
COMPUSOFT, An international journal of advanced computer technology, 8(12), December-2019 (Volume-VIII, Issue-XII)

3525

Cite This Paper: Abdulshaheed M, Hammad M, Alqaddoumi A, Obeidat Q.,

Mining Historical Software Testing Outcomes to Predict Future Results, 8(12),
COMPUSOFT, An International Journal of Advanced Computer Technology.

PP. 3525-3529.

This work is licensed under Creative Commons Attribution 4.0 International License.

MINING HISTORICAL SOFTWARE TESTING OUTCOMES TO PREDICT

FUTURE RESULTS
Mohamed Abdulshaheed, Mustafa Hammad, Abdulla Alqaddoumi, Qasem Obeidat

Department of Computer Science, University of Bahrain, Sakheer, Kingdom of Bahrain

a.shaheed@gmail.com, {mhammad, aqaddumi, qobeidat}@uob.edu.bh

Abstract: Software bugs and program defects have significant negative effect on the cost and duration of software development

process. Finding such bugs in early stages of the development process will cuts development time and maintenance costs. This

investigation presents three different machine learning algorithms: K-Nearest Neighbors (KNN), Random Forest (RF), and

Multilayer Perceptron (MLP) to build a new proposed software defect prediction model using different types of software

performance metrics. This proposed model was tested on three public datasets obtained from NASA to assess its accuracy and

revealed that the KNN was outperforms RF and MLP.

Keywords:software engineering; machine learning; prediction model; software defects; software evolution

I. INTRODUCTION

The presence of software bugs impacts significantly on
software functionality, quality, and reliability. Software
bugs in a production system is an unfavorable situation to
the end-users and affect the organization in a term of
reputation. It emerges when the software does not meet its
specifications. Developing and deploying zero-bug software
is difficult because the software becomes more complex.
Troubleshooting bugs is a critical activity in software
development. However, every hour that the system
developers spend to troubleshoot bugs is a waste of time. In
addition, maintaining the system after it is launched is a
costly job. Thus, building a defect prediction model is
highly recommended, and it can be used to reduce costs and
save time.
Software defect prediction is an evolutionary approach to
discover or estimate, in prior stages, where defects may
emerge. It is playing a key role in software success, as
discovering defects in earlier stages of the software
development life cycle will lead to an efficient and reliable
software. In addition, costs can be reduced significantly

when bugs are discovered and fixed in the testing stage than
during maintenance stage. Besides, predicting defects will
satisfy the users’ needs and expectations which increases the
software reputation such that it can be applied with different
clients.
Building a software defect prediction model in software
engineering is a challenging task. Many models have been
presented to deal with software defect prediction issue [1]–
[12], but the most notable one is using machine learning
algorithms. These algorithms are used to predict software
defects based on historical data and several software
metrics.
The aim of this research is to build a software defect
prediction model using different types of performance
measurements, such as mean absolute error, root mean
squared error, relative absolute error, root relative squared
error, and correlation coefficient. This proposed model was
examined by three machine learning algorithms: K-Nearest
Neighbors (KNN), Random Forest (RF), and Multilayer
Perceptron (MLP). These algorithms were used to examine

Available online at: https://ijact.in

Date of Submission

Date of Acceptance

19/11/2019

10/12/2019

Date of Publication 31/12/2019

Page numbers 3525-3529 (5 Pages)

ISSN:2320-0790

https://ijact.in/index.php/ijact/issue/view/80

COMPUSOFT, An international journal of advanced computer technology, 8(12), December-2019 (Volume-VIII, Issue-XII)

3526

their capabilities in fault prediction on three datasets
collected during monitoring real-time software system.
The rest of this research is organized as follows: Section II
presents a discussion of the related work in software fault
prediction using different approaches. Section III provides
an overview about the machine learning algorithms which
are used in this study. A description about the dataset and
evolution methodology is presented in Section IV.
Experimental results are shown in Section V followed by
conclusion and future work in Section VI.

