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Abstract:  Previous studies revealed that most local researchers frequently used the Black Scholes model to price equity 

warrants. However, the Black Scholes model was perceived of possessing too many drawbacks, such as big errors of estimation 

and mispricing of equity warrants. In this work, we consider the problem of pricing hybrid equity warrants based on a hybrid 

model of stochastic volatility and stochastic interest rate. The integration of stochastic interest rate using the Cox-Ingersoll-Ross 

(CIR) model, along with stochastic volatility of the Heston model was first developed as a hybrid model. We solved the 

governing stochastic equations and come up with analytical pricing formulas for hybrid equity warrants. This provides an 

alternative method for valuation of equity warrants, compared to the usual practice of utilizing the Black Scholes pricing 

formula.  
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I. INTRODUCTION 

Warrant is one of the financial instruments in Bursa 
Malaysia. It gives the holder the right to buy the underlying 
asset at a specified price and specified time. In Malaysia, the 
warrant market holds a great importance in economic 
industries. According to [1], the general formula of equity 
warrant is given by 
 

𝑊(𝑇) =
1

𝑁 + 𝑀𝑘
(𝑘𝑆(𝑇) − 𝑁𝐺)+, 

 
where W is the valuation of the equity warrant, N represents 

the number of shares for common stocks, M represents the 

number of shares for equity warrants outstanding, and S 

represents the current value of underlying asset. At the 

occurrence of payment denoted by G, each warrant entitles 

the warrant holder to earn k shares at time T. 

Since the definition of warrants and option are 

corresponding to each other, it is natural to evaluate equity 

warrants using call option pricing models such as Black 

Scholes, since the model is one of the famous models 

utilized in pricing options in most markets, including 

Malaysia as discussed in [2]. Despite that, it was found that 

the prices for the Black Scholes model tend to under-price 

the equity warrants. Research conducted by [2] revealed 

that the pricing for more than 25, 000 daily warrants using 

the Black Scholes model ended with big errors of 

estimation compared to other models tested. Examples of 

research works involving Black Scholes model to price 

warrants and options can be referred from [3, 4, 5]. As 

reported by[3], the Black-Scholes model had led to the 

mispricing of call warrants, in terms of under or 

overvaluation of the price. In addition, [4] stated that in 

regards to pricing options in Malaysia market using Black-

Scholes model, it was found that the model was not reliably 

precise and accurate. MAPE of the Black- Scholes model 
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indicated 78.5% errors, in contrast to another model, 4F 

(Four Factor) option pricing model which had MAPE of 

46.8%. Also, [5] found that the diluted-adjusted Black 

Scholes (DABS) model was more accurate in pricing 

warrants, compared to the Black Scholes model based on 

the examination of the highest error.  

Pursuant to [6], the resolution of the financial framework, 

irrespective portfolio allocation, assets price, or risk 

management depends on simulation of a discriminative 

version of stochastic differential equations (SDEs). The 

author further reported the best way to encounter SDEs is 

to discretize them and apply Monte Carlo simulation in 

numerical situations. Moreover, the Euler method is 

commonly used in order to discretize SDEs. However, in 

an informative paper, [7] illustrated the compromise 

between the discretization error and the Monte Carlo 

averaging error. The asymptotic error distribution has been 

discovered by [8] and [9] for the Euler discretization 

method. 

Besides that, amongst the variables applied in pricing 

financial derivatives is the short-term interest rate, where 

the short rate is varying over time. Accordingly, [2] 

discovered that the short-term interest rate of the Black 

Scholes model is known and constant through time, which 

may be troublesome to the long life of an equity warrant. 

Hence, it is significant to consider the circumstances of 

pricing equity warrants under stochastic interest rate to 

allow the fluctuations in the price of the underlying asset. 

