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Abstract:  In this paper, we present architecture for an auxiliary shredded control that can be used in combination with a BCI 

control system. BCI systems are known for low reliability and accuracy. We are presenting a method to enhance this inherent 

weakness of BCI systems, by providing an assistive autonomous controller whenever the BCI system reaches to the point where 

fine control is necessary.  The course control is performed by the motor imagery BCI which decodes the thinking process of the 

user and use it for navigating a quadcopter drone. Once the quadcopter reaches an area where the object selected to be picked up 

enters in the field of view of the bottom camera of the quadcopter, the autonomous controller is taking over the fine movement 

navigation to handle the rest of the task. This method is an exciting opportunity for several other BCI applications to enhance the 

reliability and accuracy of BCI systems to be adopted in everyday life of severely disabled patients. 
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I. INTRODUCTION 

For many people with some sort of disability, simple tasks 
such as picking an object is difficult[1]. Hence, the use of an 
assistive device, that can provide them with an independent 
mobility will have a big positive impact on their life[2]. The 
recent progress that happened in the brain computer 
interface (BCI) research is very promising to provide a 
solution for such people[3]. The aim of a BCI system is to 
enable the user to communicate and control device through 
a direct pathway from the brain to the computer, without 
going through the usual musculo-skeletal system. With 
Motor imagery BCI, it is possible to imagine the movement 
of different parts of the body, and the BCI system is 
detecting the modulated electrical brain waves to control an 
external device[4]. However, all types of BCIs are still not 
robust enough for wide adoption[5]. BCI relies on 

modulating the electrical brain waves (EEG) in an unnatural 
way, that the brain has not been adapted to[5]. However, 
due to the neuro-physiological basis of the human brain 
activity, it is difficult to isolate a single location in the brain 
and associate it with a single physiological task.Hence 
human EEG signals are always extremely noisy and mixed 
with signals from other natural activity of the brain and pose 
significant challenges to classify EEG signals associated 
with mental tasks[6, 7]. 
In this work, we are designing an additional system that 
compliments the BCI system to make it more robust and 
accurate. Typically, BCI systems are 60-90% accurate[8]. 
Hence, the control of the user over an external device is not 
accurate enough to pick an object. For example, if we have 
a small drone that can be controlled by a paralyzed patient, 
using his thinking, the current state-of-the-art of BCI 
systems will not guarantee that the control will be always  
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what the user wants. Hence controlling a drone is not easy. 
Our proposed solution is to combine the BCI system with an 
additional autonomous system that helps the user to  
navigate the drone for picking up the object that the user 
wants. The desired object to be picked up is specified 
through selecting an object from a list displayed on a screen, 
using the motor imagery BCI. When selection is made, the 
drone will be controlled by the user's BCI, and when the 
drone reaches an area where its down facing camera 
captures the object, the object detection algorithm is 
switching the control from the BCI to an autonomous 
controller that pilots the drone and  pick the object and bring 
it back to the user. We call such switching control as 
shredded controller, since it divides the control from the 
user to an autonomous controller, once it knows where is 
the object location and able to do the task of picking it up 
and bringing it to the user autonomously. Despite the 
effectiveness of our system to increase the accuracy of the 
BCI system, up to our knowledge, no previous published 
paper demonstrated such a design. 
In the following section, we will introduce the general view 
over the designed system, and in later sections, each part of 
the proposed design is presented in detail. 

II. OVERALL SYSTEM ARCHITECTURE 

The proposed design is composed of: motor imagery BCI 

system for selecting the object images and course control of 

the quadcopter; quadcopter controller interface using 

Labview; deep learning object detection algorithm using 

Feature Pyramid Networks.  

As schematically demonstrated in Fig.1, motor imagery 

BCI system is responsible for analyzing  the EEG of the 

user to  decode the intention. In our implementation, we 

have developed the BCI system to detect three states, 

namely the rest state, left hand and right hand motor 

imagery. The detected EEG trials is used to control 

selecting a list of objects shown on a screen. Left hand will 

move the selection and right hand will choose the object. In 

order to increase the accuracy of the selection process, the 

user is needed to repeat the selection two times, and only 

when the selections are matched, the BCI system would 

send a trigger signal to the Labview Controller. 

