
COMPUSOFT, An international journal of advanced computer technology, 9(2), February-2020 (Volume-IX, Issue-II)

3578

Cite This Paper: Y Al-Kasabera, W. Alzyadat, Aysh A, S Al Showarath,

Ahmad T. An automated approach to validate requirements specification, 9(2),
COMPUSOFT, An International Journal of Advanced Computer Technology.

PP. 3578-3585.

This work is licensed under Creative Commons Attribution 4.0 International License.

AN AUTOMATED APPROACH TO VALIDATE REQUIREMENTS

SPECIFICATION

1
Yazan Al-Kasabera,

2
Wael Alzyadat,

3
Aysh Alhroob,

4
Suleyman Al Showarah,

5
Ahmad Thunibat

1,3
Department of Software Engineering, Isra University, Jordan

2,5
AlZaytoonah University of Jordan

4
Mutah University, Karak, Jordan

Abstract: Requirements engineering processes aim to acquire functions, services and constraints. These processes are important

to satisfy the customer by applying correctness, completeness through consistency according to the control instructions to

achieve product quality. Both functions and services face changeability issue that is hard to regulate, depending on the precise

request of the customer. This research addresses the achievement of correctness, completeness, and consistency by applying an

automated approach. The evaluation is established using a standard use case diagram from the UML official website. The

proposed approach detects the incorrect requirement specifications to enhance Software quality. The proposed approach includes

three levels; the first level is the Structured Document, the second level is the Dynamic Language, which describes the

transforming of use case diagram as dynamic, and the third level is the completeness checking procedures, which is based on the

implemented standard rules. The approach is supported by a programmed tool on MS excel and XML due to IBM Rational Rose

and Visual Paradigm and experimented “Online Shopping” use case diagram as a case study.

Keywords: Correctness, Completeness, Consistency, Requirements Specification, Use Case Diagram, Quality

I. INTRODUCTION

The terms; Correctness and Completeness (C&C) are two
sides of one coin, which are involved in several software
phases and will be defined relying on their processes that
exist. The initial phase in the software development process
is requirements that deals between customer and software
developer, intended to system domain and how to establish
the product, involving abstraction and invisibility issues that
appear clearly in quantification and measurement. Likewise,
there are also complicated efforts to describe and organize
software, in ways that will facilitate services change during
the processes of their design, implementation, testing, and
maintenance.

Addressing incompleteness negatively influences the
quality of produced artefact via requirements model, design
model or the other software components through the

methodologies that applied the investigated completeness
issue in software engineering (Coughlan & Macredie, 2002;
Eckhardt, Vogelsang, Femmer, & Mager, 2016; Zowghi &
Coulin, 2005), especially, in requirements phase is that
quality requirements engineers; incorrectly describe how to
build the system more than its functionality (Swarnalatha,
Srinivasan, Dravid, Kasera, & Sharma, 2014).

This research focuses on three steps in requirements
phase; First, user requirements, which is collecting the
services that the customer needs in the system, presented by
high-level requirements, as well called raw requirements
(Düchting, Zimmermann, & Nebe, 2007; Swarnalatha et al.,
2014).
Second, Requirements elicitation is capturing the

requirements which rely on the emergent and collaborative

view of requirements, elicitation and communication are

both required to encompass the user to reduce error-prone

Available online at: https://ijact.in

Date of Submission

Date of Acceptance

22/01/2020

15/02/2020

Date of Publication 02/03/2020

Page numbers 3578-3585 (8 Pages)

ISSN:2320-0790

https://ijact.in/index.php/ijact/issue/view/80

COMPUSOFT, An international journal of advanced computer technology, 9(2), February-2020 (Volume-IX, Issue-II)

3579

requirements that came from early-stage from the user, as

well as the purpose of requirements elicitation are to ensure

successful requirements gathering (Coughlan & Macredie,

2002).
Third, Software Requirements Specification (SRS) stage

named system requirements is a detailed description of what
the system should do, which are derived from the user
requirements, and modelled using formal or semi-formal
methods and languages (dos Santos Soares & Vrancken,
2008). It further discussed the requirements evaluation and
requirements prioritizing stages of the requirements phase.