Apart from that, previous studies were concerned that the 

Black Scholes model was not representative of the real 

world based on several assumptions. In fact, the 

assumption of constant volatility by the previous authors 

may cause significant mispricing when employed to 

evaluate exotic features. Without doubt, constant volatility 

is contrary to the real market, since it is only appropriate 

over short term maturity, but never constant in a long-term 

period. Thus, it is crucial to use stochastic volatility model 

when pricing warrants. Furthermore,[3] highlighted that the 

warrant was overpriced when the volatility was too high, 

and was under-priced when the volatility was too low. 

Nevertheless, for the case of pricing warrant, there is a gap 

left in the literature regarding application of stochastic 

volatility [10]. 

In conformity with our present knowledge, the analysis for 

pricing equity warrants, which establishes hybrid models of 

stochastic interest rate and stochastic volatility, has not 

been implemented yet [11,12]. Research regarding pricing 

formulation for hybrid variance swaps under these 

stochastic dynamics had been conducted by [13]. Thus, the 

novelty of this work is to develop an analytic pricing 

formula for equity warrants by incorporating stochastic 

interest rate from the Cox-Ingersoll-Ross (CIR) model, 

together with stochastic volatility from the Heston model. 

Thereby, besides reducing inaccuracies caused from 

constant interest rate and constant volatility, we can also 

provide a preferable market characterization through 

hybridization of stochastic interest rate and stochastic 

volatility. 

II. MODELING TECHNIQUES 

A. Pricing Model for Hybrid Equity Warrants 

We set 𝑆 𝑡  as the asset price governed by µ, which is the 

drift, and 𝑣(𝑡) as its volatility. In addition, 𝑣(𝑡) is the 

instantaneous variance process with mean-reverting 

parameter 𝑘, long term mean of 𝜃 and 𝜍 as its volatility. 

We define 𝑟 𝑡  as the instantaneous interest rate, with 𝛼 as 

the speed of the mean reversion, 𝛽 as the interest rate term 

and 𝜂 controls the volatility. Consider the following general 

Heston – CIR model: 

𝑑𝑆 𝑡 = 𝜇𝑆 𝑡 𝑑𝑡 +  𝑣 𝑡 𝑆 𝑡  𝑑𝑤1 𝑡 , 

𝑑𝑣 𝑡 = 𝑘 𝜃 − 𝑣 𝑡  𝑑𝑡 + 𝜍 𝑣 𝑡  𝑑𝑤2 𝑡 ,  

𝑑𝑟 𝑡 = 𝛼 𝛽 − 𝑟 𝑡  𝑑𝑡 + 𝜂 𝑟 𝑡  𝑑𝑤3 𝑡 .  (1) 

 

Here, 𝑑𝑤1 𝑡 , 𝑑𝑤2 𝑡  = 𝜌𝑑𝑡, 𝑑𝑤1 𝑡 , 𝑑𝑤3 𝑡  =

0,  𝑑𝑤2 𝑡 , 𝑑𝑤3 𝑡  = 0, and the correlation is denoted by 

constant 𝜌 with −1 ≤ 𝜌 ≤ 1. Also, 2𝑘𝜃 ≥ 𝜍2 and 2𝛼𝛽 ≥
𝜂2 respectively. 

 

Therefore, under the risk-neutral probability measureℚ,the 

above equation can be transformed into the following 

system of differential equations:   

 

𝑑𝑆 𝑡 = 𝑟 𝑡 𝑆 𝑡  𝑑𝑡 +  𝑣 𝑡  𝑆 𝑡  𝑑𝑤1  𝑡 ,   

𝑑𝑣 𝑡 = 𝑘∗ 𝜃∗ − 𝑣 𝑡   𝑑𝑡 + 𝜍 𝑣(𝑡) 𝑑𝑤2  𝑡 ,

𝑑𝑟 𝑡 = 𝛼∗ 𝛽∗ − 𝑟 𝑡   𝑑𝑡 + 𝜂 𝑟(𝑡) 𝑑𝑤3  𝑡 ,

 (2) 

with 𝑘∗ = 𝑘 + 𝜆1, 𝜃∗ =
𝑘𝜃

𝑘+𝜆1
, 𝛼∗ = 𝛼 + 𝜆2;  𝛽∗ =

𝛼𝛽

𝛼+𝜆2
 as 

the risk-neutral parameters; and 𝑤 𝑖 𝑡 (1 ≤ 𝑖 ≤ 3) is 

defined as  the Brownian motions under ℚ. 𝜆𝑗  (𝑗 = 1,2) is 

the premium of volatility or interest rate risk. 