The Labview controller is responsible for controlling the 

navigation operation of the quadcopter. The navigation is 

either performed by the user through the BCI, or auto-

switched to the autonomous mode. Initially, when the 

selection of the object is performed on the screen, the 

Labview controller will switch to the manual mode of 

navigation, letting the user controlling the quadcopter using 

BCI commands. When the trigger is received from the BCI, 

the Labview controller will initiate the quadcopter by 

making it hovering on 2 meter height, and staying 

stationary in the x-y axis location. Two meters are an 

elevation where most obstacles are avoided and basically 

only the walls of the rooms are the limit for x-y navigation. 

The BCI commands are either left hand motor imagery 

which will rotate the quadcopter to the left, right hand 

 

 

Figure 1. General system architecture of the shredded controller 



COMPUSOFT, An international journal of advanced computer technology, 9(3), March-2020 (Volume-IX, Issue-III) 

 

3608 

 

motor imagery which navigates the quadcopter forward, 

and the rest state which makes the quadcopter hovering in a 

stationary x-y position. Through the use of these 3 BCI 

commands, it is possible to navigate the quadcopter to any 

position. 

The quadcopter is continuously feeding the video stream of 

its camera to the deep learning (DL) object detection 

algorithm. When the the object enters in the field of view 

of the camera, the object is detected and the Labview 

controller is switched from the BCI control mode to the 

autonomous mode. The Labview autonomous mode, will 

get real time object position coordinates which is used to 

infer the center of the object, and to estimate how much x-

axis and y-axis coordinate differences are there in relation 

to the center of the quadcopter. The controller will navigate 

the quadcopter in the x-y plane until the center of the 

quadcopter and the center of object matches. Then the 

quadcopter hovers down slowly and uses a solenoid 

magnetic picker to touch the object which is covered by 

magnetic metal sheet that is attracted to the active solenoid 

picker. During the hovering down the x-y plane position is 

constantly being corrected, to ensure proper positioning 

after hovering down. Once the object is picked up the 

Labview controller replays the navigation directions used 

to fly the quadcopter from the user's place to this object 

picked location. The error of navigation in the flying back 

is corrected by the front camera of the quadcopter, which is 

used by the same detection algorithm. When all the replay 

of navigation command is ordered to flyback the 

quadcopter, the front camera picks a special sign drawn on 

the wall beside the user, which is used to correct the +/- 1.5 

meter error in the x-y plane position  that built up during 

the flyback replay. Fig.2 shows the Labview control tests 

on the quadcopter. 

 

 
 

Figure 2: Labview control tests on the quadcopter 

 

III. MOTOR IMAGERY BCI SYSTEM 

The EEG time series signals are converted into the 

frequency domain using Stockwell Transform. This 

transform is an enhanced version of Gabor Transform 

where the window size is a function of frequency, allowing 

better fine tuning for low and high frequency component 

representation.  

The discrete time Stockwell transform is expressed by: 

Let𝛼 = 𝑝Δ𝐹  , 𝑓 = 𝑚Δ𝐹 , 𝑡 =  𝑛Δ𝑇 , where 𝛼 is the width of 

the Gaussian window, Δ𝐹 is the sampling frequency and 

Δ𝑇 is the sampling interval, then: 

 

𝑆𝑥 𝑛Δ𝑇  , 𝑚Δ𝐹 =  𝑋  𝑝 + 𝑚 Δ𝐹 𝑒
(−𝜋
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The Stockwell Transform yielded better classification 

performance than Morlet. The generated spectrogram 

images of the frequency range of 6-78 Hz has been plotted 

for each channel and the whole image of spectrograms is 

fed into a Triplet Network, which is a deep metric learning 

classifier that was developed for detecting the motor 

imagery from Stockwell Transform spectrogram. Fig. 3 

shows the principle of the Triplet Network used for the 

BCI.  

The Triplet Network is one form of Metric Learning. The 

Convolutional Neural Network (CNN) encoders are trained 

to optimize a 256 dimensional feature space where 

similarly labelled spectrogram images are compacted near 

to each other in the feature space, while different labelled 

images are moved distant from each other.  The accuracy of 

this BCI classifier is 64.7% to classify the user's intention 

for the 3 motor imagery classes. It is evident that with such 

accuracy performance, controlling a quadcopter to pickup 

an object is very difficult. 

