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Abstract: Multi-resolution image decomposition transforms are a popular approach to current image processing problems such as 

image fusion, noise reduction, and deblurring. Over the past few decades, new algorithms have been developed based on the 

wavelet transform to remedy its directional and shift invariant shortcomings (undecimated discrete wavelet transform is shift 

invariant). This study provides a comprehensive analysis of multi-focus image fusion techniques using six different multi-

resolution decomposition transforms to determine the optimal transform for an image fusion application. The transforms 

investigated are the wavelet, double-density wavelet, dual-tree wavelet, curvelet, contourlet, and bandelet. Furthermore, for each 

transform, seven transform coefficient fusion algorithms are analyzed and the performance is evaluated using eight no-reference 

objective image fusion metrics. The transforms and algorithms selected are applied to a data set that has 27 pairs of multi-focus 

source images used for image fusion. By bringing together the transforms, fusion algorithms, and metrics presented in this study 

as derived separately from different authors, the study seeks to compare these methods. However, a complete comparison amongst 

the different transforms, algorithms, and metrics has not been found in any of the existing literature. Our goal is to provide useful 

insight into their applications in image fusion. The summary of the aggregated results indicates that (1) the curvelet is the most 

robust transform, (2) down-up and linear are the most effect methods of fusion, and (3) Tsallis is the best metric for multi-focus 

image fusion. 
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I. INTRODUCTION 

Multi-resolution image decomposition transforms have 

recently been studied for use in a significant number of 

applications. Wavelet transform, for example has been used in 

the JPEG2000 standard for image compression. Adaptations of 

the wavelet for image compression are still being explored, but 

currently the wavelet incurs less information loss during 

compression than previous algorithms such as JPEG-LS or 

JPEG 2000 (arithmeticcoding and zero tree related to 

independent random variables, stuff all the entropy into the 

independent random variable) [1, 2, 3, 4]. Wavelets have also 

been used in edge detection, andcompared to its predecessor, 

the Fourier transform, the wavelet has characteristics for edge 

detection within images and scaling capabilities [5]. 

Implementation of the wavelet transform for different 

applications is based on the wavelet coefficients.Wavelet 

analysis has been used in noise reduction for images and 

signals [6]. However, the basic fully decimated discrete 

wavelet transform (DWT) has certain weaknesses – it is not 

shift-invariant and is less effective at representing image 

features aligned at oblique angles. Therefore, extensive 

research has been conducted to further improve upon the 

wavelet [7, 8].  

Several new algorithms have been developed recently that 

each improve upon the basic DWT in certain applications. For 

example, the double-density wavelet has the advantage of 

Available online at: https://ijact.in 

 

Date of  Submission 

Date of  Acceptance 

03/08/2019 

02/09/2019 

Date of  Publication 03/10/2019 

Page numbers 3374-3387(14 Pages) 

ISSN:2320-0790 

https://ijact.in/index.php/ijact/issue/view/80


COMPUSOFT, An international journal of advanced computer technology, 8(9), September-2019 (Volume-VIII, Issue-IX) 

3375 
 

being nearly shift-invariant [9]. The Dual Tree Complex 

Wavelet Transform is also nearly shift invariant, and has 

improved directional sensitivity to edges compared with the 

conventional DWT. The curvelet was designed similarly to 

these two, based on the ridgelet, in the continuous domain, to 

better exploit smooth contours within an image for denoising 

applications [10, 11]. Contourlets also exploit smooth 

contours; however, they do so in the discrete domain [12]. The 

discretization of the contourlet directionality coefficients 

makes them useful in image denoising applications [13]. 

Bandelets exploit the geometric flow of the image to provide 

an orthogonal basis for wavelet functions that is along the 

direction of the geometry in localized regions [14, 15, 16].  

 

The aforementioned transforms have been investigated as 

alternatives to the DWT for various applications, in attempts 

to improve performance and capture image information more 

efficiently. The applications for which these alternatives are 

particularly effective are deblurring, metric construction, 

object segmentation, and image fusion. Both the contourlet 

and curvelet have been applied to signal denoising [17], and 

the contourlet was also used to create a no reference blur 

metric [18]. The contourlet has been used to complete multi-

modal image fusion [19]. The Double Density wavelet has 

been used for speckle reduction [20], and object detection 

[21]. The Dual Tree wavelet has been used for image 

enhancement [22], facial recognition [23], and video coding 

[24]. The Double Density wavelet and the Dual Tree wavelet 

have been exploited together to construct no-reference blur 

metrics [25]. Some of the more recent studies used the 

Bandelet. The Bandelet has been used in combination with a 

one-dimensional wavelet transform for image denoising [5, 

26], for compression and approximation [15], and image 

fusion [16, 43]. There is a surfeit of reports on the 

characteristics of these algorithms, but there is need for a 

framework for choosing among them for a given application. 

Some applications are intended to produce a result that is 

useful and/or aesthetically pleasing for a human viewer.  

Ideally such applications would be studied through the use of 

extensive subjective viewing trials.  Unfortunately, subjective 

evaluation is often infeasible – either because the data sets are 

too massive, or because subjective evaluation is inherently 

complex and unrepeatable.  Accordingly, it is highly desirable 

to have objective metrics that closely track rigorous subjective 

evaluations. To date there has been no comprehensive 

evaluation of objective image metrics over the different 

algorithms for image fusion considered here. The goal of 

image fusion is often to provide a result that is maximally 

useful for a human analyst and it is desirable to have objective 

metrics that track well with this subjective activity. 

 

Another challenge within the field of image fusion arises from 

the fact that different results have been reported for a given 

fusion technique based on the type of data considered [27]. 

For example, a fusion-denoising algorithm might work well 

for multi-modal images and yet work poorly for multi-focus 

images.  Figures 1 and 2 show examples of both multi-model 

image fusion and multi-focus image fusion. A better 

understanding of the relative merits of different algorithms for 

image fusion would be of great value. Additionally, there 

would be value in the validation of objective metrics for the 

specific application of image fusion. This is complicated by 

the many different types of inputs, transform coefficients and 

fusion methods that must be considered.  