II. RELATED WORK

Many researchers used different machine learning models to
predict defects in software modules such as Decision Trees
[1], Naïve Bayes [2], Fuzzy Logic [3], Logistic Regression
[4], Case-based Reasoning [5], Genetic Programming [6],
and Artificial Neural Networks [7]–[10].
A study by Ma et al. [13] proposed a novel approach for
software fault prediction based on balanced random forests.
The proposed methodology was compared with many
different classification and machine learning approaches
using five defect datasets from NASA based on a set of
performance measurements. The results showed that
random forests can be the “best guess” among other
classifier algorithms for a dataset that describes software
metrics of fault components.
On another study, Boetticher [14] conducted a number of
classification experiments to assess the effects of datasets in
empirical software engineering. Decision Trees and Naïve
Bayes models were used to analyze defect datasets from
NASA. It has been observed that ten-fold cross validation is
insufficient in the validation of a dataset. In the end, it has
been stated that success in the evaluation of a training
dataset depends on the level of difficulty of the dataset.
Challagulla et al. [15] applied Memory-Based Reasoning
(MBR) classifier to predict software defectsin a dataset from
NASA data repository (Metrics Data Program) by using
different types of predicator software metrics such as
McCabe, Halstead, line count, operator/operand, and
branch. The assessment criteria were probability of false
alarm, detection, and accuracy. A framework has been
proposed that provides procedures in selecting the suitable
configuration of MBR classifier.
A comparison created by Elishet al. [16] between the
capability of support vector machine and eight statistical
and machine learning methods. The datasets are obtained
from four NASA software projects written in C, C++, and
Java with 21 software metrics for each dataset. The results
indicated that support vector machine has a higher accuracy
against the performance of the compared methods.
Chidamber and Kemerer[17] developed and implemented a
suite of six software metrics to assess the object-oriented
design such as depth of inheritance tree and lack of cohesion
in methods. Several studies have been conducted to evaluate
these metrics, such as [18] and [19]. Basili et al.[18]
measured the source code of eight projects written in C++
using the CK metrics. The Logistic Regression has been
utilized to evaluate the impact of these metrics in the
prediction of defect data found on object-oriented classes.
The study concluded that five out of the six object-oriented
metrics can be used in prediction of faulty classes.In
addition, Tang et al. [19] studied the relationship between

the CK object-oriented metrics and the object-oriented
faults. CK metrics has been validated based on data from
three industrial real systems developed by C++ using logic
regression model. The study suggested that the CK two
metrics,Weighted Methods per Class (WMC) and Response
For a Class (RFC), can be good indicators for object-
oriented faults. Finally, the study presented a new set of
metrics that can be utilized to evaluate object-oriented
faults.
Emam et al. [20] used Logistic Regression to evaluate
object-oriented design metrics on data collected from a
commercial application developed by Java. The results
indicated that logistic regression has a high accuracy and
export coupling (EC) metric is suited with fault-proneness.
Khoshgoftaar et al. [21] used Artificial Neural Networks
and non-parametric discriminant techniques on a
telecommunication system, which had seven million lines of
code. The study compared the results between artificial
neural network and nonparametric discriminant and
illustrated that artificial neural network has a better accuracy
rate.
Turhanet al. [22] examined 25 telecommunication system

projects to predict fault proneness based on trained datasets

from NASA by using static call graph-based ranking

(CBGR) and nearest neighbor sampling. The study showed

that 70% of faults can be detected by inspecting and only

3% by code using CBGR framework.

III. MACHINE LEARNING ALGORITHMS

The following is the summary of the three machine

learning algorithms that are used to predict the accumulated

faults of three testing and debugging datasets.

A. K-Nearest Neighbors (KNN)

KNN is a well-known and widely used machine learning

algorithm in many fields because it is very simple.Also,

KNN is considered as a lazy learning algorithm, where it

use all stores training data and delays its learning until

classification time [23]. Thus, this algorithm it has no

specialized training phase. This algorithmfind the

difference and similarity between different points in a

specific area in graph by calculating the distance between

these points.Euclidean distance (i.e., straight-line distance)

is one of the most common distance function used in KNN

[24].

B. Random Forest (RF):

RF generates many decision trees. For each decision tree

there is a prediction result. The most repeated prediction

result is selected by RF classifier to be the final class

prediction result [25]. RF is one of the more accurate

prediction algorithms because it can works with many

decision trees and selecting the most important features for

the classifier.

C. Multilayer Perceptron (MLP):

MLP (or Feedforward Neural Networks) is the most typical

neural network model. Where it is consists of three layers:

input layer, hidden mathematical layer(s), and output layer

[26]. The input data is managed in the input layer and the

COMPUSOFT, An international journal of advanced computer technology, 8(12), December-2019 (Volume-VIII, Issue-XII)

3527

output is store in the output layer. The number of the

hidden layer can be increasedaccording to the task

complexity.

