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Abstract: Density based subspace clustering algorithms focus on finding dense clusters of random shape and size. Most of the 

existing density based subspace clustering algorithms in the literature is less effective and accuracy while taking big dataset as 

input. In order to overcome such limitations, a MAP Probabilistic Density based Subspace Clustering (MAPPD-SC) Technique 

is introduced. The MAPPD-SC technique is designed for high dimensional data to improve the clustering accuracy and 

dimensionality reduction. Initially MAPPD-SC technique designs Map Probabilistic Density Based Subspace Clustering 

(MPDSC) algorithm with aim of grouping the similar data with higher accuracy and minimum time utilization. During big data 

clustering, the MAPPD-SC technique applies the maximum a posteriori (MAP) calculation with the goal of clustering more 

related data together and thereby forming optimal number of clusters with high accuracy. After completing clustering process, 

the MAPPD-SC technique designs Fusion Tree Data Storage Structure (FTDSS) with objective of storing clustered big data 

with reduced space complexity. The FTDSS only stores bits values of clustered data in its memory by using fusion tree 

concepts. This generated bit values of input clustered data takes minimal amount of memory space. From that, proposed 

MAPPD-SC technique reduces the dimensionality of big data for effective big data analytics. Experimental evaluation of 

MAPPD-SC technique is carried out on factors such as clustering accuracy, clustering time and false positive rate and space 

complexity with respect to number of climate data using El Nino Data Set.  

 

Keywords:  Big data, Bit values, Fusion Tree Data Storage Structure, Maximum a posteriori (MAP) and Sketch Operation, 

subspace clustering.  

 

I. INTRODUCTION 

Subspace clustering is the method of discovering clusters 

with objects similar in different subsets of attributes defining 

subspaces. Recently, subspace clustering is considerable 

research area as it‟s applied in diverse applications such as 

face recognition, speech processing, social media mining, and 

habitat identification etc. The traditional subspace clustering 

methods predicts dense clusters in all the subspaces. But, 

clustering of big data is very complex owing to high 

probability of frequent clustering information existing in 

dissimilar subspaces. Hence, problems related to scalability, 

complexity and accuracy was not addressed. In order to 

resolve the above mentioned conventional issues, MAPPD-

SC technique is developed. The main contributions of 

MAPPD-SC Technique is formulated as follows,  

To get better clustering performance for big data 

analytics with a lower time complexity as compared to 

traditional works, Map Probabilistic Density Based Subspace 

Clustering (MPDSC) is designed in MAPPD-SC technique. 

MPDSC algorithm is designed based on the density of data 

points for grouping similar data together and also contains the 

benefit of generating clusters with random shapes and good 

scalability. Also, MPDSC algorithm is able to discover the 
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noise data during the clustering process. This supports for 

MPDSC algorithm for efficient big data clustering process 

with minimal time complexity as compared to state-of-the-art 

works.  

To minimize the space complexity of big data clustering 

as compared to conventional works, Fusion Tree Data 

Storage Structure (FTDSS) is employed in MAPPD-SC 

technique. FTDSS is a tree data structure which creates an 

associative array with integer keys through utilizing the 

constant-time machine word multiplication operation 

available on many real processors. The designed FTDSS is 

similar to a B-tree in many aspects. One differentiation 

between B-tree and FTDSS is the „𝐵‟ value. In a 

conventional B-tree, the „𝐵‟ value is a fixed while in a 

FTDSS the „𝐵‟ is a function of „𝑚‟. Another distinction is the 

time to search a key in a node. The conventional B-tree data 

storage employ „𝑂(𝐵)‟ operations where FTDSS utilizes 

„𝑂(1)‟ operations to search a key „𝑘‟ in a node. On the 

contrary to conventional B-tree, each node in FTDSS 

includes auxiliary information to speed up searching. On the 

contrary to traditional works, FTDSS utilize word-level 

parallelism to speed up searches by using individual 

operations to simulate parallel processing. Furthermore, 

sketching process is performed in FTDSS to decrease the 

number of bits while storing the clustered data. From that, 

MAPPD-SC technique attains minimal space complexity 

during big data clustering and analytics process as compared 

to existing works. 