The following system under the forward measure ℚ𝑇can be 

obtained by applying the Cholesky decomposition of a 

correlation matrix and the Radon-Nikodym derivative such 

that: 

 
 
 
 
 
 
𝑑𝑠 𝑡 

𝑠 𝑡 

𝑑𝑣 𝑡 

𝑑𝑟 𝑡  
 
 
 
 
 

=

 
 
 
 
 

𝑟 𝑡 

𝑘∗ 𝜃∗ − 𝑣 𝑡  

𝛼∗𝛽∗ −  𝛼∗ + 𝐵 𝑡, 𝑇 𝜂2 𝑟 𝑡  
 
 
 
 

𝑑𝑡 + Σ × C 

×

 
 
 
 
 
𝑑𝑤1

∗ 𝑡 

𝑑𝑤2
∗ 𝑡 

𝑑𝑤3
∗ 𝑡  

 
 
 
 

 , 
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Where  

Σ =

 
 
 
 
  𝑣 𝑡 0 0

0 𝜍 𝑣(𝑡) 0

0 0 𝜂 𝑟(𝑡) 
 
 
 
 

,   𝐶 =

 
 
 
 
 
1 0 0

𝜌  1 − 𝜌2 0

0 0 1 
 
 
 
 

 , 

𝐵 𝑡, 𝑇 =

2 𝑒
 𝑇−𝑡   𝛼∗ 2+2𝜂 2

−1 

2  𝛼∗ 2+2𝜂2+𝛼∗+  𝛼∗ 2+2𝜂2 𝑒
 𝑇−𝑡   𝛼∗ 2+2𝜂 2

−1 

, 

𝐶𝐶𝑇 =

 
 
 
 
 
  1 𝜌 0

  𝜌 1 0

  0 0 1 
 
 
 
 

, and

 
 
 
 
 
𝑑𝑤1  𝑡 

  𝑑𝑤2 (𝑡)

𝑑𝑤3  𝑡  
 
 
 
 

= 𝐶 ×

 
 
 
 
 
𝑑𝑤1

∗ 𝑡 

𝑑𝑤2
∗ 𝑡 

𝑑𝑤3
∗ 𝑡  

 
 
 
 

(3) 

 

B. The Evaluation of Hybrid Equity Warrants 

Define 𝑊(𝑡) as the function of the current value of the 

underlying asset 𝑆 𝑡 , the stochastic interest rate 𝑟(𝑡), the 

stochastic volatility 𝑣(𝑡) and time 𝑡, given by:  

𝑊 𝑡 = 𝑊(𝑆 𝑡 , 𝑣 𝑡 , 𝑟 𝑡 , 𝑡). 

The theorem of Feynman Kac provides us 

𝜕𝑊

𝜕𝑡
+

1

2
𝑣𝑆2 𝜕2𝑊

𝜕𝑠2 +
1

2
𝜍2𝑣

𝜕2𝑊

𝜕𝑣2 +
1

2
𝜂2𝑟

𝜕2𝑊

𝜕𝑟2 + 𝑟𝑠
𝜕𝑊

𝜕𝑠
+

𝑘∗ 𝜃∗ − 𝑣 
𝜕𝑊

𝜕𝑣
+ 𝛼∗𝛽∗ −  𝛼∗ + 𝐵 𝑡, 𝑇 𝜂2 𝑟

𝜕𝑊

𝜕𝑟
+

𝜌𝜍𝑣𝑆
𝜕2𝑊

𝜕𝑊𝜕𝑣
= 0                      (4) 

with boundary condition 

𝑊 𝑇 =
1

𝑁+𝑀𝑘
 𝑘𝑆 𝑇 − 𝑁𝐺 + .(5) 

Proposition 1: 

