator 

control using electrocorticographic interfaces. These 

experiments were conducted on monkeys [21, 22]. In the 

conducted studies, a monkey was able to bring the pieces of 

food to its mouth using the manipulator controlled by an 

electrode mounted in its cerebral cortex. Similar studies 

have been conducted in humans [23]. During the 

experiments patients learned to control a cursor on a 

computer screens and a robotic arm to bring a cup of coffee 

to their mouths. However, electrocorticographic interfaces 

have aforementioned disadvantages of invasive neural 

interfaces. In this respect nowadays they are used only in 

experiments with animals and rarely to rehabilitate 

completely paralyzed disabled people. 

Neural interfaces based on nervous system chemical 

activity, allow determining the concentration change of 

certain substances that can affect the activity of neurons. 

Their main advantage is the ability to detect the activity of 

individual neuron ensembles even during non-invasive 

interface application. The main disadvantage of such neural 

interfaces is long reaction time [1, 2, 3]. 

Most modern non-invasive neural interfaces based on 

the analysis of nervous system chemical activity apply the 

BOLD (blood-oxygenation-level-dependent) principle: 

activated neurons absorb several times more oxygen than 

inactive areas of the brain. The BOLD principle is based on 

hemoglobin concentration (oxygenated and deoxygenated) 

detection in some brain parts that bring oxygen to neurons. 

Nowadays the most powerful non-invasive neurointerface 

based on BOLD-principle is functional magnetic resonance 

imaging (fMRI) [24, 25]. The principle of fMRI is based on 

electromagnetic response of atomic nuclei measuring in a 

strong magnetic field. fMRI allows to make volumetric 

maps of neuron activity with the resolution of up to 1 mm 

throughout the whole brain volume. fMRI-based neural 

interfaces are successfully used to control android robots 

[26] and manipulators [27]. However, fMRI requires the 

patient staying mostly motionless in the scanner during 

measurements. Besides, fMRI equipment is very 

cumbersome, energy-intensive and expensive. Thus, 

nowadays the use of fMRI as a neural interface for robotic 

devices is not rational. Usually fMRI is used additionally to 

set up other neural interfaces in the laboratory [28]. 

Another neural interface based on the BOLD-principle is 

functional near infrared spectroscopy (fNIRS), that doesn’t 

have fMRI disadvantages [29, 30, 31]. fNIRS uses near 

infrared radiation to measure the optical absorption 

spectrum of hemoglobin. fNIRS scheme is presented by fig. 

3. 
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Figure 3: fNIRS scheme 

The main advantages of fNIRS in comparison with 

fMRI include portability, relatively low cost of equipment 

and the absence of serious restrictions to the operator's 

physical activity. The greatest disadvantages of fNIRS are 

its spatial resolution (not more than 3 cm deep), as well as 

the time delay of 3-5 seconds during the identification of 

brain activity areas associated with the inertia of blood 
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inflow and outflow processes. There is a relatively 

successful experience of fNIRS use to control bionic limb 

prostheses [32, 33], android robots [34, 35], wheelchairs 

[17], etc. 

The methods of optogenetics are referred to the invasive 

neural interfaces based on nervous system chemical activity 

management [30, 36]. The main principle of these methods 

is to make nerve cell sensitive to electromagnetic radiation 

of a certain range using genetic engineering. In order to 

make neurons sensitive to visible light, they are injected 

with corresponding sensitive proteins, such as rhodopsin. 

The beams of thin optical fibers are fed to provide light 

radiation to the necessary groups of neurons. This method is 

more selective and less traumatic as compared with the 

activation of neurons by electric current using invasive 

electrodes. In order to detect the activation of neurons, they 

introduce electrodes-sensors along with optometers. The 

thermogenetics method [37] is the type of optogenetics, in 

which neurons are made sensitive to infrared radiation. Due 

to the low level of knowledge and potential danger, the 

methods of optogenetics are currently applied only in 

animal experiments. From the point of view of robotics, 

such methods can be interesting so far only as the means of 

inventing a cyborg animal. Greater selectivity will allow the 

use of optogenetics to control highly developed mammals, 

such as laboratory mice and rats, in comparison with other 

invasive neural interfaces [38]. 

III. DISCUSSION 

The review allows us to conclude that spatial 

resolution of electrical neural interfaces is rather low; 

therefore one of their main disadvantages is the difficulty in 

detecting the exact region of activation. The main 

disadvantage of chemical neural interfaces is long reaction 

time. Unfortunately, none of the non-invasive methods 

today allows inventing an effective neural interface for 

interactive control of robotic devices. Modern invasive 

methods are rather harmful; therefore, they are unacceptable 

in studies with humans for ethical reasons. Thus, due to 

significant shortcomings, none of the existing neural 

interfaces can currently individually be successfully used to 

control robotic devices. 

The most promising is the use of combined non-invasive 

neural interfaces in robotics, for example, based on the 

combination of EEG and fNIRS. Regarding these neural 

interfaces, the disadvantages of one method are 

compensated for by the advantages of another. There are 

successful examples of such combined neural interface 

implementation to control bionic prostheses [39], 

quadrocopters [40] and other robotic devices [41]. 

IV. CONCLUSION 

We can draw the following conclusions from the 

study: 

1. During the review, the neural interfaces of robotic 

devices were classified for the first time according to the 

principle of operation and location. It is established that 

despite the wide variety of existing neural interfaces, their 

use for controlling robots causes considerable difficulties. 

2. Experiments with animals remain the main area of 

invasive neural interfaces application now and in the nearest 

future. The wide use of invasive neural interfaces applied to 

humans, for rehabilitation of disabled people, for example, 

will be possible only when fundamentally new, harmless 

neural interfaces appear. 

3. Combined non-invasive neural interfaces, in particular 

the neural interfaces based on the combination of EEG and 

fNIRS, will be applied widely for bionic prostheses, 

exoskeletons and other robotic devices intended for the 

rehabilitation of disabled people. 

4. Robot-based games and the simulators with neural 

interfaces based on EMG, EEG and fNIRS will be used 

more and more often. 

5. The use of neural interfaces for other robotic devices will 

be of scientific importance only until new safe invasive 

neural interface development, since non-invasive neural 

interfaces do not have significant advantages over 

traditional control systems for healthy people. 

 

Abbreviations:  

BCI - Brain Computer Interface;  

BOLD - Blood-oxygenation-level-dependent; 

EEG – electroencephalography; 

EMG – electromyography; 

fMRI - Functional magnetic resonance imaging; 

fNIRS - Functional near infrared spectroscopy. 
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