One of the SRS issues is correctness, facing the formal
and informal view, which occurs effectively from customer
requested services to control hierarchy(Alzyadat, AlHroob,
Almukahel, & Atan, 2019; Larsson & Borg, 2014). On
another hand, the completeness of issue is considered an
upper level of correctness, taking consistency among
correctness of the services (Kamalrudin & Sidek, 2015).
The challenge is how to achieve a complete SRS, entailing

correct and consistent requirements, through the UML use

case diagram.

II. BACKGROUND AND RELATED WORK

Correctness is a perspective that can be defined as, the

adherence to the specifications that regulate how users can

interact with the approach, and how it should behave when

it is used appropriately, that the approach planned tasks as

defined by its specification [10]. Meanwhile, completeness

is how much does a set of functions covers all the specified

tasks and user objectives [11], further to which subject data

associated with an entity has values for all expected

attributes, and related entity instances in a specific context

of use [12].

Software Requirements Specification (SRS) is complete

[13] if it includes the following elements: First, all the

requirements related to functionality attributes in SRS

should be treated. Second, the definition of the responses of

the software to all realizable classes of input data, in all

realizable classes of situations, note that it is important to

specify the responses to both valid and invalid input values.

Third, all the diagrams, labels, figures, term definitions and

measures should be referenced and labelled.

According to Alzyadat, et al. [7] who defined many

characteristics that make requirements better, such as

correctness, completeness, consistency (3Cs), feasibility,

usability and many others, in a way that each characteristic

benefit in RS and quality.

 Jahanshani, et al. [14] introduced the importance of

the quality through the current research on Tata motors

industrial company for automobiles in India, via a

questionnaire of more than 60 questions, some are derived

from previous researches, and the else are designed to

evaluate customer service, product and loyalty, and

analyzed them with ANOVA test and SPSS16. They stated

the relation between good quality and customer loyalty for

the product and company, that customer service quality and

product quality mostly affect the customer loyalty, yet when

the customer get what he wanted as he wanted, he would be

satisfied which leads to better quality, the reason for

achieving customer loyalty.

In addition to according to Goofin and Price (1996), the

importance of customer service comes from achieving better

quality, more sales and income, and competitive level in the

market.

Naeem, et al. [10] defined C&C under the quality

umbrella, stated three problems of requirements with

examples in web applications, and defined three strategies to

solve them, furthermore stated a benchmark table as a guide

for requirements engineers of the predefined problems and

their solutions, which affect the quality through

requirements negotiation.

The research of Zowghi and Gervasi [15] introduced

C&C in two points of view, (1) formal, that correctness is a

combination between completeness and consistency, (2)

practical, that correctness is a satisfaction of specific

business goals needed by the customer, and he presented

review papers about correctness, completeness, and

consistency relating them with real-life practice.

Furthermore, stated an automated tool from related work

[16] and resulted in proving C&C formally.

 Firesmith [17] detailed five common problems of

requirements, explained their negative consequences and

solutions introducing the C&C issue, such as poor

requirements quality, requirements not traced, inadequate

requirements process and unprepared requirements

engineers, as well stated that these problems are interleaved

with each other, that means if a company had one of the

problems, it is probably had another interrelated problem.

An experiment of Larsson and Borg [8] (Alhroob, Imam,

& Al-Heisa, 2018) proposed ten challenges faced

requirements engineering aligning them to Verification and

Validation (V&V), explained each one and its effect on

quality, one of them is: defining complete requirements;

stating that requirements changes continuously as new

requirements arrive, so an audit is done which is

documented in an audit log, the audit contains the

challenges in the requirements like requirements conflicts

and missing requirements, audits include representatives

from developers, business analysts and testers at least.

While change happens in an audit like requirements conflict,

for example, the business analysts perform a new audit for

the same representatives to revise and refine the audit,

documenting them in a new log, and this iteration is

repeated until no change is found. Other examples of

challenges proposed are: defining good verification process

and verifying quality requirements.

A systematic review of Kamalrudin and Sidek [9] stated a

review discussion on the (3Cs) in the requirements

validation process defining each criterion, then introduced

traceability and its importance of keeping in touch with

requirements, forward to analysis approach and divided it

into two parts (1) heuristic analysis which is subjective, (2)

formal mathematical analysis, then eventually produced a

heat map to reveal the most commonly used approaches and

methodologies.