When the underlying asset has the dynamics (3) and the 

payoff function follows 𝑊 𝑆, 𝑣, 𝑟, 𝑇 = 𝐻(𝑠) at expiry 

𝑇, then the PDE system solution for the derivative value is 

associated as: 

 
 
 

 
 

𝜕𝑊

𝜕𝑡
+

1

2
𝑣𝑠2 𝜕2𝑊

𝜕𝑠2 +
1

2
𝜍2𝑣

𝜕2𝑊

𝜕𝑣2 +
1

2
𝜂2𝑟

𝜕2𝑊

𝛿𝑟2 + 𝑟𝑠
𝜕𝑊

𝜕𝑠

+𝑘∗ 𝜃∗ − 𝑣 
𝜕𝑊

𝜕𝑣
+ 𝛼∗𝛽∗ −  𝛼∗ 𝐵 𝑡, 𝑇 𝜂2 𝑟

𝜕𝑊

𝜕𝑟

+𝑝𝜍𝑣𝑠
𝜕2𝑊

𝜕𝑊𝜕𝑣
, 𝑊 𝑆, 𝑣, 𝑟, 𝑇 = 𝐻 𝑠 

 (6) 

and can be written in semi-closed formula as follows: 

𝑊 𝑥, 𝑣, 𝑟, 𝜏 = ℱ−1  𝑒𝐶 𝜔,𝜏 +𝐷 𝜔,𝜏 𝑣+𝐸 𝜔,𝜏 𝑟ℱ 𝐻 𝑒𝑥   ,  

where 𝑥 = ln 𝑆, 𝜏 = 𝑇 − 𝑡, 𝑖 =  −1, and 𝜔 is the variable 

of Fourier transform such that: 

 
 
 

 
 𝐷 𝜔, 𝜏 =

𝑎+𝑏

𝜍2 .
1−𝑒𝑏𝜏

1−𝑔𝑒𝑏𝜏 ,                                     

𝑎 = 𝑘∗ − 𝜌𝜍𝜔𝑖, 𝑏 =  𝑎2 + 𝜍2 𝜔2 + 𝜔𝑖 ,

𝑔 =
𝑎+𝑏

𝑎−𝑏
,                                                             

  (7) 

𝐸(𝜔, 𝜏) and 𝐶 𝜔, 𝜏  satisfy the following ODE system 

 

𝑑𝐸

𝑑𝜏
=

1

2
𝜂2𝐸2 −  𝛼∗ + 𝐵 𝑇 − 𝜏, 𝑇 𝜂2 𝐸 + 𝜔𝑖,

𝑑𝐶

𝑑𝜏
= 𝑘∗𝜃∗𝐷 + 𝛼∗𝛽∗𝐸,                                        

 (8) 

with the initial conditions 𝐶 𝜔, 0 = 0 and  𝐸 𝜔, 0 = 0.  

C. The Payoff Function 

Following Proposition 1 and our terminal condition, we can 

state 𝐻 𝑆 = 𝑘𝑆 𝑇 − 𝑁𝐺, and the inverse Fourier 

transform could be specifically developed. The Fourier 

generalized transformation can be defined as: 

ℱ 𝑒𝑖𝜉𝑥  = 2𝜋𝛿𝜉 𝜔 ,                                                  (9) 

where 𝜉 is any complex number and 𝛿𝜉(𝜔) is the 

generalized delta function satisfying 

 𝛿𝜉 𝜔 
∞

−∞
Φ 𝑥 𝑑𝑥 = Φ 𝜉 .(10) 

Letting 𝑥 = 𝑙𝑛 𝑆, we focus specifically on the payoff 

function by implementing the generalized Fourier 

transform, given by ℱ 𝑘𝑒𝑋 − 𝑁𝐺 . Here, ℱ is the Fourier 

transform; along with k, N and G which are all constants. 

Using the property 𝑒𝑖𝑤0𝑡 = 2𝜋𝛿 𝜔 − 𝜔0 , we obtain the 

following 

ℱ 𝑘𝑒𝑋 − 𝑁𝐺  

= 𝑁𝐺ℱ  
𝑘𝑒𝑋

𝑁𝐺
 − 𝑁𝐺ℱ 1 . 

