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Abstract:  Software bugs and program defects have significant negative effect on the cost and duration of software development 

process. Finding such bugs in early stages of the development process will cuts development time and maintenance costs. This 

investigation presents three different machine learning algorithms: K-Nearest Neighbors (KNN), Random Forest (RF), and 

Multilayer Perceptron (MLP) to build a new proposed software defect prediction model using different types of software 

performance metrics. This proposed model was tested on three public datasets obtained from NASA to assess its accuracy and 

revealed that the KNN was outperforms RF and MLP. 
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I. INTRODUCTION 

The presence of software bugs impacts significantly on 
software functionality, quality, and reliability. Software 
bugs in a production system is an unfavorable situation to 
the end-users and affect the organization in a term of 
reputation. It emerges when the software does not meet its 
specifications. Developing and deploying zero-bug software 
is difficult because the software becomes more complex. 
Troubleshooting bugs is a critical activity in software 
development. However, every hour that the system 
developers spend to troubleshoot bugs is a waste of time. In 
addition, maintaining the system after it is launched is a 
costly job. Thus, building a defect prediction model is 
highly recommended, and it can be used to reduce costs and 
save time.  
Software defect prediction is an evolutionary approach to 
discover or estimate, in prior stages, where defects may 
emerge. It is playing a key role in software success, as 
discovering defects in earlier stages of the software 
development life cycle will lead to an efficient and reliable 
software. In addition, costs can be reduced significantly 

when bugs are discovered and fixed in the testing stage than 
during maintenance stage. Besides, predicting defects will 
satisfy the users’ needs and expectations which increases the 
software reputation such that it can be applied with different 
clients. 
Building a software defect prediction model in software 
engineering is a challenging task. Many models have been 
presented to deal with software defect prediction issue [1]– 
[12], but the most notable one is using machine learning 
algorithms. These algorithms are used to predict software 
defects based on historical data and several software 
metrics. 
The aim of this research is to build a software defect 
prediction model using different types of performance 
measurements, such as mean absolute error, root mean 
squared error, relative absolute error, root relative squared 
error, and correlation coefficient. This proposed model was 
examined by three machine learning algorithms: K-Nearest 
Neighbors (KNN), Random Forest (RF), and Multilayer 
Perceptron (MLP). These algorithms were used to examine 
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their capabilities in fault prediction on three datasets 
collected during monitoring real-time software system. 
The rest of this research is organized as follows: Section II 
presents a discussion of the related work in software fault 
prediction using different approaches. Section III provides 
an overview about the machine learning algorithms which 
are used in this study. A description about the dataset and 
evolution methodology is presented in Section IV. 
Experimental results are shown in Section V followed by 
conclusion and future work in Section VI. 

II. RELATED WORK 

Many researchers used different machine learning models to 
predict defects in software modules such as Decision Trees 
[1], Naïve Bayes [2], Fuzzy Logic [3], Logistic Regression 
[4], Case-based Reasoning [5], Genetic Programming [6], 
and Artificial Neural Networks [7]–[10].     
A study by Ma et al. [13] proposed a novel approach for 
software fault prediction based on balanced random forests. 
The proposed methodology was compared with many 
different classification and machine learning approaches 
using five defect datasets from NASA based on a set of 
performance measurements. The results showed that 
random forests can be the “best guess” among other 
classifier algorithms for a dataset that describes software 
metrics of fault components.   
On another study, Boetticher [14] conducted a number of 
classification experiments to assess the effects of datasets in 
empirical software engineering. Decision Trees and Naïve 
Bayes models were used to analyze defect datasets from 
NASA. It has been observed that ten-fold cross validation is 
insufficient in the validation of a dataset. In the end, it has 
been stated that success in the evaluation of a training 
dataset depends on the level of difficulty of the dataset. 
Challagulla et al. [15] applied Memory-Based Reasoning 
(MBR) classifier to predict software defectsin a dataset from 
NASA data repository (Metrics Data Program) by using 
different types of predicator software metrics such as 
McCabe, Halstead, line count, operator/operand, and 
branch. The assessment criteria were probability of false 
alarm, detection, and accuracy. A framework has been 
proposed that provides procedures in selecting the suitable 
configuration of MBR classifier.  
A comparison created by Elishet al. [16] between the 
capability of support vector machine and eight statistical 
and machine learning methods. The datasets are obtained 
from four NASA software projects written in C, C++, and 
Java with 21 software metrics for each dataset. The results 
indicated that support vector machine has a higher accuracy 
against the performance of the compared methods. 
Chidamber and Kemerer[17] developed and implemented a 
suite of six software metrics to assess the object-oriented 
design such as depth of inheritance tree and lack of cohesion 
in methods. Several studies have been conducted to evaluate 
these metrics, such as [18] and [19]. Basili et al.[18] 
measured the source code of eight projects written in C++ 
using the CK metrics. The Logistic Regression has been 
utilized to evaluate the impact of these metrics in the 
prediction of defect data found on object-oriented classes. 
The study concluded that five out of the six object-oriented 
metrics can be used in prediction of faulty classes.In 
addition, Tang et al. [19] studied the relationship between 