COMPUSOFT, An international journal of advanced computer technology, 9(2), February-2020 (Volume-IX, Issue-II)

3580

 Kalinowski, et al. [18] presented a study on

incomplete and hidden requirements based on a survey

called Naming the Pain in Requirements Engineering

(NaPiRE) in Austria and Brazil from 14 and 74 companies

respectively, both used plan-driven (waterfall) and agile

methodology (scrum), they stated many problems in

requirements which some of them are: missing

qualifications of requirements engineering team members,

lack of experience, missing domain knowledge, unclear

business needs and poorly defined requirements, and

introduced solutions to them, but the most remarkable

problem was incomplete and hidden requirements that

occupied the top of the list in Austria and the second in

Brazil.

 Kuchta [19] claimed that no one can guarantee

absolute completeness, and stated metrics to measure

weakness in SRS completeness, the measurements were

divided into direct measures counted in quasi-graph storage,

and indirect measures calculated by some formulas. Then

took a sample of SRS document, prepared three incremented

versions and evaluated them; the first version was prepared

very thoroughly of 69 functional requirements, and the

evaluation results in valuing to completeness, consistency,

and correctness from low to high respectively. Based on the

first version, the second version with 36 functional

requirements and the evaluation results in increasing

completeness, consistency but decreasing of correctness

value and critical, exceptional and breakdown situations

existed, which needed a functional requirement for each

situation to prevent or fix, that resulted in 99 new functional

requirements. The third version, formally unresolved goals

such as needs, tasks, and problems existed, the reason that

laid consistency increasing, which results in 30 new

requirements that evaluated in increasing completeness,

consistency and correctness. So consistency has an impact

on completeness yet without quality or consistency

evaluation, about 2/3 of the functional requirements will be

ignored, that affect the SRS to be incomplete.

Swathi [20] focused on software quality since it is a key-

value to the final product, Miss. G. Swathi and Dr Ch GVN

Prasad stated an interpretation of many requirements, each

set has a kind of a problem to solve clarifying that the

quality of the product, depends on the requirements

initialized to specification documents, and how the

requirements volatility affects the software development life

cycle by impacting the time, cost, effort and final product

quality. Then introduced some examples of poor

requirements and clarified them, coming to a result that

requirements can be improved by paying attention to

requirements activities, so “Effective Requirements

Practices” is suggested to improve writing requirements in

SRS.

 Femmer, et al. [21] stated the requirements smells

by doing an analysis a so-called light-weight which was

based on the Natural Language of the “International

Standard - Systems and software engineering -- Life cycle

processes --Requirements engineering” [22], and applied the

approach on two case studies taken from two different

companies, which contained 339 requirements and 53 use

cases extracted from 9 specifications of previous companies.

“Ambiguities or incomplete requirements specifications can

lead to time and cost overrun in the project. Requirements

(bad) smells, which are concrete symptoms for a

requirement artefact's quality defect”.

 Gigante, et al. [23] stated quality and its

importance by defining (3Cs), and their effect on quality,

yet proved completeness against Natural Language (NL)

(external context, or unstructured textual requirements), by

adopting ontologies beside the Resource Description

Framework (RDF) triplets, and other heuristics and Natural

Language Processing (NLP) tasks, to verify the High-Level

Requirements (HLR) against System Requirements (SR)

representing external context, so if the difference between

them is 0 then, a redundancy exists which doesn’t add any

value, so the smaller the distance between them the more

completeness is achieved [24].

III. METHODOLOGY

The approach describes each level, starting with use case

diagram and ending with the achievement of completeness,

using a programmed tool to verify the inner process of each

level, to ensure clear achievement of C&C through the use

case diagram based on UML.

The approach illustrated in Figure 1 shows the levels that

use case diagram will go through, to reach a result that C&C

in the SRS document is proved.

Then a feedback must return informing the developer to

check the use case diagram or the SRS, the cycle continues

to match all the elements, then the achievement of the

completeness criterion will be reached.