IV. DATASETS AND EVOLUTION METHODOLOGY

Three different datasets are used in this work to evaluate the
accuracy of the machine learning algorithms. The datasets
are collected from testing three different software systems,
namely, dataset A, B, and C. The three datasets consist of
each day measurement (D), detected faults (F), accumulated
faults (AF), and number of test workers (W).
The evaluation criteria for evaluating the machine learning
algorithms are standard numeric performance measurement:
IfOis the accumulated actual fault, Õ is the accumulated
predicted fault, Ō is the mean of O, and k is the number of
test instances, then:

A. Mean absolute error (MAE)

It is the absolute sum of the error divided by number of
predictions. The error is the difference between the
accumulated actual fault and accumulated
predictedfault[27].

𝑀𝐴𝐸 =
1

𝑘
 |𝑂𝑗 − 𝑂 𝑗 |

𝑘

𝑗 =1

B. Root mean squared error (RMSE)

It is the square root of sum of the square error divided by
number of predictions. The error is the difference between
the accumulated actual fault and accumulated
predictedfault[29].

𝑅𝑀𝑆𝐸 =
1

𝑘
 𝑂𝑗 − 𝑂 𝑗

2𝑘

𝑗 =1

C. Relative absolute error (RAE)

It is the sum of the absolute error divided by sum of
absolute relative error. The error is the difference between
the accumulated actual fault and accumulated
predictedfault, while the relative error is the difference
between the accumulated actual fault and its mean [29].

𝑅𝐴𝐸 =
 |𝑘

𝑗 =1 𝑂𝑗 − 𝑂 𝑗 |

 |𝑂𝑗 − 𝑂 𝑗 |𝑘
𝑗 =1

D. Root relative squared error (RRSE)

It is the square root of the square error divided by the square
relative error. The error is the difference between the
accumulated actual fault and accumulated predictedfault,
while the relative error is the difference between the
accumulated fault and its mean [29].

𝑅𝑅𝑆𝐸 =
 𝑂𝑗 − 𝑂 𝑗

2𝑘
𝑗=1

 𝑂𝑗 − 𝑂 𝑗
2𝑘

𝑗=1

E. Correlation coefficient (R²)

Correlation coefficient shows how the accumulated actual
fault and accumulated predictedfault are related. It gives
value between 0 and 1. The correlation is 1 when the
numbers of actual faults and predicted faults are similar, and
it is zero when there is no relation between them [29]
and[30].

𝑅2 = 1 −
 𝑂𝑗 − 𝑂 𝑗

2𝑘
𝑗=1

 𝑂𝑗 − 𝑂 𝑗
2𝑘

𝑗=1

V. EXPERIMENTALRESULTS

In order to evaluate the machine learning algorithm with the
performance measurement, Weka 3.9.3 toolkit has been
used.
Table I presents the performance measurement results for
the evaluation of datasets A, B, and C. These results showed
that KNN and RF machine learning algorithms have the best
performance results, while MLP has the worst performance
in all dataset.
The predicted and actual accumulated faults for the test
instances for dataset A, dataset B, and dataset C based on
the aforementioned three machine learning algorithms are
shown in Fig.1, Fig. 2, and Fig. 3 respectively.

Table I: Performance Measurement Results for Dataset A, B, and C

 Dataset A Dataset B Dataset C

Algorithms
MAE RMSE RAE RRSE R² MAE RMSE RAE RRSE R² MAE RMSE RAE RRSE R²

KNN 2.4009 4.9899 1.8537 3.319 0.9994 3.8853 5.6164 2.4855 3.2013 0.9995 3.8478 6.1987 5.4915 7.7145 0.9969

RF 3.8422 6.0254 2.9665 4.0079 0.9994 4.3953 5.4592 2.8118 3.1118 0.9997 4.1332 6.9066 5.8987 8.5955 0.9974

MLP 15.7285 20.9983 12.1438 13.9671 0.9919 7.6678 10.4495 4.9052 5.9562 0.9983 13.3191 16.7993 19.0087 20.9072 0.9769

COMPUSOFT, An international journal of advanced computer technology, 8(12), December-2019 (Volume-VIII, Issue-XII)

3528

 (a) KNN (b) RF (c) MLP

Fig.1 Predicted faults and actual faults for dataset A.

 (a) KNN (b) RF (c) MLP

Fig.2 Predicted faults and actual faults for dataset B.

 (a) KNN (b) RF (c) MLP

Fig.3 Predicted faults and actual faults for dataset C.

Table II shows a comparison between the three selected
machine learning algorithms used in this work with other
techniques that were used on the same datasets. The work in
[28] used linear auto regression (AR) model and power
model (POWM) in order to evaluate the three datasets with
RMSE performance measurement.
For dataset A and C, KNN achieved the best result among
other algorithms. However, MLP has the highest estimation
error over other machine learning algorithms. For dataset B,
AR model achieved a better estimation rate than the others.