The rest of paper is planned as follows. The Section 2 

explains the related works. In Section 3, proposed MAPPD-

SC technique is explained with the assist of the architecture 

diagram. In Section 4, experimental settings are described 

and the experimental result of MAPPD-SC technique is 

discussed in Section 5. Section 6 shows the conclusion of the 

paper. 
 

II. RELATED WORKS 
 

Adaptive Multi-view Subspace Clustering (AMSC) was 

accomplished in [1] to enhance accuracy of high-dimensional 

data. However, time complexity was very higher. A parallel 

hierarchical subspace clustering scheme called PAPU was 

presented in [2] to acquire high clustering efficiency for real-

world large-scale datasets with a minimal amount of time 

complexity. But, false positive rate of big data clustering was 

not reduced. 

An incremental semi-supervised clustering ensemble 

framework (ISSCE) was presented in [3] to carry out high 

dimensional data clustering with a minimal time 

complexity. However, clustering performance was poor. 

Robust and sparse k-means clustering was accomplished in 

[4] to increase accuracy. But, time and space complexity of 

high dimensional data using this method was lower. 

Space structure based categorical clustering algorithms 

(SBC) was introduced in [5] for categorical data that maps 

categorical objects into Euclidean space. However, the 

Euclidean distance calculation for mapping the data objects 

consumed large amount of time. Data-driven similarity 

learning approach was presented in [6] to calculate the 

connection among categorical values. Though the clustering 

accuracy was improved, the space complexity remained 

unaddressed.   

 

Sparse coding-based subspace clustering method was 

introduced in [7] with consideration of trait information and 

spatial structures. However, TLRR and TLRRSC method 

failed to improve the clustering accuracy. A new method was 

introduced in [8] to remove the errors effects from projection 

space than from input space. But, the subspace clustering 

time was not reduced using subspace clustering and subspace 

learning algorithms. 

 

A rough set based subspace clustering technique was 

presented in [9] for finding non-redundant and interesting 

subspace clusters of better quality. However, computational 

complexity of this clustering algorithm was more. A novel 

algorithm was employed in [10] for fast and scalable 

subspace grouping of high-dimensional data. But, the ratio of 

number of data imperfectly clustered was very higher.  

 

Fast and effective big data assessment was accomplished 

in [11] through clustering process with help of complex 

hierarchical clustering algorithm. A novel algorithm was 

presented in [12] for grouping related big data with different 

density with application of a Hadoop platform running 

MapReduce.  

 

A novel Random forest implementation and optimization 

was performed in [13] for big data analytics with a lower 

time complexity. One-pass accelerated MapReduce-based k-

prototypes clustering method was employed in [14] to get 

faster the clustering process. 

 

 An intelligent weighting k-means clustering (IWKM) 

algorithm was utilized in [15] for analysis of high-

dimensional multi-view data in big data applications with 

higher accuracy. Clustering categorical data was carried out 

in [16] depends on the relational analysis approach and 

MapReduce with a lower false positive rate. 

  
An efficient predictive analytics system was designed in 

[17] for big data by using scalable random forest (SRF) 

algorithm. A fragmented-periodogram approach was 

introduced in [18] for minimizing error rate of clustering big 

data time series. 
 

III. MAP PROBABILISTIC DENSITY BASED 
SUBSPACE CLUSTERING TECHNIQUE 

 
Clustering real world data often impacted with curse of 

dimensionality as real world data includes of many 

dimensions. Therefore, Multidimensional data clustering is 

performed through a density-based approach. The 

conventional density based clustering techniques does not 

provide higher clustering accuracy for big data analytics. In 

order to addresses this drawback, a MAP Probabilistic 

Density based Subspace Clustering (MAPPD-SC) Technique 
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is proposed. The architecture diagram of proposed MAPPD-

SC technique is depicted in below Figure 1. 

 

 
 
Figure 1: Architecture Diagram of MAPPD-SC technique for 

Analytics of Climate Data 
 

As demonstrated in above figure, MAPPD-SC technique 

initially obtains big climate dataset (i.e. El Nino Data Set) as 

input. After getting the input, MAPPD-SC technique applies 

Map Probabilistic Density Based Subspace Clustering 

(MPDSC) with objective of grouping the huge size of climate 

data into related clusters with lower false positive rate. 

Consequently, MAPPD-SC technique employs Fusion 

Tree Data Storage Structure (FTDSS) with aiming at storing 

the clustered big climate data with lower space complexity.  
 