Fig. 1: Proposed Approach

The approach consists of three levels:

A. Level 1: Structured Document

The initial execution in this level is a use case diagram

presented by UML which is a dynamic form, each use case

in the diagram has its scenarios entailing the flow of events,

connected with actors by specific types of relations.

B. Level 2: Dynamic Language

The elements (actor, use case and relation) will be

extracted from the use case diagram, and whilst the process

COMPUSOFT, An international journal of advanced computer technology, 9(2), February-2020 (Volume-IX, Issue-II)

3581

is to transform it as dynamic to the text as a static

representation to acquire these elements, the language

XML is suggested. Meanwhile, the use case diagram as an

initial for this level is decomposed into its elements, as

mentioned earlier, which are actor, use case and relation,

identified by their IDs according to XML.

C. Level 3: Completeness

At the beginning of this level, each use case is checked

according to its formal description and by whom it is

communicated, further to the type of the relation (UML,

2017), so according to these rules, if the acquired elements

match the use case diagram then the correctness criterion

will be achieved, if not, then a feedback must return

informing the developer to check the use case diagram or

the SRS, the cycle continues to match all the elements, then

the achievement of the completeness criterion will be

reached.

The map-rules implement rules in UML models are used

from “IBM Knowledge Center” [26] and the UML [25]

sites as standards, with instructions represented by pseudo-

code and a programmed tool with Microsoft Excel, to

check the correctness of the use case diagram elements:

A. Actor

 “Classifier” that plays a role interacting with the system

boundary and connected to the use case to gain services

from, It can be hardware, software or human.

B. Use case

“Behavior classifier” that specifies a full useful

functionality of an action that collaborates with one or

more actors, each use case has a service to each actor

connected to it.

C. Relationship

 is a relation that connects two classifiers interacting

together like use cases or classifiers, that describes the

nature of the relationship rules, and appears in many forms;

a solid line between the connected classifiers, arrow-

headed with a dashed line or triangular arrowhead.

 On other side the relationship contains three types of

relations as follows.

D. Association

The association is a relation connecting two classifiers

describing the relation reasons and rules, and it is

represented as a straight line between the three classifiers

are, only binary associations are allowed, the association is

between actor and use case, or use case and use case. Actor

may connect one or more use cases. And use case may be

connected to one or more actors.

The table 1 shows the association between two actors

clarifying that no rule between two actors is accepted

except the Generalization.

TABLE I: THE RULES BETWEEN TWO ACTORS

Pseudocode (Actor to Actor)

A is the first classifier

B is the second classifier

IF A = “Actor” and B = “Actor” Then check if Relation

between A and B = “Generalization” Then

 print “Right Generalization”

Else

Print “Wrong Relation or Classifier”

End if

The relation between the actor and the use case is limited

to an association named “Communicate” in the

programmed tool as shown in table below.

TABLE 2: RULES BETWEEN ACTOR AND USE CASE

Pseudocode (Actor to Use case)

A is the first classifier

B is the second classifier

IF A = “Actor” and B = “Use case” Then check if Relation

between A and B = “Communicate” then print “right

Communicate”

Else

Print “Wrong Relation or Classifier”

End if

In the case of the relation between two use cases, there

are no forbidden relations according to the standard rules,

and Table 3 shows the “Communicate” association, Table 4

shows the “Include” association and Table 5 shows the

“Extend” association.

TABLE 3: RULES BETWEEN TWO USE CASES IN THE

ASSOCIATION RELATION

Pseudocode (Use case to Use case)

A is the first classifier

B is the second classifier

IF A = “Use case” and B = “Use case” then check IF

Relation between A and B<> "EXTEND" Then check if

Relation between A and B =“Communicate” then print

“right Communicate”

E. Include

It is a directed relation where one base use case includes

the functionality of the included use case, and it appears as

a dashed line with an open arrowhead pointing to the

included use case.

i. Does not have names, only the keyword “Include”,

and if a name is added it appears beside the include

connector.

ii. The relation is only between use cases, no actors

involved.

iii. Split large use cases into other use cases to simplify

them.

COMPUSOFT, An international journal of advanced computer technology, 9(2), February-2020 (Volume-IX, Issue-II)

3582

iv. Extract the same behavior of more than one use

case.