 

 
Visible                     Infrared                   Fused 

 

Figure 1: Multi-Modal Image Fusion 

 

 
 Foreground               Background                Fused 

 

Figure 2: Multi-Focus Image Fusion 

 

A common metric for evaluation of an image fusion algorithm 

is based on the receiver operating characteristic (ROC) 

analysis [28, 40]. In this study, we focus solely on multi-focus 

imagery data and use six different transforms to perform 

image fusion.  We assess these transforms with ten objective 

metrics that were described by Liu et al. [29].  These metrics 

can be classified into four categories: information theory-

based, image feature-based, structural similarity-based and 

human perception based. The purpose of this study is to 

identify the most suitable methods for multi-focus image 

fusion by evaluating the performance of several popular 

methods via an array of metrics. It is our hope that this study 

serves as an archetype for future studies in image fusion.  

 

This paper is organized as follows: Section 2 discusses the 

mathematical background behind the techniques used to 

process the data obtained for multi-focus, multi-resolution 

image fusion. Section 3 explains the fusion algorithms. 

Section 4 describes the different metrics used. Section 5 

contains our experimental results, which consist of an 

explanation of our ranking system and the results. Section 6 

details conclusions of the requirements and future directions of 

the algorithm comparisons.  

 

II. MATERIALS AND METHODS 

 

2.1 Multi-Resolution Transform 

Amongst the six transforms described below there is a general 

commonality among them.  Figure 3 shows a generic block 

diagram that applies to many fusion algorithms, where a 

transform decomposes an image into coefficients.  
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Figure 3.Transform-Based Image Fusion Block Diagram 

 

How this decomposition occurs differs among each transform. 

Depending on the transform, the study will produce the same 

number of coefficients as there are pixels, or more/fewer 

coefficients than pixels. For the purpose of denoising or de-

blurring, thresholding often occurs in the coefficient domain, 

and the image is reconstructed from the thresholded 

coefficients. All the types of image fusion presented in this 

paper occur in the coefficient domain. In fact, there are often 

different categories of coefficients, for example 

approximatecoefficients and detail coefficients, which can be 

fused in different manners. For example, the detail coefficients 

of an image could be fused by taking the means of pairs of 

coefficients from two images. In that same image, the 

approximate coefficients could be fused by taking the 

maximum coefficient value from pairs of coefficients. After 

fusion occurs at the coefficient level, the inverse transform is 

used to produce the fused image. The rest of this section 

provides the motivation for each transform along with its 

detailed description.  

 

2.1.1 Wavelet 

A wavelet is defined as a finite wave like oscillation that has 

an average value of zero.Moreover, a wavelet begins with an 

amplitude of zero and will increase and decrease in amplitude 

a finite number of times before ending with a final amplitude 

of zero.For a function, (x), to be considered a wavelet, the 

following two conditions must hold: 

     0x dx




    (1) 

 
2

ˆ
 d C

 








  
  (2) 

Where, Ψ(ω) is the Fourier transform of the selected wavelet 

function and CΨ is the admissible constant. There have been 

numerous wavelets constructed, most derived from 

Daubechies[7], which can be categorized according to whether 

the wavelets are defined on a discrete grid vs. over continuous 

time or space, and whether they are real vs. complex 

valued.Two fundamental characteristics of wavelets are their 

rescale and translation definitions.Given a mother wavelet 

Ψ(x), an entire family of wavelets  ,j k x is defined as: 

 

 ,

1
j k

x k
x

jj
 

 
  

 

  (3) 

where j is the scaling variable and k is the translation variable. 

The rescale and translational characteristics of the wavelet 

allow it to detect small abrupt changes in signals, which makes 

it an ideal transform for point-wise edge detection. 
 

The continuous wavelet transform(CWT), defined as the inner 

product of a function f(x)∈L2(ℝ)and a Wavelet Ψ(x), is 

expressed  

 ,

1
, j k

x k
f f x dx

jj
 





 
  

 


 (4) 

In the field of image processing, the function f would represent 

an image that has the wavelet transform applied to it.However, 

images are not generally processed as continuous-space 

functions, but rather as sampled (discrete space) functions.As 

a result, the discrete wavelet transform (DWT), not the CWT, 

is generally used to process sampled images.Similar to the 

CWT, thediscrete wavelet transform of the function f, which 

we will denote G , can be expressed as 

     ,

1
, j k

n

G f f n n
M

   
 (5) 

Where, M is a scaling weight. We note that there are some 

drawbacks as a result of moving from a continuous to discrete 

transformation.In the discrete domain, the wavelet transform 

loses directionality and shift-invariance.Hence, the wavelet 

can detect image edges, but does not see an entire contoured 

edge as one connected piece. Lack of shift-invariance refers to 

the discrete wavelet transform’s inability to transform shifted 

versions of the function f in the time domain as shifted 

versions of G
 in the wavelet domain. These two 

shortcomings sparked the creation of multiple other multi-

resolution transforms which attempt to outperform the DWT. 

 

2.1.2 Contourlet Multi-Resolution Transform 

The contourlet transformation was originally proposed by 

Minh N. Do and Martin Vetterli in 2002 in response to the 

directional and anisotropic constraints of the wavelet and 

curvelet [12]. The contourlet includes basis elements that 

cover more directions than the standard wavelet of just 

horizontal, vertical, and diagonal. The basic two-dimensional 

wavelet transform provided interesting multi-resolution and 

localization features, but lacked the ability to efficiently model 

local edge direction and curvature [32]. The contourlet is 

composed of two processing stages: a Laplacian pyramid and 

a directional filter bank. The contourlet is able to effectively 

represent images by combining five desirable properties: 

anisotropy, directionality, multi-resolution, locality, and the 

ability to process sampled data. A major advantage of the 

contourlet transform compared to the curvelet transform is that 

the contourlet transform was specifically developed for the 

discrete domain. Unlike the wavelet, which grew from a one-

dimensional signal transformation, the contourlet was 

designed specifically for image processing [12]. 
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2.1.2.1 Laplacian Pyramid 

To simplify the description of the Laplacian pyramid let us 

assume an input image pixel resolution of 2 j
 x 2 j

 pixels.  