the CK object-oriented metrics and the object-oriented 
faults.  CK metrics has been validated based on data from 
three industrial real systems developed by C++ using logic 
regression model. The study suggested that the CK two 
metrics,Weighted Methods per Class (WMC) and Response 
For a Class (RFC), can be good indicators for object-
oriented faults. Finally, the study presented a new set of 
metrics that can be utilized to evaluate object-oriented 
faults. 
Emam et al. [20] used Logistic Regression to evaluate 
object-oriented design metrics on data collected from a 
commercial application developed by Java. The results 
indicated that logistic regression has a high accuracy and 
export coupling (EC) metric is suited with fault-proneness.   
Khoshgoftaar et al. [21] used Artificial Neural Networks 
and non-parametric discriminant techniques on a 
telecommunication system, which had seven million lines of 
code. The study compared the results between artificial 
neural network and nonparametric discriminant and 
illustrated that artificial neural network has a better accuracy 
rate. 
Turhanet al. [22] examined 25 telecommunication system 

projects to predict fault proneness based on trained datasets 

from NASA by using static call graph-based ranking 

(CBGR) and nearest neighbor sampling. The study showed 

that 70% of faults can be detected by inspecting and only 

3% by code using CBGR framework. 

III. MACHINE LEARNING ALGORITHMS 

The following is the summary of the three machine 

learning algorithms that are used to predict the accumulated 

faults of three testing and debugging datasets. 

A. K-Nearest Neighbors (KNN) 

KNN is a well-known and widely used machine learning 

algorithm in many fields because it is very simple.Also, 

KNN is considered as a lazy learning algorithm, where it 

use all stores training data and delays its learning until 

classification time [23]. Thus, this algorithm it has no 

specialized training phase. This algorithmfind the 

difference and similarity between different points in a 

specific area in graph by calculating the distance between 

these points.Euclidean distance (i.e., straight-line distance) 

is one of the most common distance function used in KNN 

[24]. 

B. Random Forest (RF):  

RF generates many decision trees. For each decision tree 

there is a prediction result. The most repeated prediction 

result is selected by RF classifier to be the final class 

prediction result [25]. RF is one of the more accurate 

prediction algorithms because it can works with many 

decision trees and selecting the most important features for 

the classifier. 

C. Multilayer Perceptron (MLP): 

MLP (or Feedforward Neural Networks) is the most typical 

neural network model. Where it is consists of three layers: 

input layer, hidden mathematical layer(s), and output layer 

[26]. The input data is managed in the input layer and the 
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output is store in the output layer. The number of the 

hidden layer can be increasedaccording to the task 

complexity. 

IV. DATASETS AND EVOLUTION METHODOLOGY 

Three different datasets are used in this work to evaluate the 
accuracy of the machine learning algorithms. The datasets 
are collected from testing three different software systems, 
namely, dataset A, B, and C. The three datasets consist of 
each day measurement (D), detected faults (F), accumulated 
faults (AF), and number of test workers (W). 
The evaluation criteria for evaluating the machine learning 
algorithms are standard numeric performance measurement: 
IfOis the accumulated actual fault, Õ is the accumulated 
predicted fault, Ō is the mean of O, and k is the number of 
test instances, then: 

A. Mean absolute error (MAE) 

It is the absolute sum of the error divided by number of 
predictions. The error is the difference between the 
accumulated actual fault and accumulated 
predictedfault[27]. 

𝑀𝐴𝐸 =
1

𝑘
 |𝑂𝑗 −  𝑂 𝑗 |

𝑘

𝑗 =1

 

B. Root mean squared error (RMSE) 

It is the square root of sum of the square error divided by 
number of predictions. The error is the difference between 
the accumulated actual fault and accumulated 
predictedfault[29]. 

𝑅𝑀𝑆𝐸 =  
1

𝑘
  𝑂𝑗 −  𝑂 𝑗  

2𝑘
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C. Relative absolute error (RAE) 

It is the sum of the absolute error divided by sum of 
absolute relative error. The error is the difference between 
the accumulated actual fault and accumulated 
predictedfault, while the relative error is the difference 
between the accumulated actual fault and its mean [29]. 