TABLE 4: RULES BETWEEN TWO USE CASES IN THE

INCLUDE RELATION

Pseudocode (Use case to Use case)

A is the first classifier

B is the second classifier

IF A=”Use case” and B=” Use case” Then check if the

Relation between A and B <> ” Extend” then check if the

Relation between A and B=”Include” then print “Right

Include” else print "Wrong R Relation

F. Extend

It is a directed relation between two use cases that the

extension use case extends the behavior of the base use

case. If the base use case is meaningful by itself then, there

is no need for the extension use case.

i. Part of a use case is an optional system behavior.

ii. Executing a sub-flow under specific conditions.

iii. The possibility of inserting many behavior segments

in a base use case.

iv. The relation is between use cases only.

TABLE 5: RULES BETWEEN USE CASE AND USE CASE IN

THE EXTEND RELATION

Pseudocode (Use case to Use case)

A is the first classifier

B is the second classifier

check if the Relation between A and B =”Extend” then

check if A= ”Use case” and B=” Use case” then print

“Right Extend

G. Generalization

It is a relation between at least two classifiers like

generalization between classes, the child use case is a type

of the parent (general) use case, having the same relations

and operations of the general use case, and it is represented

as a big triangular arrowhead pointing to the general use

case.

i. Can be between actors only.

ii. Can be between use cases only.

iii. Cannot be between actor and use case.

 So table 6 shows the “Generalization” between

 two actors, and table 7 shows the “Generalization”

 between two use cases.

TABLE 6: RULES BETWEEN TWO ACTORS IN THE

GENERALIZATION RELATION

Pseudocode (Actor to Actor)

A is the first classifier

B is the second classifier

If A= “Actor” and B= ”Actor” then check if the Relation

between A and B = ”Generalization”) then print “Right

Generalization” else print " Wrong Relation or Classifier "

TABLE 7: RULES BETWEEN TWO USE CASES IN THE

GENERALIZATION RELATION

Pseudocode (Use case to Use case)

A is the first classifier

B is the second classifier

If A= “Use case” and B=” Use case” then check if the

Relation between A and B = ”Generalization”) then print

“Right Generalization

IV. EXPERIMENT AND DISCUSSION

The experiments show the effectiveness of the

correctness and completeness in requirements specification

approach, in a way that it can extract the use case diagram

elements, to match them with the formal description of the

use cases scenarios that make it possible for anyone to use

the approach, as well as the requirements, as formal RS.

The approach experimented an “Online Shopping” use case

diagram that was chosen from UML [25] as a case study as

shown in Figure 2.

Online Shopping

Correct case:

The Online Shopping is presented in the use case diagram

representing the RS, from the UML site which is Level 1

(Structured Document) in the approach.

Fig. 2: Online Shopping Use Case Diagram

The applied approach starts by transforming the use case

diagram into XML format, through opening the saved

Rational Rose use case diagram from Visual Paradigm and

exporting it to MS excel sheets format, so each element is

identified by an ID, mentioning the relationship between

the classifiers connecting their IDs, the XML is stored in

excel sheet presenting the major items (columns) such as

Element Stereotype, Element ID, Element Name, Relation

COMPUSOFT, An international journal of advanced computer technology, 9(2), February-2020 (Volume-IX, Issue-II)

3583

Stereotype, Element Stereotype, (From) ID and (To) ID,

Each element in the diagram is transformed to details in the

excel sheet, presented as IDs, names, stereotypes for use

cases and actors. And for the Relations; they are presented

by the IDs of the classifiers where they are connected from

and to.

There are many details in the stored excel, but the items

are selected and filtered as shown in table 8. The

abbreviation in the titles of the next tables stands for the

following terms:

X: (From) ID, Y: (To) ID, C1: From Classifier Stereotype,

C2: To Classifier Stereotype, From: (From) Name, To:

(To) Name, Z: Result, A: Actor, U: Use case, L: Relation,

C: Communicate, G: Generalization, I: Include, E: Extend,

R: Right and Cl: classifier.