The Laplacian pyramid can be considered as a series of error 

images that are the result of differences in a Gaussian pyramid 

structure. A Gaussian pyramid is constructed by passing an 

image,I,through a low-pass filter and then down-sampling the 

image by a factor of 2 in each dimension, so that it now has 

resolution 
12 j

 x 
12 j

 pixels. This filtering and down 

sampling is done for consecutive levels to create a 

pyramid[12]. Hence, for example, if an original image was 

512 x 512, then the second level of the Gaussian pyramid 

would be size 256 x 256, the third level would be 128 x 128, 

etc. The Laplacian pyramid is then constructed as follows  

 1i i iL G U G     (6) 

where iL  is the 
thi  level of the Laplacian pyramid, iG  is the 

i
th

 level of the Gaussian pyramid, and U{Gi+1} is the up 

sampled i+1 level of the Gaussian pyramid. As the method 

progresses down the Laplacian pyramid, the amount of edge 

information lost increases (with a corresponding error 

increase). Finally, if there are n levels in a given Gaussian 

pyramid structure, then we define   nL  as follows 

 n nL G    (7) 

The Laplacian pyramid is an essential part of the contourlet 

transform because the difference images that it produces 

highlight local characteristics within the source image [12]. 

The identification of important features within an image, such 

as edges, is used in combination with thresholding operations, 

which can be applied to the contourlet coefficients. Figure 4 

shows an example of a Laplacian pyramid of the Lenna image 

with four levels. 

 

Figure 4.Laplacian pyramid of Lenna 

 

2.1.2.2  Directional Filter Bank 

The Directional Filter Bank (DFB) provides the contourlet 

transform with the anisotropic and directional capabilities that 

the wavelet transform lacks, as shown in Figure 5. A wavelet 

filter bank is the basis for the contourlet’s DFB. Let n 

represent the number of levels within the DFB; when n=0 the 

DFB is simply a wavelet filter bank.  

 

At higher levels of n, a two-channel quincunx filter bank with 

fan filters is used to divide an image into two directions, 

vertical and horizontal [12]. A shearing operator then allows 

for different directions, such as 30  or 60  to become the 

vertical edge for which the image is then dived into an 

additional two directions. Hence the DFB actually allows for 

directional decomposition of an image into 2
n
different 

directions where n is an integer greater than two. 

 

 
 

Figure 5.Contourlet DFB 

 

Note that a general wavelet filter bank only allows for image 

decomposition in three directions; horizontal, vertical, and 

diagonal because it is defined as π/2
k 

where k is an integer. 

The sampling matrices used within the DFB have the 

following form: 

 
 

 

1 1

1 1

2 ,2 ,    0 2

2,2 ,   2 2

l l

l

k
l l l

diag for k
S

diag for k

 

 

  
 

 

  (8) 

where j is the level of directional decomposition of the DFB 

and k is the given sampling matrix index [12]. Together the 

directional filter bank and the Laplacian pyramid are often 

referred to as a Pyramidal Directional Filter Bank (PDFB). 

The contourlet transform itself is then a combination of 

capturing high frequency information from the DFB and low 

frequency information from the Laplacian pyramid to extract 

the most salient information from the contourlet coefficients. 

The discrete contourlet transform first applies the Laplacian 

pyramid on a given image I, and then each level of the 

Laplacian pyramid is passed through the DFB. The result is an 

image decomposed into multiple directional sub-bands at 

numerous scales. Figure 6 shows the discrete contourlet filter 

bank that Vetterli and Do used in their discussion [12]. 

 

The contourlet has seen numerous applications since its 

inception in 2005. Many of these applications deal with 

denoising of images [33, 34]. The contourlet, as expressed 

above, is an attractive choice of transform for denoising 

situations where there are many well defined contours within 

an image. Furthermore, the contourlet has been used in de-

blurring applications and construction of blur metrics [35, 36]. 

Finally, like the wavelet, the contourlet has been used in 

applications for image fusion, where fusion occurs at the 

coefficient level [37]. 
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Figure 6.Vetterli and Do’s Contourlet Filter Bank 

 

2.1.3 Double Density Wavelet 

 

The Double Density Wavelet (DDW) [20, 9] is one of the 

many transforms that attempt to fix one of the DWT’s major 

problems: lack of shift-invariance. It is ideal to have a multi-

resolution transform that is shift-invariant so that the 

coefficients produced can be directly used to identify image 

features and their locations. The double density wavelet 

structure gives “near” shift-invariance which is a large 

improvement over the critically sampled DWT. In fact, the 

double density wavelet approximates the continuous wavelet 

quite well as compared to the separable DWT.Based on 

applying two distinct wavelets and a single scaling 

function,the double densitywavelet has a greater density of 

coefficients than the fully-decimated DWT.The two wavelets 

selected in the DWT are chosen so that they are to be offset 

from one another by a factor of one-half.Furthermore, both the 

scaling function  t  and the two wavelet functions  1 t  and 

 2 t  will satisfy the following dilation and wavelet equations 

     02 2
n

t h n t n     (9)

     2 2       1, 2i i

n

t h n t n i      (10) 

Where, h0(n) is a scaling (low-pass) filter and the hi(n) are 

wavelet (high-pass) filters. The filters used within the 

decomposition are finite impulse response (FIR) filters that 

provide perfect reconstruction of a signal in one 

dimension.These filters are selected to be an oversampled 

filter bank, and maintain the same amount of redundancy 

within eachsampling level.The name “double-density” is 

derived from the filter’s oversampling rate.If the filter bank is 

iterated once, the oversampling rate is  
7

4
. As iterations 

continue, the oversampling rate approaches two, hence the 

term double density.No matter how many levels of iteration 

are used, the oversampling rate of the one-dimensional DDW 

will not exceed two.The double-density wavelet has a higher 

redundancy than a Laplacian pyramid, described above in the 

contourlet Section,but a lower redundancy than the dual tree 

wavelet, described below. 