A.  Map Probabilistic Density Based Subspace Clustering 
 
 The conventional density based subspace clustering 
method was suffered by density divergence problem that 
impacts the clustering accuracy of big data which results in 
higher false positive rate. In order to addresses this 
limitations, a novel clustering technique called Map 
Probabilistic Density Based Subspace Clustering (MPDSC) is 
proposed in MAPPD-SC technique. On the contrary to state-
of-the-art works, MPDSC is introduced by combining 
maximum a posteriori (MAP) concept in density based 
subspace clustering algorithm to find out the optimal clusters 
that form on a different subspaces. The proposed MPDSC 
algorithm is better in handling huger volume of data than 
other existing works. The MAP concept is applied in MPDSC 
helps to determine maximization probability for each climate 
data in a given dataset to become a member of the cluster.    

The MPDSC algorithm operates by discovering areas 
where data points are concentrated and where they are 
separated by areas that are empty or sparse. In MPDSC 
algorithm, Data Points that are not member of a cluster are 
considered as noise. The MPDSC algorithm identifies the 
dense region by grouping data points together that are closed 

to each other according to a distance calculation. The 
proposed MPDSC algorithm employs the concept of density 
reach-ability and density connectivity.  
Density Reachability: A data point „𝑑1‟ is said to be density 
reachable from a data point „𝑥‟ when data „𝑑1‟ is 
within distance „𝜔‟ from data point „𝑥‟ and „𝑥‟ contains 
sufficient number of data points in its neighbors which are 
within distance „𝜔‟. 
Density Connectivity: A data point „𝑑1‟ and „𝑥‟ are said to 
be density connected if there exist a data point „𝑦‟ which 
includes sufficient number of data points in its neighbors and 
both the data „𝑑1‟ and „𝑥‟ are within the  distance „𝜔‟.  
 Let us consider an input big climate dataset „𝐷𝑆‟ 
contains a numbers of climate data denoted as 

„𝑑1,𝑑2 , 𝑑3, … . . 𝑑𝑚 ‟. Here, „𝑀‟ refers to the total number of 

climate data in an input dataset. After taking big dataset as 
input, MPDSC algorithm arbitrarily choose the data point 
„𝑑1‟ from big climate dataset. Followed by, MPDSC 
algorithm find outs the neighborhood of this data point „𝑑1‟ 
by using the distance measurement „𝜔‟. All the data points 
that are within the distance „𝜔‟ are considered as 
neighborhood in MPDSC algorithm. If data points „𝑑1‟ 
contains sufficient neighborhood then clustering process is 
started where interrelated climate data are grouped into 
corresponding clusters by using maximum a posteriori 
(MAP) calculation and marked as visited. Otherwise, the 
chosen data point „𝑑1‟ is labeled as noise. If a taken data 
point is selected to be a part of the cluster then its 
neighborhood is also the part of the cluster.  
 Let us assume the number of clusters „𝑐1 , 𝑐2 , 𝑐3, … . 𝑐𝑁‟. 
During the big data clustering process, MPDSC algorithm 
calculates the expected probability between each data point 
„𝑑𝑖‟ and cluster „𝑐𝑖‟ using below,  

𝐸𝑥𝑝  𝑃  𝑐𝑖 𝑑𝑖  = log  
𝑒
−

1
2
 𝑑𝑖−𝑎 

2

𝑏2   

 2𝜋𝑏2
𝑁
𝑖=1                   (1) 

 From above mathematical formula (1), 
„𝐸𝑥𝑝   𝑃  𝑐𝑖 𝑑𝑖  ‟ represents the expected probability of the 
climate data „𝑑𝑖‟ to be a member of cluster „𝑐𝑖‟.  Here, „𝑎‟ 
denotes a mean value of cluster and „𝑏‟ refers to a variance 
between the cluster and input climate data. Followed by, the 
MPDSC algorithm computes the maximization probability 
for each data point „𝑑𝑖‟ in an input dataset to become a part of 
the cluster „𝑐𝑖‟ using maximum a posteriori (MAP) 
calculation using below, 

𝜗𝑀𝐴𝑃 = arg max 𝐸𝑥𝑝  𝑃  𝑐𝑖  𝑑𝑖    (2) 