Table II: RMSE measurement for machine learning algorithms, AR

model, and POWR model

Dataset

Machine learning algorithms Approach used in [28]

KNN RF MLP AR model POWM

Dataset A 4.9899 6.0254 20.9983 6.1365 32.3550

Dataset B 5.6164 5.4592 10.4495 3.2686 22.2166

Dataset C 6.1987 6.9066 16.7993 8.5462 11.9446

VI. CONCLUSION AND FUTURE WORK

Software fault prediction is used to measure the software

quality before releasing it. In this paper, accumulated faults

0

100

200

300

400

500

600

0 30 60 90 120

A
cc

u
m

al
te

d
 f

au
lt

s

Measurement days

0

100

200

300

400

500

600

0 30 60 90 120

Measurement days

0

100

200

300

400

500

600

0 30 60 90 120

Measurement days

0

100

200

300

400

500

600

0 30 60 90 120

A
cc

u
m

al
at

ed
 f

au
lt

s

Measurement days

0

100

200

300

400

500

600

0 30 60 90 120

Measurement days

0

100

200

300

400

500

600

0 30 60 90 120

Measurement days

0

50

100

150

200

250

300

0 10 20 30 40 50

A
cc

u
m

al
at

ed
 f

au
lt

s

Measurement days

0

50

100

150

200

250

300

0 10 20 30 40 50

Measurement days

0

50

100

150

200

250

300

0 10 20 30 40 50

Measurement days

COMPUSOFT, An international journal of advanced computer technology, 8(12), December-2019 (Volume-VIII, Issue-XII)

3529

from testing three software systems have been used to

estimate the future accumulated faults using three types of

machine learning algorithms. The machine learning

algorithms have been evaluated by the errors between the

actual and predicted accumulated faults using five types of

performance measurements. A comparison between the

results of this work with others that used the same testing

datasets also has been provided. The comparison shows

that some techniques performance such as KNN, RF, and

AR are competitors between each other.

As a future work, we may study the impact of number of

test workers in prediction faults described in the dataset A,

B, and C using the machine learning algorithms with extra

performance measurements such as accuracy, confusion

matrix, precision, recall, and F-measures. In addition, this

proposed software defect prediction model can be used in

arecent study [31] to help the software tester in evolving

the software test suite to accommodate the changes on code

(i.e., new software version).

VII. REFERENCES

[1] T. M. Khoshgoftaar and N. Seliya, “Software quality classification
modeling using the SPRINT decision tree algorithm,” Int. J. Artif.
Intell. Tools, vol. 12, no. 03, pp. 207–225, 2003.

[2] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Trans. Softw. Eng., vol.
33, no. 1, pp. 2–13, 2007.

[3] X. Yuan, T. M. Khoshgoftaar, E. B. Allen, and K. Ganesan, “An
application of fuzzy clustering to software quality prediction,” in
Proceedings 3rd IEEE Symposium on Application-Specific Systems
and Software Engineering Technology, 2000, pp. 85–90.

[4] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum,
“Empirical validation of three software metrics suites to predict fault-
proneness of object-oriented classes developed using highly iterative
or agile software development processes,” IEEE Trans. Softw. Eng.,
vol. 33, no. 6, pp. 402–419, 2007.

[5] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai, “Comparing case-
based reasoning classifiers for predicting high risk software
components,” J. Syst. Softw., vol. 55, no. 3, pp. 301–320, 2001.

[6] M. Evett, T. Khoshgoftar, P. Chien, and E. Allen, “GP-based software
quality prediction,” in Proceedings of the Third Annual Conference
Genetic Programming, volume, 1998, pp. 60–65.

[7] T. J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng., no.
4, pp. 308–320, 1976.

[8] M. E. R. Bezerra, A. L. I. Oliveira, P. J. L. Adeodato, and S. R. L.
Meira, “Enhancing RBF-DDA algorithm’s robustness: Neural
networks applied to prediction of fault-prone software modules,” in
IFIP International Conference on Artificial Intelligence in Theory and
Practice, 2008, pp. 119–128.

[9] P. C. Pendharkar, “Exhaustive and heuristic search approaches for
learning a software defect prediction model,” Eng. Appl. Artif. Intell.,
vol. 23, no. 1, pp. 34–40, 2010.

[10] S. Kanmani, V. R. Uthariaraj, V. Sankaranarayanan, and P.
Thambidurai, “Object-oriented software fault prediction using neural
networks,” Inf. Softw. Technol., vol. 49, no. 5, pp. 483–492, 2007.