 

The DDW redundancy however is an explanation for the one-

dimensional double density wavelet. The comparison of the 

different transform redundancies still holds for two-

dimensions, but the double density wavelet is now redundant 

by a factor that approaches
8

3
.The two-dimensionaldouble 

densitywavelet is constructed by alternating between rows and 

columns using one-dimensional double 

densitywavelets.Thetransform itself is similar to the separable 

DWT in two dimensions, with its dyadic structure.While the 

double density wavelet represents an improvement over the 

DWT it has the drawbacks of relatively high coefficient 

redundancy and relatively poor representation of arbitrarily 

oriented edges. Because the analysis only makes use of 

vertical and horizontally oriented filters the transform’s ability 

to model oblique edge orientation is similar to that of the basic 

DWT. Hence, even though the DDW partially addresses the 

issue of shift-invariance, it still lacks the ability to efficiently 

model arbitrary edge orientations.  

 

2.1.4 Dual Tree Wavelet 

 

The Dual Tree wavelet (DTW) gets its name from its dual 

filtering system it uses to produce coefficients, where the tree 

describes the structure of wavelet coefficient branching [2]. 

The ultimate goal of a dual tree wavelet transform is to use 

wavelets that are analytic. However, the wavelets are required 

to have compact support and as a result, can never achieve a 

truly analytic wavelet for image processing applications. 

Hence the dual tree wavelet transform uses an approximation 

of an analytic wavelet [38]. For the DTW transform a signal or 

image is broken down using two separate two-channel filters. 

Each filter has its own low-pass (scaling) and high-pass 

(wavelet) filter. Figure 7 displays the filter bank system 

implemented in the dual tree wavelet scheme. 

 

 
 

Figure7. Dual Tree Filter bank -  0h n and  0g n  are low-pass 

while  1h n  and  1g n  are high-pass and  2h n and  2g n  are the 

approximate 
 

The essential part to the filters selected is that the filter bank of 

one tree must generate a wavelet and scaling function that is a 

Hilbert transform pair of the functions generated from the 

other tree.Here the Hilbert Transform of a function  2f L R  

is defined as  

       sig ˆnf x i x f x F H   (11) 

where  f̂ x  is the Fourier transform of the function 

f.Furthermore, a Hilbert pair is then defined as  
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f f  H    (12) 

Where, we denote the Hilbert transformed function as f  . In 

choosing filters that result in wavelets that form Hilbert pairs, 

it ensures that the wavelets will be orthogonal to each other 

and hence makes finding an orthogonal wavelet basis easier. 

Furthermore, since images can be thought of as matrices with 

only real values, then the implementation does not use the 

complex portion of any wavelet. 

 

Once the image is fed through the DTW filter banks, the 

resulting scaling and wavelet functions are used to decompose 

the image into coefficients.A drawback of the DTWtransform 

is that it is rather redundant compared to other transforms.For 

each dimension, there a dual treesystem.Hence, for a one-

dimensional signal there are two sets of filter banks, but for a 

two-dimensional image there are four sets of filter banks.This 

type of structure causes the dual tree wavelet to have 2d  

redundancy of the coefficients where d is number of 

dimensions.It is important to note that the dual tree wavelet 

and the double density wavelet are often used in conjunction. 

This is sometimes referred to as the double density dual tree 

discrete wavelet transform or D3TDWT for short. In this 

study, the DDW and DWT were analyzed separately to better 

understand the advantages and disadvantages of each. 

 

2.1.4 Curvelet  

The curvelet was constructed to be an extension of the wavelet 

transform similar to the other methods such as the double 

density wavelet and the dual tree wavelet. The difference 

between the curvelet and the aforementioned transforms is that 

the curvelet takes advantage of the ridgelet transform [30] 

instead of a wavelet transform. Furthermore, the curvelet was 

specifically designed to detect smooth curving edges within an 

image. Ridgelets exploit wavelet like functions to better 

represent smooth edges within a global context, but does not 

provide significant local information. Ridgelet functions not 

only have scale and translation characteristics to them, but 

they also have an orientation characteristic which assists in 

exploiting smooth edge data.  

 

A limitation of the ridgelet transform is that it is applied in a 

global context, hence the idea naturally came about to partition 

a given domain and then apply the ridgelet transform on each 

of those sub sections.This idea gave rise to the curvelet 

transformation. The continuous curvelet transformation works 

in the frequency domain, and uses polar coordinates to help 

tile the domain into sub sections. Each section is split into 

wedges by taking a series of concentric circles such that the 

number of wedges, N, associated with one of the concentric 

circles is:  

24 2
j

jN      (13) 

where j corresponds to the number of concentric circles. See 

the Figure 8below for an example of how the frequency 

domain is tiled.  

 

 

Figure 8. Continuous Curvelet Tiling 
 
A curvelet itself is obtain through bandpass filtering of multi-

scale ridgelets, which is formally defined as: 

     
3

4
, ,a b ax a M R x b  



   (14) 

where  is a wavelet function, a is a scaling variablebetween 

zero and one, b is a translation variable, and ϴ represents an 

orientation. Furthermore,Rϴ represents a rotation and Ma is the 

following scaling matrix: 

 

1/ 0

0 1/
a

a
M

a

 
  
 

   (15) 

The aspect ratio of each wedge is approximately the width 

equal to the length squared.The curvelet transform itself is a 

map from  2 2L FR  where F is the frequency domain and L 

is the Laplacian operator. The transform itself has a similar 

structure to the wavelet transform and is expressed as  

    
2

, , , ,,  a b a bf x f x dx   
R

  (16) 

where f is the function to decompose the data (generally an 

image) into components. Unfortunately, the transform is 

defined in the continuous domain, whereas a discrete version 

is required for image processing. For the curvelet transform 

being applied to a sampled image, f, the frequency domain 

cannot be tiled using concentric circles, and concentric squares 

are used instead. Using concentric squares makes the sizes of 

corresponding wedges slightly different and thus the 

orientations and rotations no longer reflect the physical scene 

or natural representations. Hence, in place of rotation, shearing 

operators are used to remedy the discrete curvelet transform’s 

performance capabilities. The discrete curvelet transform as 

[17, 10, 11] 

     , ,, a b

n

F f f n n     (17) 

The curvelet transform represented an advance as a directional 

multi-resolution transform; however, it was not widely used 

the field of image processing, as it is more naturally suited to 

continuous-space signals, rather than sampled signals. To 

remedy this shortcoming the contourlet transform was 

developed. 