𝑅𝐴𝐸 =
 |𝑘

𝑗 =1 𝑂𝑗 −  𝑂 𝑗 |

 |𝑂𝑗 −  𝑂 𝑗 |𝑘
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D. Root relative squared error (RRSE) 

It is the square root of the square error divided by the square 
relative error. The error is the difference between the 
accumulated actual fault and accumulated predictedfault, 
while the relative error is the difference between the 
accumulated fault and its mean [29]. 

𝑅𝑅𝑆𝐸 =  
  𝑂𝑗 −  𝑂 𝑗  

2𝑘
𝑗=1

  𝑂𝑗 −  𝑂 𝑗  
2𝑘

𝑗=1

 

E. Correlation coefficient (R²) 

Correlation coefficient shows how the accumulated actual 
fault and accumulated predictedfault are related. It gives 
value between 0 and 1. The correlation is 1 when the 
numbers of actual faults and predicted faults are similar, and 
it is zero when there is no relation between them [29] 
and[30]. 

𝑅2 = 1 −
  𝑂𝑗 −  𝑂 𝑗  

2𝑘
𝑗=1
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2𝑘
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V. EXPERIMENTALRESULTS 

In order to evaluate the machine learning algorithm with the 
performance measurement, Weka 3.9.3 toolkit has been 
used. 
Table I presents the performance measurement results for 
the evaluation of datasets A, B, and C. These results showed 
that KNN and RF machine learning algorithms have the best 
performance results, while MLP has the worst performance 
in all dataset. 
The predicted and actual accumulated faults for the test 
instances for dataset A, dataset B, and dataset C based on 
the aforementioned three machine learning algorithms are 
shown in Fig.1, Fig. 2, and Fig. 3 respectively. 
 

 

 

Table I: Performance Measurement Results for Dataset A, B, and C 

 
 Dataset A Dataset B Dataset C 

Algorithms 
MAE RMSE RAE RRSE R² MAE RMSE RAE RRSE R² MAE RMSE RAE RRSE R² 

KNN 2.4009 4.9899 1.8537 3.319 0.9994 3.8853 5.6164 2.4855 3.2013 0.9995 3.8478 6.1987 5.4915 7.7145 0.9969 

RF 3.8422 6.0254 2.9665 4.0079 0.9994 4.3953 5.4592 2.8118 3.1118 0.9997 4.1332 6.9066 5.8987 8.5955 0.9974 

MLP 15.7285 20.9983 12.1438 13.9671 0.9919 7.6678 10.4495 4.9052 5.9562 0.9983 13.3191 16.7993 19.0087 20.9072 0.9769 
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 (a) KNN                                                         (b) RF                                                          (c) MLP 

Fig.1   Predicted faults and actual faults for dataset A. 

 
         (a) KNN                                        (b) RF                                (c) MLP 

Fig.2   Predicted faults and actual faults for dataset B. 

 

 
            (a) KNN                                        (b) RF                                                 (c) MLP 

 

Fig.3   Predicted faults and actual faults for dataset C. 

 

Table II shows a comparison between the three selected 
machine learning algorithms used in this work with other 
techniques that were used on the same datasets. The work in 
[28] used linear auto regression (AR) model and power 
model (POWM) in order to evaluate the three datasets with 
RMSE performance measurement.  
For dataset A and C, KNN achieved the best result among 
other algorithms. However, MLP has the highest estimation 
error over other machine learning algorithms. For dataset B, 
AR model achieved a better estimation rate than the others. 
 

Table II: RMSE measurement for machine learning algorithms, AR 

model, and POWR model 

Dataset 

Machine learning algorithms Approach used in [28] 

KNN RF MLP AR model POWM 

Dataset A 4.9899 6.0254 20.9983 6.1365 32.3550 

Dataset B 5.6164 5.4592 10.4495 3.2686 22.2166 

Dataset C 6.1987 6.9066 16.7993 8.5462 11.9446 

VI. CONCLUSION AND FUTURE WORK 

Software fault prediction is used to measure the software 

quality before releasing it. In this paper, accumulated faults 
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from testing three software systems have been used to 

estimate the future accumulated faults using three types of 

machine learning algorithms. The machine learning 

algorithms have been evaluated by the errors between the 

actual and predicted accumulated faults using five types of 

performance measurements.  A comparison between the 

results of this work with others that used the same testing 

datasets also has been provided. The comparison shows 

that some techniques performance such as KNN, RF, and 

AR are competitors between each other. 

As a future work, we may study the impact of number of 

test workers in prediction faults described in the dataset A, 

B, and C using the machine learning algorithms with extra 

performance measurements such as accuracy, confusion 

matrix, precision, recall, and F-measures. In addition, this 

proposed software defect prediction model can be used in 

arecent study [31] to help the software tester in evolving 

the software test suite to accommodate the changes on code 

(i.e., new software version). 
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