Since ℱ  
𝑒𝑋

𝑁𝐺
. 𝑘 =

2𝑘𝜋𝛿−𝑖(𝜔)

𝑁𝐺
  and  ℱ 1 = 2𝜋𝛿0 𝑤 , 

then  

ℱ𝑁𝐺  
𝑘𝑒𝑋

𝑁𝐺
− 1 =  

2𝜋𝑘𝛿−𝑖(𝜔)

𝑁𝐺
− 2𝜋𝛿0(𝜔) 𝑁𝐺 

= 𝑁𝐺. 2𝜋  
𝑘𝛿−𝑖(𝜔)

𝑁𝐺
− 𝛿0(𝜔) .                                           (11)     

Moving on, we provide the solution to (6) as  

𝑊 𝑆, 𝑣, 𝑟, 𝜏  

= ℱ−1  𝑒𝐶 𝜔,𝜏 +𝐷 𝜔,𝜏 𝑣+𝐸 𝜔,𝜏 𝑟 . 𝑁𝐺 2𝜋  
𝑘𝛿−𝑖 𝜔 

𝑁𝐺
− 𝛿0 𝜔    
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=  𝑒𝐶 𝜔,𝜏 𝐷 𝜔,𝜏 𝑣+𝐸 𝜔,𝜏 𝑟 . 𝑁𝐺  
𝑘𝛿−𝑖 𝜔 

𝑁𝐺

∞

−∞

− 𝛿0 𝜔  𝑒𝑥𝜔𝑖 𝑑𝜔 

 

= 𝑁𝐺  

𝑘𝑒𝐶 𝜔,𝜏 +𝐷 𝜔,𝜏 𝑣+𝐸 𝜔,𝜏 𝑟+𝑥𝜔 𝑖

𝑁𝐺

 
𝜔 = −𝑖

−𝑒𝐶 𝜔,𝜏 +𝐷 𝜔,𝜏 𝑣+𝐸 𝜔,𝜏 𝑟+𝑥𝜔 𝑖  
𝜔 = 0

  

 

  = 𝑁𝐺  
𝑘

𝑁𝐺
𝑒𝐶  𝜏 +𝐷  𝜏 𝑣+𝐸  𝜏 𝑟 − 1                                    (12) 

 

where 𝐶  𝜏 , 𝐷 (𝜏) and 𝐸 (𝜏) are the representatives for 

 𝐶 −𝑖, 𝜏 , 𝐷(−𝑖, 𝜏) and 𝐸 −𝑖, 𝜏  respectively.  

Finally, we give the final forms for 𝐶  𝜏 , 𝐷 (𝜏) and 𝐸 (𝜏) as 

follows 

 
𝐷  𝜏 =

𝑎 +𝑏 

𝜍2  .
1−𝑒𝑏 𝜏

1−𝑔 𝑒𝑏𝜏 , 𝑎 = 𝑘∗ − 𝜌𝜍,

𝑔 =
𝑎 +𝑏 

𝑎 −𝑏 
, 𝑏 =  𝑎 2

                                (13)  

along with 𝐸 (𝜏) and 𝐶  𝜏  satisfying the following ODE 

system 

 
 

 
𝑑𝐸 

𝑑𝜏
=

1

2
𝜂2𝐸 2 −  𝛼∗ + 𝐵 𝑇 − 𝜏, 𝑇 𝜂2 𝐸 + 1,

𝑑𝐶 

𝑑𝜏
= 𝑘∗𝜃∗𝐷 + 𝛼∗𝛽∗𝐸 .                                  

  

III. CONCLUSION 

This paper investigates the pricing of hybrid equity 

warrants by considering the framework of stochastic 

interest rate and stochastic volatility. We solved the 

governing PDE in the model and derived an analytical 

pricing formula for hybrid equity warrants based on the 

Heston–CIR hybrid model.  
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