[11] Hammad, M., Alqaddoumi, A. and Al-Obaidy, H., 2019. "Predicting
Software Faults Based on K-Nearest Neighbors Classification.",
International Journal of Computing and Digital Systems, 8(5),
pp.462-467.

[12] Awni Hammouri, Mustafa Hammad, Mohammad Alnabhan, and
Fatima Alsarayrah. 2018. "Software bug prediction using machine
learning approach.", International Journal of Advanced Computer
Science and Applications, 9(2).

[13] Y. Ma, L. Guo, and B. Cukic, “A statistical framework for the
prediction of fault-proneness,” in Advances in Machine Learning
Applications in Software Engineering, IGI Global, 2007, pp. 237–
263.

[14] G. D. Boetticher, “Improving credibility of machine learner models
in software engineering,” in Advances in Machine Learning
Applications in Software Engineering, IGI Global, 2007, pp. 52–72.

[15] V. U. B. Challagulla, F. B. Bastani, and I. L. Yen, “A unified
framework for defect data analysis using the MBR technique,” Proc.
- Int. Conf. Tools with Artif. Intell. ICTAI, pp. 39–46, 2006.

[16] K. O. Elish and M. O. Elish, “Predicting defect-prone software
modules using support vector machines,” J. Syst. Softw., vol. 81, no.
5, pp. 649–660, 2008.

[17] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object
oriented design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–
493, 1994.

[18] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Trans. Softw.
Eng., vol. 22, no. 10, pp. 751–761, 1996.

[19] M.-H. Tang, M.-H. Kao, and M.-H. Chen, “An empirical study on
object-oriented metrics,” in Proceedings sixth international software
metrics symposium (Cat. No. PR00403), 1999, pp. 242–249.

[20] K. El Emam, W. Melo, and J. C. Machado, “The prediction of faulty
classes using object-oriented design metrics,” J. Syst. Softw., vol.
56, no. 1, pp. 63–75, 2001.

[21] T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, and S. J. Aud,
“Application of neural networks to software quality modeling of a
very large telecommunications system,” IEEE Trans. Neural
Networks, vol. 8, no. 4, pp. 902–909, 1997.

[22] B. Turhan, G. Kocak, and A. Bener, “Data mining source code for
locating software bugs: A case study in telecommunication
industry,” Expert Syst. Appl., vol. 36, no. 6, pp. 9986–9990, 2009.

[23] S. KR, “Microarray Data Classification Using Support Vector
Machine,” Int. J. Biometrics Bioinforma., vol. 5, no. 1, pp. 10–15,
2011.

[24] L. Jiang, Z. Cai, D. Wang, and S. Jiang, “Survey of improving k-
nearest-neighbor for classification,” in Fourth International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD
2007), 2007, vol. 1, pp. 679–683.

[25] E. Jedari, Z. Wu, R. Rashidzadeh, and M. Saif, “Wi-Fi based indoor
location positioning employing random forest classifier,” in 2015
international conference on indoor positioning and indoor navigation
(IPIN), 2015, pp. 1–5.

[26] J. C. Patra, R. N. Pal, B. N. Chatterji, and G. Panda, “Identification
of nonlinear dynamic systems using functional link artificial neural
networks,” IEEE Trans. Syst. man, Cybern. part b, vol. 29, no. 2, pp.
254–262, 1999.

[27] Y. Tohma, K. Tokunaga, S. Nagase, and Y. Murata, “Structural
approach to the estimation of the number of residual software faults
based on the hyper-geometric distribution,” IEEE Trans. Softw.
Eng., vol. 15, no. 3, pp. 345–355, 1989.

[28] A. Sheta and D. Rine, “Modeling Incremental Faults of Software
Testing Process Using AR Models,” in the Proceeding of 4th
International Multi-Conferences on Computer Science and
Information Technology (CSIT 2006), Amman, Jordan, 2006, vol. 3.

[29] Y. kumar and G. Sahoo, “Analysis of Parametric & Non Parametric
Classifiers for Classification Technique using WEKA,” Int. J. Inf.
Technol. Comput. Sci., vol. 4, no. 7, pp. 43–49, 2012.

[30] “machine learning - How to interpret error measures? -Cross
Validated,” 2017. [Online]. Available:
https://stats.stackexchange.com/questions/131267/how-to-interpret-
error-measures/272904. [Accessed: 19-May-2019].

[31] Alsolami, N., Obeidat, Q., Alenezi, M., 2019. Empirical Analysis of
Object-Oriented Software Test Suite Evolution. International Journal

of Advanced Computer Science and Applications, 10(11). (in press)