𝜗𝑀𝐴𝑃 = arg max  log  
𝑒
−

1
2
 𝑑𝑖−𝑎 

2

𝑏2   

 2𝜋𝑏2
𝑁
𝑖=1    (3) 

 From the above mathematical expression (2) and (3), 
„𝜗𝑀𝐴𝑃 ‟ point outs the maximum a posteriori function that 
enhance the expected probability between data point „𝑑𝑖‟ and 
cluster „𝑐𝑖‟ based on distance estimation to exactly group the 
more similar climate data together. The above processes of 
MPDSC is repeated until the all data in an input dataset is 
grouped into the different clusters and also marked as visited. 
As a result, the MPDSC algorithm improves clustering 
performance of big climate data with a minimal amount of 
time complexity.  
 The algorithmic processes of MPDSC is presented in 
below, 

Climate 

Dataset 

Number of Climate 

Data 

Input 

Map Probabilistic Density Based 

Subspace Clustering 

Group interrelated climate 

data together 

Fusion Tree Structure Based Data 

Storage 

Reduce space complexity 

of big data clustering 

Enhanced clustering performance for 

analyzing big climate data 
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 // Map Probabilistic Density Based Subspace Clustering 

Algorithm 
Input: Big Climate Dataset „𝐷𝑆: 𝑑1,𝑑2 , 𝑑3 , … . . 𝑑𝑚 ‟;  

Output: Achieve higher clustering accuracy for big climate 
data  

Begin 
Step 1:    For each input dataset „DS‟ 
Step 2:    Consider number of clusters „𝑐1 , 𝑐2, 𝑐3, … . 𝑐𝑁‟ 
Step 3:        Randomly select data point from „DS‟ 
Step 4:         Find the neighborhood of this data point „𝑑𝑖‟ using 
distance measurement „𝜔‟  
Step 5:         If there is sufficient neighborhood around this data 
point  then  
Step 6:           Clustering process is begins  
Step 7:           Compute maximum a posteriori using (3) 
Step 8:           Group data point „𝑑𝑖‟ into related cluster „𝑐𝑖‟ 
using MAP 
Step 9:           Data point „𝑑𝑖‟ is marked as visited 
Step 10:       Else 
Step 11:         Data point „𝑑𝑖‟ is considered as noise  
Step 12:       End If     
Step 13:       This process continues until all data points are 
marked as visited 
Step 14:End For      
End          

 
Algorithm 1: Map Probabilistic Density Based Subspace Clustering 

   
B. Fusion Tree Data Storage Structure   
 
 After clustering process, MAPPD-SC technique designs 
Fusion Tree Data Storage Structure (FTDSS) for efficiently 
storing clustered climate data with a lower space complexity. 
The FTDSS used associative array in a known universe size 
and also which is suitable while universe size (input data) is 
large. The proposed FTDSS is similar to a B-tree with degree 
„𝑤𝑐 ‟.  Here, „𝑤‟ refers the word size and „𝑐‟ is constant 
smaller than „1‟. This represents a height of tree will be 
„log𝑤 𝑚‟ in which „𝑚‟ denotes a number of data stored in the 
tree. A key operation performed in FTDSS is sketch which is 
employed to compress „𝑤‟ bit keys. This helps for FTDSS to 
take a minimal amount of memory space for effective big 
data storage as compared to existing works. The Data Storage 
Structure of FTDSS is depicted in below Figure 2. 

 

Figure 2: Data Storage Structure of Fusion Tree 

 As presented in the above figure 2, FTDSS combines 
two or more bits value of input data together to form space 
efficient data storage for big climate data analytics. For 
example, let consider a three numbers 27, 29, 31 to be stored 
on fusion tree.  Then, sketch operation gives the bits value for 
these number data as follows, Sketch (27) = sketch (11011) = 
11011, Sketch (29) = sketch (11101) = 11101, Sketch (31) = 
sketch (11111) = 11111. Subsequently, bit values are stored 
on fusion tree as shown in above figure 2.  
 Let us consider FTDSS takes number of clustered data as 
input which is denoted as „𝐷𝑖 = 𝐷1 , 𝐷2 , … 𝐷𝑚 ‟. The FTDSS is 
designed to improve storage efficiency and thereby 
minimizing the space complexity.  The FTDSS initially 
creates the fusion tree with a number of nodes to store 
clustered climate data which is mathematically represented as 
follows, 
                 𝐹𝑇 → {𝑛1, 𝑛2, . . 𝑛𝑛}                                 (4) 
 