2.1.5 Bandelet 
Bandelets are the most complex multi-resolution transform 

[14, 16, 42] among the six selected for this study. How 

bandelets handle the directional and anisotropic features of an 

image is less computationally efficient than the contourlet, but 
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the results, in applications such as de-noising, seem to indicate 

that bandelet reconstruction of images can produce higher 

quality images. A bandelet captures directional information, 

including smooth contours, using what is called geometric 

flow. Geometric flow refers to a vector field of parallel vectors 

where the local direction of a function f has regular variations. 

Bandelets exploit a very similar dyadic structure as the other 

transforms listed before, but the major difference is that the 

geometric flow defines the geometry in each section of an 

image rather than localization.  

 

Once the geometry of a given image has been computed, a 

bandelet can be constructed by taking a local orthogonal 

transform of wavelet coefficients. A different transform will 

occur for each geometric direction found within the geometric 

flow. This then allows a process to find an optimal set of 

filters for finding the best bandelet basis. The ideal bandelet 

basis is an orthonormal basis created by warping anisotropic 

wavelet bases with respect to the geometric flow.  

 

Bandelet decomposition is performedin such a way that the 

scale of resulting sub-bands is 2 j , calling attention to a 

singularity in a sub-section of the image, referred to as S. 

Furthermore, the wavelet coefficients 
,, j kf   are samples of a 

given regularized function which is underlying the bandelet 

composition by: 

def.

where

and

, (2 )

 ( ) ( )

1
 ( ) ( 2 )

2

j

jn j

j j

j

j j

f f n

f x f x

x x





  



 

 

  (18) 

2.1.6 General Linear Hypothesis Test  

The general linear hypothesis test (GLHT) is used to 

determine the effectiveness of each variable in the final 

outcome. A general linear hypothesis refers to null hypotheses 

of the form H_0: K theta = m for some parametric model with 

parameter estimates coef(model). The generic method glht 

dispatches on its second argument (linfct). The matrix of 

coefficients K are specified directly via the linfct argument. 

 

2.2 Fusion methods 

Pixel-level image fusion is a process whereby a single 

composite image is produced based on two reference images 

[39, 41]. Many methods for multi-resolution image fusion 

have been advanced, which are generally distinguished by 

different methods for merging approximation and detail 

coefficients. For example, in “max-min” fusion, the max 

criterion is used for the approximate coefficients and the min 

criterion for the detail coefficients. This notation will be the 

convention used for all of the fusions methods except for those 

of the bandelet. Since the bandelet only has detail coefficients, 

only one fusion criterion can be used in that framework. In the 

following sections we will let F be the fused image, A be the 

first input image and B be the second input image. 

Additionally, the coefficients fij will form matrices, e.g., F(i, 

j).   

 

2.2.1 Max 

The max criterion will take the maximum absolute value of 

each entry between the two matrices as follows: 

      
 

       

otherwise

ij ij

ijij

ij

if a b
af

b




 



  (19) 

It is important that we use absolute values in these decision 

statements because while pixel values cannot be negative, 

multi-resolution coefficients can. 

 

2.2.2 Min 

The min criterion will take the minimum absolute value of 

each entry between the two matrices as follows:  

      
 

       

otherwise

ij ij

ijij

ij

if a b
af

b




 



  (20) 

2.2.3 Linear 

The linear method involves a linear combination of the two 

matrices with their coefficients summing to 1. If a constant 

parameter c is selected on the interval (0,1) then the resulting 

coefficient matrix will have values: 
 

 1ij ij ij ij ijf c a c b     (21) 

 

 

2.2.4 Mean 

The mean method is a special case of the linear method where 

c = 0.5. It will take the mean between the two entries at each 

position in the matrix like this:  

2

ij ij

ij

a b
f


    (22) 

 

2.2.5 Principal Component Analysis 

Principal Component Analysis (PCA) is method that can be 

used to reduce the dimensions of matrices while keeping most 

of the information. The correlated values in the larger matrix 

are reduced into uncorrelated variables known as principal 

components. For image fusion, PCA can be used to pick out 

the most important features of an image and then fuse them.  

 

2.3 Metrics 
Liu, et al. [29] considered 12 different types of image quality 

evaluation metrics in the context of fusion of data for night 

vision. They organized the metrics according to four 

categories, which are: mutual information based, feature 

based, structured similarity index based, and subjective human 

evaluation. Since the present study seeks to evaluate objective 

fusion methods, the human perception based methods are 

omitted; and thus, the eight remaining metrics were 

investigated here.  

 

2.3.1 Mutual Information 

Mutual information measures the dependency between two 

discrete random variables. Entropy is used to define mutual 

information in units of bits. The mutual information between 

discrete random variables U, V is defined as: 
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2

( , )
( , ) ( , ) log

( ) ( )v V u U

p u v
MI U V p u v

p u p v 

  (23) 

where p(u, v) is the joint probability function and p(u) and p(v) 

are the marginal probability functions of U and V respectively. 

 

2.3.2 Tsallis Entropy 

Tsallis entropy is a divergence measure based on the degree of 

dependence between two discrete random variables. Tsallis 

entropy is a generalization of Shannon entropy, and is 

parametrized by a single real constant. 

 

2.3.3 Nonlinear Correlation 

Nonlinear correlation information entropy uses a nonlinear 

correlation matrix along with the two input images and fused 

image to and produces a quality metric based on the 

eigenvalues of this matrix.  

 

2.3.4 Gradient-Based Fusion Performance 

Gradient-based fusion performance uses the edge information 

from each image to evaluate the quality of fusion. The Sobel 

edge operator is applied to find the edge strength of the input 

image. Then relative strength between the input and the fused 

image is calculated. The edge strength and orientation 

preserve values that are derived and quantified. Using a 

weighted average of the edge information and preservation 

values are obtained as the metric as follows: 

 

 

1 1

1 1

M N

i j

G M N

i j

X
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I J

Y
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

 
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where the Q
AF

 and Q
BF

 terms are the edge information 

preservation values and the w terms are the weighting 

coefficients.  