TABLE 8: EXTRACTING IN-BOUNDARY ITEMS TO ACQUIRE

USE CASE DIAGRAM ELEMENTS

ES ID EN ID1 ID2

A 2 Web Customer <<Actor>> public No
U 4 Make Purchase <<UseCase>> No
U 6 Client Register <<UseCase>> No
A 8 Registered Customer <<Actor>> public No
C 10 Unspecified 4 8
G 12 2 8
A 14 New Customer <<Actor>> public No
G 16 2 14
C 18 Unspecified 6 14
U 20 View Items <<UseCase>> No

In Table 9 is the result of filtering the form in Table 8 to

be more understandable by removing the out of boundary

data and collecting the elements of use case diagram as

follows, which implements Level 2 (Dynamic Language):

• ES: Element Stereotype: is the UML type of each

element.

• ID: Element ID: is the identifier for each element

• EN: Element Name: is the actor or the use case name in

the use case diagram.

• ID1: is the id of the source element that the relation is

connected with.

• ID2: is the destination element that the relation is

connected with.

TABLE 9: FILTERED FORM FOR THE IN-BOUNDARY ITEMS

X

C
1 L Y C
2 Z

Fr
o

m

L To

2 A G 14 A
R
G

Web Customer G
New

Customer

4 U I 38 U R I Make Purchase I Checkout

6 U C 26 A
R
C

Client Register C
Authenticat

ion

8 A C 20 U
R
C

Registered
Customer

C View Items

8 A G 2 A
R
G

Registered
Customer

G
Web

Customer

8 A C 4 U
R
C

Registered
Customer

C
Make

Purchase

14 A C 20 U
R
C

New Customer C View Items

14 A C 6 U
R
C

New Customer C
Client

Register

14 A G 2 A
R
G

New Customer G
Web

Customer

20 U I 4 U R I View Items I
Make

Purchase

Showing the final result of acquiring C&C in Table 10,
through applying the approach, according to the rules
which leads to achieving Level 3 (Completeness).

TABLE 10: RESULT OF APPLYING C&C

X

C
1

L Y

C
2

Z

Fr
o

m

L To

2 A G
1
4

A
R
G

Web Customer G
New

Customer

4 U I
3
8

U R I Make Purchase I Checkout

6 U C
2
6

A
R
C

Client Register C
Authenticati

on

8 A C
2
0

U
R
C

Registered
Customer

C View Items

8 A G 2 A
R
G

Registered
Customer

G
Web

Customer

8 A C 4 U
R
C

Registered
Customer

C
Make

Purchase
1
4

A C
2
0

U
R
C

New Customer C View Items

1
4

A C 6 U
R
C

New Customer C
Client

Register
1
4

A G 2 A
R
G

New Customer G
Web

Customer
2
0

U I 4 U R I View Items I
Make

Purchase
2
0

U C
3
2

A
R
C

View Items C
Identity
Provider

2
0

U C
2
6

A
R
C

View Items C
Authenticati

on

Some changes were made on the Online Shopping use

case diagram (in bold) to falsify them, yet to ensure the

success of applying the UML rules and achieving the C&C

as in Figure 3.

The modifications were made by IBM Rational Rose

software and some were changed manually from the excel

sheet because some relations were unaccepted by Rational

Rose such as association relation between actors.

Fig. 3: Changing Some Elements Of Online Shopping Case

Study (In Bold)

COMPUSOFT, An international journal of advanced computer technology, 9(2), February-2020 (Volume-IX, Issue-II)

3584

TABLE 11: ERROR RESULTS AFTER CHANGING ELEMENTS

X

C
1 L Y C
2 Z

Fr
o

m

L To

1
2

A I
1
0

U

Wron
g L or

Cl
Receptionist I

Schedule
Patient
Hospital

Admission

1
2

A C 8 U
R
C

Receptionist C
Schedule
Patient

Appointment
1
2

A C 6 U
R
C

Receptionist C
File Medical

Reports

2
2

U I
3
6

A

Wron
g L or

Cl

Patient
Registration

I
Patient
Hospital

Admission

2
2

U C
1
2

A
R
C

Patient
Registeratio

n
C Receptionist

2
2

U E
1
0

U
R
E

Patient
Registeratio

n
E

Schedule
Patient
Hospital

Admission

2
2

U E 8 U
R
E

Patient
Registeratio

n
E

Schedule
Patient

Appointment

3
0

U G
3
6

A

Wron
g L or

Cl

Outpatient
Hospital

Admission
G

Patient
Hospital

Admission

3
2

U G
3
6

A

Wron
g L or

Cl

Inpatient
Hospital

Admission
G

Patient
Hospital

Admission

3
2

U I 2 U
R
I

Inpatient
Hospital

Admission
I Bed Allotment

The correct use case diagram is not a basis for the false

one, which means that if any incorrect use case diagram

was evaluated through applying the C&C approach, it will

detect the errors.