 

IV. BCI MOTION CONTROL AND AND AUTONOMOUS 

CONTROL OF QUADCOPTER 

Labview program has been designed for controlling a 

Parrot AR Drone 2.0 quadcopter. The quadcopter is 

controlled via the onboard WiFi connection, and flights 

with 3 degrees of freedom, namely forward-backward, 

rotate left-right and vertical moving up-down. A fourth 

control command used for hovering and landing down. The 

Labview design control receives the BCI commands from 

the Python script that uses Deep Learning to decode the 

EEG signals. The Labview sends the selected object label 

to the Python script that is responsible for the object 

detection of the selected item. Moreover, the Labview 

program receives the coordinates of that object, if it is 

within the field of view of the bottom camera of the 

quadcopter. And when such coordinates is detected, the 

Labview script switches from the BCI control mode into 

the autonomous mode, where it moves the quadcopter to 

center the x-y position of the quadcopter over the object, 

and picks it up using a solenoid device. The replay of the 

inverse kinematics replays all movements in reverse, in 

other words, if there was a forward movement for 5 cm/sec 

speed for duration of 1 sec, the replay would be the same 

but in the backward direction. In this phase, the object 

detection algorithm is detecting a special sign drawn on the 

wall beside the user, which is used to correct the +/- 1 

meter error in the x-y plane position  that may build up 

during the flyback replay. 
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V. OBJECT DETECTION 

The object detection algorithm serves to aid the fine grade 

navigation of the drone. It uses the bottom camera of the 

quadcopter when trying to detect the desired object to be 

picked up, and the front camera when trying to navigate the 

drone back to the user. A deep learning approach is used 

using Python 3.6 and Pytorch 1.0 deep learning framework 

and fastai v1.0 library. In particular, the Feature Pyramid 

Network (FPN) design has been adopted for this task[9]. 

FPN is creating a pyramid of features and using them for 

detecting objects at different scales (Fig. 4). Generally, 

detecting multiple scaled images is computationally 

expensive, but FPN uses a feature extractor technique that 

facilitates such multi-scale object detection with the 

pyramid concept. It is generally considered a replacement 

for the Faster R-CNN feature extractor[10] by generating 

multiple feature map layers. There are two pathways in 

FPN: bottom-up and top-down pathways. The bottom-up 

pathway is an ordinary Convolutional Neural Network 

(CNN) that is used for feature extraction. Layer after layer, 

the features extracted become more abstract (with more 

semantic value) and the spatial resolution decreases. The 

top-down pathway is for constructing higher resolution 

layers from the higher semantic layers. Although that these 

reconstructed layers are semantically rich, however the 

locations of the objects are not precise due to the up 

sampling and down sampling processes. For solving this 

issue, the lateral connections between the layers and the 

corresponding maps enhances the accuracy of the location 

detection. 

VI. EXPERIMENTS 

The BCI design has been validated on the Physionet Motor 

Imagery dataset[11], which includes motor imagery EEG  

 

 

trials of 109 subjects. The Triplet Network performed with 

an average of 64.7% accuracy on classifying the 3 labelled 

classes. A volunteer has been trained to use the BCI system 

and DL algorithm showed slightly better performance 

(71%) than the validation set of the Physionet dataset. 

However, with the combined controller and the BCI, the 

system is able to enhance the accuracy to around 93%, 

which is showing a significant enhancement over the 

performance of the BCI system alone. 

 

VII. CONCLUSION 

This paper shows architecture for an auxiliary shredded 

control that can be used in combination with a BCI control 

system. The system shows a promising design for 

controlling devices for people with severe disabilities who 

intend to use a BCI system in daily-life tasks. The proposed 

system composed of motor imagery BCI system with 

Labview controller algorithm to decide when the BCI 

system should control the navigation of the quadcopter and 

 

Figure 3: Triplet Network architecture. Three kind of images are used to train the network within each minibatch. The anchor image𝑥𝑎  , the similar 

positive instance image 𝑥𝑝  and the negative instance image 𝑥𝑛  are are processed with 3 CNN encoders. The goal is to decrease the Euclidean distance of 

the embeddings difference between anchor and positive instance image ∆(a,p) and to increase the distance between the anchor and negative instance 

embeddings ∆(a,n) 

 

 

Figure 4: Feature Pyramid Network architecture[7] 
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when the autonomous navigation algorithm should take 

over. 
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