 

2.3.5 Multi-Scale 

A two-level Haar wavelet is used to calculate the image fusion 

metric based on a multiscale scheme. The edge information is 

retrieved from the high-pass and band-pass components of the 

decomposition. Then a normalized performance metric at a 

scale s is calculated using the components to yield
AB

FQ . Then 

the final multi-scale metric is calculated by combining the 

measurement at different scales: 

 

 
1

sN a
AB

F
M s

s

Q Q



  (25) 

 

whererepresents the weighted scaling factor. 

 

2.3.6 Spatial Frequency 

The spatial frequency fusion metric QSF measures the activity 

level of an image based on four first-order gradients along four 

directions. The reference gradients take the maximum of the 

absolute gradient values between the input images. The metric 

calculates the ratio of spatial frequency error as 

 

( )F R
SF

R

SF SF
Q

SF


   (26) 

where
2 2 2 2( ) ( ) ( ) ( )SF RF CF MDF SDF    (27) 

and F represents the fused image while R represents the 

calculated reference gradients’ frequency.   

MDF is 

   
2

2 2

1
, 1, 1
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

 

      (28) 

and SDF is 

   
1
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1 2

1
, 1, 1

N M

j i

SDF w I i j I i j
MN





 

      (29) 

 

2.3.7 Phase Congruency 

Phase congruency comprises of an absolute measure of image 

activity that defines the evaluation metric. The principal 

moments of the image phase congruency are used to define the 

metric because they contain the information for corners and 

edges. The metric is expressed as  

 

( ) ( ) ( )P p M mQ P P P     (30) 

where p, M, and m refer to phase congruency (p), maximum, 

and minimum moments, respectively;  

 ,,p p p

p AF BF SFP max C C C   (31) 

 ,,M M M

M AF BF SFP max C C C   (32) 

 ,,m m m

m AF BF SFP max C C C   (33) 

where,  ,  | , ,k

xyC k p M m  is the correlation coefficient of 

the two sets x and y which is defined by: 
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The suffixes A, B, F, and S correspond to the two inputs, the 

fused Image, and maximum-select map. The exponential 

parameters α, β, and γ can be adjusted based on the importance 

of the three components.  

2.3.8 Piella’s Metric 

Piella’s Metric uses the universal image quality index method 

to determine the local measure of an image A’s salience within 

window w, denoted s(A|w) to calculate a coefficient c(w) based 

on a ratio of max to sum considering both images involved. In 

this instance, s(B|w) is the salience within window w of image 

B and the local quality of A versus B is denoted Q(A,B|w). 

This term is then used to calculate the quality of the sliding 

window (QW) and put together finally to come up with the 

quality of the entire image: 

   , , ', ', '
a

E W WQ Q A B F Q A B F    (36) 

QW(A',B',F') is the Qw calculated with the edge images, A’, B’, 

and α is manually adjustable parameter to weight the edge-

dependent information. Given the many transforms, image 

fusion methods, and image quality metrics, it is a challenge to 

determine which selection {Txm, ImgFus, IQmetric} is 

optimal for a given situation.  The objective of this study is to 

compare and contrast these options in a comprehensive 

fashion. 

 

III. RESULTS 

To analyze the impact different transforms and fusions have 

on the quality representation value of the fused image, several 

subsets of the data were examined. A ranking system approach 

was used. The ranking approach stemmed from multiple 

comparison tests of factor effects models within each subset of 

data. This was done using the multi-comp library of R.  The 

multi-comparison test is based on a design of experiments 

(DOE) approach to determine the independent and 

confounding factors.  

 

There are some caveats in the analysis. It is important to note 

that the Bandelet data had no factor levels for the approximate 

coefficient variable, so if the factor effects model was fit with 

that variable, then the Bandelet data was omitted from the 

analysis. This was the only unfortunate drawback in what was 

otherwise a very effective way to compare factor levels within 

the data. Also, while the transform and detail coefficient 

analysis did not include the approximate coefficient factor 

parameter in the model; this provided a negligible effect on the 

difference of means comparisons because the means are 

averaged over all levels within the factors. The choice of the 

level averaging was considered to be better for the results of 

the study than omitting the Bandelet transformation data from 

the comparison tests. It should also be noted that, since the 

Bandelet does not have approximate coefficients, it would not 

have been a part of the comparison tests of approximate 

coefficients regardless.  

 

When fitting factor effects to the models of the data, 

interaction terms were omitted due to covariate interaction. 

Thus the model is of the form: 

..ijk i j ijY          (37) 

where  is the mean,representsthe transform, representsthe 

fusion method, and is the residual error in the regression 

model. 

 

Using the model, multiple comparisons GLHT were conducted 

using a Tukey adjustment to examine family-wise error rates. 

This means that for the transform study, with a 95% 

confidence, the probability of making at least one type 1 error 

(incorrect rejection of a true null hypothesis) will be 0.05 and 

that for any individual comparison the probability of a type 1 

error is  
1

151 (.95) .003      (38) 

This is also the approximate probability of a type 1 error in 

any individual comparison in the fusion method study, as the 

exponent becomes 1/16. A type 1 error is the incorrect 

rejection of a true null hypothesis or a false positive. 
 

3.1 Example LSMeans 

Below, we show sample output for the GLHT for one 

transform comparison, under the phase congruency metric. 

The abbreviations used here are: Co for contourlet, Cu for 

Curvelet, DD for Double Density, DT for Dual Tree, W for 

Wavelet, and B for Bandelet. For each entry, the column index 

relates to the transform for the approximate coefficients and 

the row index relates to the transform for the detail 

coefficients.  