The wrong case will pass through the same approach

procedure of the right one before (Figure 2), and by

applying the approach according to the UML rules in

section IV:

Rule 1- Actor to Actor: the relation between two actors as

association (communicate as named in the approach) is

wrong, it should be only (Generalization), and in the

incorrect case study the wrong relations result is shown in

table 11.

V. CONCLUSION AND FUTURE WORK

This work addressed two main challenges; the first

challenge was C&C that was covered in RS scope, the

second challenge was the consistency that appeared among

the requirements correctness presented in UML, especially

through the relation boundary between actors and use

cases.

The approach included three levels; the first level was

the Structured Document, that showed the RS represented

by use case diagram entailing the scenarios formal

description, the second level was the Dynamic Language,

which described transforming the use case diagram as

dynamic, to textual XML as static using specific software,

then extracted use case diagram elements; actor, use case

and relation, and the third level was the Completeness,

which was based on the implemented standard rules.

Comparing the rules to the formal description of the use

cases scenarios of the use case diagram in the first level, if

not matched, the RS or the use case diagram must then be

modified, and if matched for each requirement addressing

consistency among them, completeness will be achieved.

The approach was supported by a programmed tool on

MS excel and XML due to IBM Rational Rose and Visual

Paradigm and experimented “Online Shopping” use case

diagram [25] as a case study.

The contribution of the study was to establish C&C with

consistency among. Concerning the RS, to minimize the

customer modifications, to achieve quality.

This research addressed the 3C’s in RS through UML

use case diagram, and the tool based on the standard rules,

it was proved that C&C was improved in RS scope.

• To verify Extend relationship through sub-rules.

• To adjust this approach on different methodology and

technique such as together J.

• To fully enhance the automation of C&C to the rest of

the software engineering life cycle like Design,

Implementation, and Test, to achieve Quality.

VI. REFERENCES

[1] J. Coughlan and R. D. Macredie, "Effective

communication in requirements elicitation: a

comparison of methodologies," Requirements

Engineering, vol. 7, pp. 47-60, 2002.

[2] J. Eckhardt, A. Vogelsang, H. Femmer, and P. Mager,

"Challenging incompleteness of performance

requirements by sentence patterns," in 2016 IEEE 24th

International Requirements Engineering Conference

(RE), 2016, pp. 46-55.

[3] D. Zowghi and C. Coulin, "Requirements elicitation: A

survey of techniques, approaches, and tools," in

Engineering and managing software requirements, ed:

Springer, 2005, pp. 19-46.

[4] K. Swarnalatha, G. Srinivasan, N. Dravid, R. Kasera,

and K. Sharma, "A survey on software requirements

engineering for real time projects based on customer

requirements," Int’l J of Advanced Research in

Computer and Communication Engineering, vol. 3,

2014.

[5] M. Düchting, D. Zimmermann, and K. Nebe,

"Incorporating user centered requirement engineering

into agile software development," Human-computer

interaction. Interaction design and usability, pp. 58-67,

2007.

[6] M. dos Santos Soares and J. L. Vrancken, "Model-

Driven User Requirements Specification using SysML,"

JSW, vol. 3, pp. 57-68, 2008.

[7] W. J. Alzyadat, A. AlHroob, I. H. Almukahel, and R.

Atan, "fuzzy map approach for accruing velocity of big

data," Compusoft, vol. 8, pp. 3112-3116, 2019.

[8] J. Larsson and M. Borg, "Revisiting the challenges in

aligning RE and V&V: Experiences from the public

sector," in Requirements Engineering and Testing

COMPUSOFT, An international journal of advanced computer technology, 9(2), February-2020 (Volume-IX, Issue-II)

3585

(RET), 2014 IEEE 1st International Workshop on, 2014,

pp. 4-11.