 From the above equation (4), „𝑛𝑛 ‟ signifies the number 
of nodes designed in fusion tree. After constructing the fusion 
tree structure, FTDSS stores clustered data in the form of bits 
through sketch operation with aiming at reducing space 
complexity during data storage process. For each input 
clustered climate data „𝐷𝑖 ‟, then FTDSS produce bits value. 
From that, the sketch operation „𝑆𝑂‟ is mathematically 
carried out as follows, 
 
                  𝑆𝑂 → 𝐵𝑖𝑡𝑠(𝐷𝑖)                                      (5) 
 
 From the above mathematical expression (5), „ 𝐵𝑖𝑡𝑠(𝐷𝑖)‟ 
indicates the generated bits of input clustered data „𝐷𝑖 ‟. The 
sketch operation generates unique bits value for each input 
climate data.  After that, FTDSS stores bit values of data in it 
fusion tree using below equation, 
 
           𝐼𝑛𝑠𝑒𝑟𝑡 (𝐵𝑖𝑡𝑠(𝐷𝑖)) → 𝐹𝑇(𝑛𝑖)                          (6) 
 
 From the above mathematical representation (6), FTDSS 
stores input clustered data with a lower amount of memory 
consumption. Here, „𝑖𝑛𝑠𝑒𝑟𝑡‟ operation assists for FTDSS to 
store bit values of data where „𝐹𝑇(𝑛𝑖)‟ denotes nodes in 
fusion tree. The designed FTDSS also allow delete operation 
to remove the stored data on it storage.  The data deletion 
operation is carried out using below formula, 
 
           𝐷𝑒𝑙𝑒𝑡𝑒 (𝐵𝑖𝑡𝑠(𝐷𝑖)) → 𝐹𝑇(𝑛𝑖)                          (7) 
 
 From the above mathematical formula (7), „𝑑𝑒𝑙𝑒𝑡𝑒‟ 
supports for FTDSS to significantly eliminate bit value of 
input data „𝐵𝑖𝑡𝑠(𝐷𝑖)‟ that stored on fusion tree „𝐹𝑇(𝑛𝑖)‟. By 
using the above two operations i.e. insertion and deletion, the 
proposed FTDSS improves the storage efficiency of big 
climate data analytics with a minimal space and time 
complexity as compared to state-of-the-art works.  
 The algorithmic processes of FTDSS are presented in 
below. 

 
// Fusion Tree Data Storage Structure Algorithm  
Input: Number Of Clustered Data „𝐷𝑖 = 𝐷1, 𝐷2, …𝐷𝑚 ‟ 
Output: Efficient storage of Clustered Big Data with minimal 
space complexity 

Step 1: Begin 
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Step 2:     Take number of clustered data as input. 
Step 3:     Create a structure FusionTree „𝐹𝑇‟ 
Step 4:     Construct a function init() for creating the nodes 
using (4) 
Step 5:     For each clustered data „𝐷𝑖‟ 
Step 6:            Employ sketch operation 
Step 7:            Generate bit values using (5) 
Step 8:            Design a function insert() to insert the bit 
values of data into the tree using (6) 
Step 9:     End for 
Step 10:  Construct a function delete() to delete the bit values 
of data from the tree using (7) 
Step 11:End 

 

Algorithm 2: Fusion Tree Data Storage Structure 

IV. EXPERIMENTAL SETTINGS 

In order to estimate the clustering performance, both the 

proposed MAPPD-SC technique and conventional Adaptive 

Multi-view Subspace Clustering (AMSC) [1] and a parallel 

hierarchical subspace clustering scheme called (PAPU) [2] 

are implemented in Java language using big El Nino Data 

Set. This is a large volume of climate data get from UCI 

machine learning repository [21] which contains 

oceanographic and surface meteorological data with 178080 

numbers of instances and 12 attributes. The proposed 

MAPPD-SC technique takes diverse number of big climate 

data in the range of 1000 to 10000 from El Nino Data Set to 

conduct experimental process. The performance of MAPPD-

SC technique is evaluated in terms of clustering accuracy, 

clustering time and false positive rate and space complexity 

with respect to various number of input climate data. The 

experimental result of MAPPD-SC technique is compared 

against existing AMSC [1] and PAPU [2]. 
 