 

 
 

Figure 9. Output for one iteration 

 

Note that the p-values shown reflect a strong statistical 

probability (< 0.1%) that rejects the null hypothesis, meaning 

there was a significant difference in means of the values we 

compared. If we look at the first five rows of Figure 9, we can 

see that the Bandelet was outperformed by all five of the other 

transformations this method. Furthermore, if we consider the 

p-values, most of these numbers are very statistically 

significant. The only comparison that was not statistically 
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significant was Wavelet vs. Dual Tree With a t value 

(difference of means) of –1.577. In our approach to ranking 

the levels of each factor based on the results of the multiple 

comparisons test, a score was assigned to each level of each 

factor in two different manners. Consider the data above; a 

naïve scoring of the results would be to assign the numbers 1-

6 to the rankings of the data in descending order as follows.  

 
Table 1. Phase Congruency, naïve ranking points system 

 

Rank Transformation Points 

1 Curvelet 6 

2 Double Density 5 

3 Dual Tree 4 

4 Wavelet 3 

5 Contourlet 2 

6 Bandelet 1 

Though statistically naïve, this scoring system is still 

potentially useful. It indicates the ranking of the different 

algorithms, but it provides no information on the statistical 

significance of the rankings. One alternative system would be 

to adjust the points awarded based on statistical confidence; 

here we consider any result that does not achieve a 95% level 

of statistical confidence to be a tie and split the corresponding 

points accordingly. As noted above, the Dual Tree and 

Wavelet do not have a statistically significant difference. 

Therefore, we will share the points for the 3
rd

 and 4
th

 rankings 

evenly between the two resulting in the following scoring: 

 
Table 2. Phase Congruency: significance adjusted ranking points 

 

Rank Transformation Points 

1 Curvelet 6 

2 Double Density 5 

3 Dual Tree 3.5 

4 Wavelet 3.5 

5 Contourlet 2 

6 Bandelet 1 

 

This can be done with any number of the rankings, not just 

two. For instance, Piella’s metric yielded no significance for 

any of the comparisons in approximate coefficient fusion 

methods. Thus, for the adjusted scoring, each of those seven 

metrics received the score of 4 out of a possible 7.  

 

3.2 Organization 

When dealing with metric comparisons that have not been 

validated and are still not generally agreed upon, we examine 

the data in a number of ways in order to draw conclusions. We 

approached the data in order of certainty. First, approximate 

coefficients showed very little statistical significance, thus we 

consider them least when constructing inferences. When 

comparing transformations and detail coefficients, there is a 

more well-defined ranking of the transform data. Thus we use 

transform rankings to analyze the effectiveness of the metrics. 

Then we will look at the detail coefficient ranking in general, 

and what was effective across all transformations. Although 

useful, we may get even better results by only looking at the 

different detail coefficient when using the most effective 

transform. We will then repeat this with the different 

approximate coefficients comparing them while only using the 

most effective transforms and details 

 

3.3 Transformation Comparison 

The naïve and adjusted rankings for the transform 

comparisons are given in Tables 3 and 4.  The Curvelet was 

the best performing transform in our study, as we can see from 

the following charts. A key point is that no matter the ranking 

system, the curvelet produced the top results for the metrics. 

 

Just as the curvelet clearly distinguished itself atop the 

rankings, the contourlet was clearly the worst transform. We 

can see that the rankings don’t change very significantly if we 

call ties for statistical insignificance, where only the Double 

density and the bandelet trade in various rankings. We can 

also see that based on this aggregate of all of the rankings in 

our study that the Wavelet came in second. This is interesting 

because all of the other transformations were developed with 

the intention of being improvements upon the Wavelet.  

 
Table 3.Naïve Transform Rankings 

 
Aggregate Rank Transformation Points 

1 Curvelet 39 

2 Wavelet 32 

3 Bandelet 29 

4 Double Density 27 

5 Dual Tree 25 

6 Contourlet 16 

 

Table 4.Adjusted Transform Rankings 

 

Aggregate Rank Transformation Points 

1 Curvelet 35.5 

2 Wavelet 34 

3 Double Density 26.5 

4 Bandelet 26 

5 Dual Tree 25 

6 Contourlet 21 

 

When considering how closely the metrics rankings reflected 

the aggregate rankings, we see that Piella’s metric was much 

different than the rest because it actually ranked the curvelet 

last, and it was the only transformation that ranked the 

contourlet in the top 3. We can also note that the only 

statistically significant difference it showed was the wavelet 

being better than the rest. This along with the fact that it found 

no significant contrast of means in the approximate coefficient 

data indicates that it has the most different results from the 

other metrics. Thus it would probably lend itself well to a 

receiver operating characteristic (ROC) validation study to see 

if it is not valid in this type of fusion. Alternatively, it could be 

the best metric for this type of fusion.  

 

Additionally, we can consider the aggregate rankings and 

assign the scores 1-6 to those ranking just as we did for each 

set of rankings individually. Then by calculating the distance 

between this vector and each of the ranking vectors for the 
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metrics, we see that mutual information, Tsallis entropy, and 

the multiscale scheme were the closest rankings to our 

aggregate rankings. When we do the same considering the 

adjusted rankings, mutual information was the closest to being 

the same as the aggregates, while phase congruency was the 

second closest.  

 

3.4 Detail Coefficient Comparison 

Here we have a look at how the detail coefficients came up in 

the ranking analysis. We note that there is much less 

distinguishing the detail coefficients than there was the 

transformations. We can see that Down-Up was the best detail 

coefficient fusion method, but that all of the detail coefficient 

fusion methods were very close in score. 