[9] M. Kamalrudin and S. Sidek, "A review on software

requirements validation and consistency management,"

International Journal of Software Engineering and Its

Applications, vol. 9, pp. 39-58, 2015.

[10] M. A. Naeem, U. Waheed, and S. F. A. Raza,

"Requirement Correctness Problems and Strategies for

Web Applications," Pakistan Journal of Engineering,

Technology & Science, vol. 6, 2017.

[11] ISO/IEC, "Software Product Quality," in 25010, ed,

2017, p. 3.

[12] ISO/IEC, "Quality of Data Product," in 25012, ed, 2008,

p. 4.

[13] A. Al-Hroob, A. T. Imam, and R. Al-Heisa, "The use of

artificial neural networks for extracting actions and

actors from requirements document," Information and

Software Technology, vol. 101, pp. 1-15, 2018.

[14] A. A. Jahanshani, G. M. A. Hajizadeh, S. A.

Mirdhamadi, K. Nawaser, and S. M. S. Khaksar, "Study

the effects of customer service and product quality on

customer satisfaction and loyalty," International

Journal of Humanities and Social Science, 2014.

[15] D. Zowghi and V. Gervasi, "The Three Cs of

requirements: consistency, completeness, and

correctness," in International Workshop on

Requirements Engineering: Foundations for Software

Quality, Essen, Germany: Essener Informatik Beitiage,

2002, pp. 155-164.

[16] D. Zowghi, V. Gervasi, and A. McRae, "Using default

reasoning to discover inconsistencies in natural

language requirements," in Software Engineering

Conference, 2001. APSEC 2001. Eighth Asia-Pacific,

2001, pp. 133-140.

[17] D. Firesmith, "Common Requirements Problems, Their

Negative Consequences, and the Industry Best Practices

to Help Solve Them," Journal of Object Technology,

vol. 6, pp. 17-33, 2007.

[18] M. Kalinowski, M. Felderer, T. Conte, R. Spínola, R.

Prikladnicki, D. Winkler, et al., "Preventing

incomplete/hidden requirements: reflections on survey

data from Austria and Brazil," in International

Conference on Software Quality, 2016, pp. 63-78.

[19] J. Kuchta, "Completeness and Consistency of the

System Requirement Specification," in FedCSIS

Position Papers, 2016, pp. 265-269.

[20] G.Swathi,Dr.Ch GVN Prasad,Arruri Jagan, Int. J.

Comp. Tech. Appl., Vol 2 (3), 631-638, "Writing

Software Requirements Specification Quality

Requirements: An Approach to Manage Requirements

Volatility," 2011.

[21] H. Femmer, D. M. Fernández, E. Juergens, M. Klose, I.

Zimmer, and J. Zimmer, "Rapid requirements checks

with requirements smells: two case studies," in

Proceedings of the 1st International Workshop on Rapid

Continuous Software Engineering, 2014, pp. 10-19.

[22] ISO/IEC/IEEE Draft International Standard - Systems

and Software Engineering -- Life Cycle Processes --

Requirements Engineering," in ISO/IEC/IEEE

P29148_FDIS, September 2018 , vol., no., pp.1-104, 7

Sept. 2018.

[23] Gigante G., Gargiulo F., Ficco M. (2015) A Semantic

Driven Approach for Requirements Verification. In:

Camacho D., Braubach L., Venticinque S., Badica C.

(eds) Intelligent Distributed Computing VIII. Studies in

Computational Intelligence, vol 570. Springer, Cham

[24] A. A. Wael ALzyadat, "Development Planning in the

Big Data Era: Design References Architecture,"

International Journal of Recent Technology and

Engineering (IJRTE), vol. 8, p. 4, 2019.

[25] UML. (2017, 5/12/2017). The Unified Modeling

Language. Available: https://www.uml-diagrams.org/

(Last Accesed Nov. 2019)

[26] IBM. (2017, 5/12/2017). Relationships in use-case

diagrams. Available:

https://www.ibm.com/support/knowledgecenter/SS8PJ7

_9.5.0/com.ibm.xtools.modeler.doc/topics/crelsme_ucd.

html (Last Accessed Nov. 2019)