V. RESULTS 

The experimental result of MAPPD-SC technique is 
discussed in this section. The effectiveness of MAPPD-SC 
technique is compared against with traditional Adaptive 
Multi-view Subspace Clustering (AMSC) [1] and a parallel 
hierarchical subspace clustering scheme called (PAPU) [2] 
with helps of the tables and graphs using below metrics.  
 
Case 1: Impact of Clustering Accuracy 
  
 In MAPPD-SC technique, Clustering accuracy „𝐶𝐴‟ 
estimates the ratio of number of climate data that exactly 
grouped to the total number of climate data considered for 
experimental process. The clustering accuracy is calculated 
mathematically as follows,  
 

  𝐶𝐴 =
𝜏𝐸𝐶  

𝜏
∗ 100                                           (8) 

 
 From the above mathematical equation (8), „𝜏𝐸𝐶 ‟ refers 
to number of exactly clustered climate data in which „𝜏‟ 
denotes a total number of climate data. The clustering 
accuracy is computed in terms of percentage (%). 
 
Sample Calculation: 

Proposed MAPPD-SC: Number of climate data correctly 
clustered is 900 and the total number of climate data is 1000. 
Then the clustering accuracy is obtained as follows, 

 

𝐶𝐴 =
900

1000
∗ 100 = 90 % 

 
Existing AMSC: Number of climate data accurately 
clustered is 840 and the total number of climate data is 1000. 
Then the clustering accuracy is estimated as follows, 

 

  𝐶𝐴 =
840

1000
∗ 100 = 84 % 

 
Existing PAPU: Number of climate data precisely clustered 
is 870 and the total number of climate data is 1000. Then the 
clustering accuracy is acquired as follows, 
 

                                    𝐶𝐴 =
870

1000
∗ 100 = 87 % 

       
The experimental result analysis of clustering accuracy for 
big data analytics with respect to various numbers of climate 
data in the range of 1000-10000 using three methods namely 
proposed MAPPD-SC technique and existing AMSC [1] and 
PAPU [2] is depicted in Figure 3. 
 

 
 

Figure 3: Experimental result of clustering accuracy versus 
different number of climate data 

 

 The proposed MAPPD-SC technique renders improved 
clustering accuracy for big climate data while increasing the 
number of data as input when compared to traditional AMSC 
[1] and PAPU [2]. This is owing to process of Map 
Probabilistic Density Based Subspace Clustering (MPDSC) 
in proposed MAPPD-SC technique on the contrary to state-
of-the-art works as where it applied maximum a posteriori 
(MAP) calculation to find out maximization probability for 
each input climate data to become a part of the cluster. Based 
on the measured value of maximum a posteriori, finally 
proposed MAPPD-SC technique precisely clusters all the 
input climate data into consequent clusters with higher 
accuracy. This assists for proposed MAPPD-SC technique to 
enhance the ratio of number of climate data that are perfectly 
clustered when compared to other existing AMSC [1] and 
PAPU [2]. Hence, proposed MAPPD-SC technique increases 
the clustering accuracy of big climate data analytics by 21 % 
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and 14 % as compared to conventional AMSC [1] and PAPU 
[2] respectively. 
 
Case 2: Impact of Clustering Time 
 
 In MAPPD-SC technique, Clustering Time „𝐶𝑇‟ 
calculates the time required to group similar climate data 
together. The clustering time is mathematically obtained as 
follows, 

          𝐶𝑇 = 𝜏 ∗ 𝑇(𝐶𝑆𝐷)                                         (9) 
 

 From the above mathematical formula (9), „𝑇(𝐶𝑆𝐷)‟ 
signifies a time utilized to cluster a single climate data and 
„𝜏‟ denotes a total number of climate data considered. The 
clustering time is estimated in terms of milliseconds (ms). 
  