 
Table 5.Naïve Detail Coefficient Rankings 

 
Aggregate Rank Detail Fusion Total Points 

1 Down-Up 36 

2 Mean 34 

3 Up-Down 33 

4 Min 32 

5 Random 31 

T6 Linear 29 

T6 Max 29 

 

Table 6.Adjusted Detail Coefficient Rankings 

 

Aggregate Rank Detail Fusion Total Points 

1 Down-Up 35 

2 Min 33.5 

3 Up-Down 32.5 

4 Mean 32 

5 Random 31 

T6 Linear 30 

T6 Max 29 

 

It is interesting to note that phase congruency metric produced 

results that were all statistically significant. This means that 

perhaps it is the best at discerning differences between the 

detail coefficients. We also note that for the adjusted ranking 

system it had the smallest distance between its rankings vector 

and the aggregate rankings vector. Alternatively, Tsallis was 

by far the smallest distance in the naïve look at things, with 

phase congruency having the second smallest distance 

between the ranking vectors. It should also be noted that 

spatial frequency may indeed be best at identifying high 

quality detail fusion methods because it was the only method 

to rank the down-up method as the best and also determined 

that min was the second best. Here is a look at spatial 

frequency’s rankings of the fusion methods:  

 
Table 7.Spatial Frequency Detail Coefficient Rankings 

 
Rank Detail Fusion Points 

1 Down-Up 7 

T2 Min 5.5 

T2 Max 5.5 

T4 Linear 3 

T4 Random 3 

T4 Up-Down 3 

7 Mean 1 

 

We can see that here max is tied for second with min, despite 

it turning up tied for last in our aggregate rankings. With the 

detail coefficient rankings all being so close, it seems that the 

transformation has more of an impact on quality 

measurements than the detail coefficient fusion does. Thus, the 

following study of detail coefficients with regards to just the 

curvelet transformation.  

 

3.5 Approximate Coefficient Comparison 

The following tables present the aggregate ranking results for 

the approximate coefficients. It is good to note that these 

showed the least statistical significance across the metrics of 

the different factors that were studied. This leads to the 

important insight that the approximate coefficients may be the 

least important factor in the quality of multi-focus fusion. 

 
Table 8.Naïve Approximate Coefficient Rankings 

 
Aggregate 

Rank 

Approximate 

Coefficient 

Total Points 

1 Linear 42 

2 Up-Down 41 

3 Max 34 

T4 Mean 33 

T4 Down-Up 33 

6 Min 27 

7 Random 14 

 

 

Table 9. Adjusted Approximate Coefficient Rankings 

 

Aggregate 

Rank 

Approximate 

Coefficient 

Total Points 

1 Linear 38.5 

2 Min 34 

3 Up-Down 33 

4 Max 32 

5 Mean 31 

6 Down-Up 30 

7 Random 25.5 

 

The linear coefficient method of fusion distinguishes itself as 

the statistically significant strongest option for approximate 

coefficients. Meanwhile, we note that the rankings mix around 

a lot when comparing the naïve rankings and the adjusted 

rankings. With the only other agreement between the two sets 

of rankings being that the random method was the worst. This 

leads us to the observation that the linear approximate 

coefficient method is the safest choice when trying to optimize 

multi-focus fusion.  

 

3.6 Insights from Curvelet 

Since the curvelet was the best performing transformation, the 

fusion type that works best with itis of particular interest. In 

the following table, we can see the results for the detail 

coefficient rankings for the curvelet: 
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Table 10.Naïve Detail Coefficient Rankings, Curvelet 

 
Aggregate Rank Detail Coefficient Total Points 

1 Linear 37 

2 Down-Up 35 

T3 Mean 34 

T3 Random 34 

T3 Min 34 

6 Up-Down 28 

7 Max 22 

 

 

Table 11.Adjusted Detail Coefficient Rankings, Curvelet 

 

Aggregate 

Rank 

Detail Coefficient Total Points 

1 Down-Up 36.5 

T2 Linear 33.5 

T2 Mean 33.5 

4 Random 31 

T5 Max 30 

T5 Up-Down 30 

7 Min 29.5 

 

Here we can see that down up, linear, and mean were the three 

most effective detail coefficients when working solely with the 

curvelet. When we consider the statistical significance of the 

rankings we can see that Down-Up is the most effective. It 

would perhaps be useful to compare them with rankings from 

a human subjective evaluation to differentiate which is the 

best to pair with the curvelet.  

 

The approximate coefficients appeared to be much less 

statistically significant with only three adjacent ranking 

differences being statistically significant total over the 

rankings using all eight of the metrics. Nonetheless, here is our 

aggregate result for approximate coefficients:  

 
Table 12.Naïve Approximate Coefficient Rankings, Curvelet 

 
Aggregate 

Rank 

Approximate 

Coefficient 

Total 

Points 

1 Linear 44 

2 Down-Up 37 

T3 Mean 34 

T3 Random 34 

5 Min 29 

6 Up-Down 26 

7 Max 20 

 

Table 13.Adjusted Approximate Coefficient Rankings, Curvelet 

 

Aggregate 

Rank 

Approximate 

Coefficient 

Total 

Points 

1 Linear 35 

T2 Down-Up 31.5 

T2 Mean 31.5 

T2 Random 31.5 

T2 Min 31.5 

T2 Up-Down 31.5 

T2 Max 31.5 

 

Although there was not a lot of clear differentiation between 

the approximate coefficients, it is a safe choice to select linear 

approximate coefficients when fusing images with the 

curvelet.  

 
IV. CONCLUSIONS 

The study sought to investigate six contemporary transforms, 

seven fusion methods, and eight image quality metrics for 

multi-focus image fusion. Insights from the study revealed that 

the curvelet was the only one of the transformations designed 

to improve upon the wavelet that demonstrated an 

improvement for multi-focus image fusion. When analyzing 

the detail coefficients, the data indicates that down-up is the 

best suited for multi-focus fusion, being the optimal choice 

when considering all transformations as well as the best in the 

statistically significant study when only considering the 

curvelet numbers. It is clear that linear was the best 

performing approximate coefficient in our study, among all of 

the transformations and when the data was just restricted to 

just the curvelet transformation. When considering metrics, 

Tsallis distinguished itself as most closely following the 

aggregate rankings that were produced. This leads us to 

believe that it may be the best indicator of visual quality of a 

multi-focus fusion. Additional comparison with human 

subjective ratings should be used in the future to confirm that 

this is the case.  

 
Future work for image fusion comparison should be centered 

on the unification of image fusion metrics into a single 

automated fusion system that can use the results of this study 

and others to determine and carry out the optimal fusion by 

choosing the correct transformation method, approximate 

coefficient method, and detail coefficient method. Additional 

studies should be conducted to include the use of additional 

fusion types, including those that work with different 

modalities and sensor types.  
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