Sample Calculation for Clustering Time:  
 
Proposed MAPPD-SC: time used to cluster one climate data 
is 0.031 ms and the total number of climate data is 1000. 
Then the clustering time is computed as follows, 

 
𝐶𝑇 = 1000 ∗ 0.031 = 31 𝑚𝑠 

 
Existing AMSC: time employed to cluster one climate data 
is 0.04 ms and the total number of climate data is 1000. Then 
the clustering time is calculated as follows, 

 
𝐶𝑇 = 1000 ∗ 0.04 = 40 𝑚𝑠 

 
Existing PAPU: time taken to cluster one climate data is 
0.042 ms and the total number of climate data is 1000. Then 
the clustering time is acquired as follows, 

 
𝐶𝑇 = 1000 ∗ 0.042 = 42 𝑚𝑠 

 
The comparative result analysis of clustering time to 

analyze the large size of data with respect to different 

numbers of climate data in the range of 1000-10000 using 

three methods namely proposed MAPPD-SC technique and 

conventional AMSC [1] and PAPU [2] is demonstrated in 

Figure 4. 

 
 

Figure 4: Experimental result of clustering time versus 
different number of climate data 

As presented in above graphical representation, 

proposed MAPPD-SC technique gives minimal amount of 

clustering time in order to effectively analyze large climate 

data with increasing the number of data as input when 

compared to conventional AMSC [1] and PAPU [2]. This is 

because of process of Map Probabilistic Density Based 

Subspace Clustering (MPDSC) in proposed MAPPD-SC 

technique on the contrary to existing works. On contrary to 

existing works, MPDSC employs maximum a posteriori 

(MAP) computation to identify maximization probability of 

each input climate data to become a cluster member. By 

using this maximum a posteriori (MAP) computation 

concept, proposed MAPPD-SC technique accurately groups 

all the interrelated climate data together with a minimal 

amount of time complexity. This supports for proposed 

MAPPD-SC technique to diminish the time used to cluster 

similar climate data together when compared to other 

traditional AMSC [1] and PAPU [2]. Therefore, proposed 

MAPPD-SC technique minimizes clustering time of big 

climate data examination by 15 % and 20 % as compared to 

traditional AMSC [1] and PAPU [2] respectively. 
 

Case 3: Impact of False Positive Rate 
 

In MAPPD-SC technique, False Positive Rate „𝐹𝑃𝑅‟ 

measured as ratio of number of climate data incorrectly 

grouped to the total number of climate data. The false 

positive rate is mathematically estimated as follows, 
 

𝐹𝑃𝑅 =
𝜏𝑊𝐶  

𝜏
∗ 100                                            (10) 

 

 From the above mathematical expression (10), „𝜏𝑊𝐶 ‟ 

signifies a number of climate data wrongly clustered and ‘𝜏‟ 
point outs a total number of climate data. The false positive 

rate is calculated in terms of percentage (%).  
 
Sample Calculation for False Positive Rate: 
 
Proposed MAPPD-SC: number of climate data inaccurately 

grouped is 100 and the total number of climate data is 1000. 

Then the false positive rate is computed as follows, 
 

𝐹𝑃𝑅 =
100

1000
∗ 100 = 10 % 

 
Existing AMSC: number of climate data imperfectly 
clustered is 160 and the total number of climate data is 1000. 
Then the false positive rate is obtained as follows, 

 

𝐹𝑃𝑅 =
160 

1000
∗ 100 = 16 % 

 
Existing PAPU: number of climate data mistakenly clustered 
is 130 and the total number of climate data is 1000. Then the 
false positive rate is determined as follows, 

 

𝐹𝑃𝑅 =
130

1000
∗ 100 = 13 % 

 
The performance result of false positive rate is 

obtained during clustering process to examine the huge size 
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of data based on varied numbers of climate data in the range 
of 1000-10000 using three methods namely proposed 
MAPPD-SC technique and traditional AMSC [1] and PAPU 
[2] is presented in Figure 5. 
 

 
 

Figure 5: Experimental result of false positive rate versus different 
number of climate data 

  

Figure 5 demonstrates impact of false positive rate with 

respect to dissimilar numbers of climate data using three 

proposed MAPPD-SC technique and conventional AMSC [1] 

and PAPU [2]. As shown in above graphical demonstration, 

proposed MAPPD-SC technique presents lower false positive 

rate in order to accurately examine huge size of climate data 

with increasing the number of data as input as compared to 

state-of-the-art AMSC [1] and PAPU [2]. This is owing to 

process of Map Probabilistic Density Based Subspace 

Clustering (MPDSC) in proposed MAPPD-SC technique on 

the contrary to traditional works. The proposed MAPPD-SC 

technique enhances the clustering accuracy of big data based 

on the density of data points and also generating clusters with 

random shapes and good scalability. From that, proposed 

MAPPD-SC technique improves accuracy of big data 

clustering. This aid for proposed MAPPD-SC technique to 

lessen the ratio of number of climate data mistakenly grouped 

when compared to other existing AMSC [1] and PAPU [2]. 

Therefore, proposed MAPPD-SC technique reduces the false 

positive rate of big climate data analysis by 68 % and 59 % as 

compared to conventional AMSC [1] and PAPU [2] 

respectively. 
 

Case 4: Impact of Space Complexity 
 

In MAPPD-SC technique, Space Complexity (𝑆𝐶) 
determines memory space taken for storing clustered climate 
data. The space complexity is mathematically computed as 
follows, 

 
                       𝑆𝐶 = 𝜏 ∗ 𝑀 𝑆𝑆𝐷                              (11) 
 
 From the above mathematical representation (11), 
„𝑀 𝑆𝑆𝐷 ‟ designates memory space needed for storing a 
single climate data and „𝜏‟ signifies a total number of climate 

data. The space complexity is evaluated in terms of 
Megabytes (MB).  
Sample Calculation for Space Complexity  
Proposed MAPPD-SC: total number of climate data are 
1000 and the amount of memory utilized to store a single 
climate data is 0.038 MB, then space complexity is estimated 
as follows,  

 
𝑆𝐶 =  1000 ∗ 0.038 𝑀𝐵 = 38 𝑀𝐵 

 
Existing AMSC: total number of climate data are 1000 and 
the memory space required to store the single climate data is 
0.045 MB, then space complexity is computed as follows, 

 
𝑆𝐶 =  1000 ∗ 0.045 𝑀𝐵 = 45𝑀𝐵 

 
Existing PAPU: total number of climate data are 1000 and 
the memory space taken to store the single climate data is 
0.049 MB, then space complexity is evaluated as follows, 

 
𝑆𝐶 =  1000 ∗ 0.049 𝑀𝐵 = 49 𝑀𝐵 

 
 The space complexity result is acquired during the big 
data clustering process along with diverse numbers of climate 
data in the range of 1000-10000 using three methods namely 
proposed MAPPD-SC technique and traditional AMSC [1] 
and PAPU [2] is depicted in Figure 6. 

 

 
 

Figure: 6 Experimental result of space complexity versus different 
number of climate data 

 

 As demonstrated in above graphical depiction, proposed 

MAPPD-SC technique gives minimal amount of memory 

space for effective analytics of big data with increasing the 

number of data as input as compared to conventional AMSC 

[1] and PAPU [2]. This is owing to process of Fusion Tree 

Data Storage Structure (FTDSS) in proposed MAPPD-SC 

technique on the contrary to state-of-the-art works. With the 

concepts of FTDSS, proposed MAPPD-SC technique unites 

two or more bits value of input data together to design space 

efficient data storage during big climate data analytics 

process. This help for proposed MAPPD-SC technique to 

minimize the memory space employed to store clustered 

climate data when compared to other existing AMSC [1] and 

PAPU [2]. For that reason, proposed MAPPD-SC technique 
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decreases the space complexity of big climate data 

assessment by 10 % and 15 % as compared to conventional 

AMSC [1] and PAPU [2] respectively. 

 

VI. CONCLUSION 

The MAPPD-SC technique is proposed with the purpose 

of increasing the clustering accuracy of big climate data with 

a minimal time and space complexity. The aim of MAPPD-

SC technique is obtained with the application of Map 

Probabilistic Density Based Subspace Clustering (MPDSC) 

and Fusion Tree Data Storage Structure (FTDSS) on the 

contrary to state-of-the-art works. The proposed MAPPD-SC 

technique improves the ratio of number of climate data that 

are correctly grouped when compared to conventional works. 

As well as, proposed MAPPD-SC technique lessen the 

amount of time desired to cluster same type of climate data 

when compared to other traditional works. Furthermore, 

proposed MAPPD-SC technique decreases the memory space 

needed to store clustered climate data. The experimental 

result shows that proposed MAPPD-SC technique presents 

better big data clustering performance in terms of accuracy, 

time and false positive rate and space complexity for 

analyzing big climate data as compared to state-of-the-art 

works.  
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