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Abstract:  The main objective of this paper is to compare the landslide spatial prediction performance of logistic regression (LR) 

with different regularization methods, namely, Lasso LR and Ridge LR. Three types of training datasets with different sample 

sizes of 40,000, 4,000 and 400 are used to train and validate the models. ROC curves are used to evaluate the models’ 

performance. The results show that Lasso and Ridge LR models have comparative performance compared to the ordinary LR 

models based on the AUC values, which indicates that there are no redundant input features to remove from the models for the 

available data in this work to some degree. The penalty terms play a negligible role in the LR models trained with the three types 

of datasets. Lasso LR has a better performance than ridge LR, which may be due to that the L1 penalized parameter which can be 

exactly equal to zero. According to the AUC values, the group of models trained and validated using the dataset of 20,000 

samples outperform the other two groups. 
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I. INTRODUCTION 

Landslide is a natural disaster which can cause severe 

damage to life and property. Penang Island is a popular 

landslide-prone area in Malaysia during the monsoon 

season. Landslide spatial prediction is of great importance 

to landslide mitigation and management. Landslide 

susceptibility analysis (LSA) is a commonly used way to 

visualize the landslide occurrence distribution using 

various methods, such as frequency ratio [1, 2], fuzzy logic 

[3-5], support vector machine [4, 6], decision tree [7, 

8].Other review papers on the methodology of LSA is 

provided in [9]. Logistic regression (LR) is a simple but 

powerful binary classification tool, which is also a popular 

machine learning (ML) algorithm applied in various fields. 

In recent decades, LR techniques are widely used in 

landslide susceptibility research area [10-13]. However, 

few researchers applied lasso and ridge LR into this area, 

since they are usually unavailable in most of the statistical 

software [1]. Therefore, the objective of this paper is to 

compare the spatial prediction performance of ordinary LR, 

lasso LR as well as ridge LR based on the datasets with 

different sample sizes in Penang Island, Malaysia. 

The rest of the paper is organized as follows. Section 2 

provides a detailed description of the methodology used in 

this study, namely, the ordinary LR as well as the lasso and 

ridge LR. The experimental design is displayed in Section 
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3, including the sampling procedure for training and 

validation datasets as well as the testing datasets. The 

results and discussions of the paper are given in Section 4 

followed by a brief conclusion. 

II. METHODOLOGY 

LR model, developed by [14] , is a widely used 

classification rather than a regression algorithm. The 

independent variables T
21 ),...,,( nxxxX can be 

continuous or discrete and one or more, while the 

dependent variable y is dichotomous. The goal of LR is to 

find the best fitting model to describe the relationship 

between the dichotomous dependent variable and a set of 

independent variables X. Let  

)|0(1)|1()( XX  yPyPz .         (1) 

where )|1( XyP and )|0( XyP denote the event 

occurrence and non-occurrence probability given the input 

feature matrix X, which is composed by the input feature xi, 

for i=1, 2,..., n. In this research, they denote the posterior 

probability of landslide occurrence and non-occurrence of a 

pixel data, respectively. The simplest form of the ordinary 

logistic function [2, 15] is given by: 

)1/(1)( zez  ,   (2) 

which is also called a sigmoid function because it is an 

S-shaped curve (see Figure 1).  

 

Figure 1. The LR model 

In Equation (1), z is usually considered as a linear function 

which can be expressed as: 

0
T

22110 ...


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



Xω

nn xxxz
,  (3) 

where 0 is the intercept of the linear model and

nii ,...,2,1,  denote the coefficients of the input variables 

and T
210 ),...,,,( nω . 

Given the training dataset 

)},,(),...,,(),,{( 2211 mm yyyD XXX the working process 

of an LR model in this work is displayed in Figure 2. A 

total of eleven landslide influencing factors, i.e., aspect, 

curvature, geology, soil type, landuse, rainfall, height, 

distance to drainage, distance to fault, distance to road, 

slope, are considered as the input features. The output 

feature is landslide occurrence or non-occurrence after 

being processed by the LR models. 

 

 

Figure 2. The LR algorithm 

A. Ordinary Logistic Regression 

The mathematical expression of LR algorithm for one 

example )( j
x  is shown below: 

)(
0

)( jTjz xω ,           (4) 

)1/(1)(
)()( jzj ez  ,     (5) 

where T
ω denotes the transposition of the variables 

coefficient vector; mjy j ,...,2,1,ˆ )(  denotes the output 

value of the LR model and m denotes the number of 

samples. Based on Equation (5), each )(ˆ jy can be regarded 

as the probability of landslide occurrence. 

The least squared error (LSE) method is a widely accepted 

loss function for linear regression models. For LR models, 

however, LSE is unqualified to be regarded as a loss 

function. Since it will result in a non-convex curve with 

more than one local minimums [16]. Therefore, the cross-

entropy loss function is considered for LR models, which 

can be expressed in Equation (6): 

)]ˆ1ln()1()ˆln([)ˆ,( )()()()()()( jjjjjj yyyyyyL  ,  (6)      

where )( jy and )(ˆ jy denote the true sample label and the 

predicted label, respectively. The cost function for all 

training examples is shown in Equation (7): 


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In order to avoid over-fitting when training models using 

datasets with a large number of input features but relatively 

small sample size, the regularization techniques are of great 

importance. Lasso and ridge LR are considered in this 

study. 

B. Lasso Logistic Regression 

Lasso stands for least absolute shrinkage and selection 

operator, which was originally proposed for linear 

regression models by [17]. It is a widely used variable 

selection and shrinkage technique. Lasso LR can be 

obtained by minimizing the cross entropy cost function 

with an L1 penalized parameter applied to all variable 

coefficients except the intercept. The mathematical 

expression is shown in Equation (8): 


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where C1 denotes the regularization parameter of L1.  

C. Ridge Logistic Regression 
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Ridge regression was proposed by [18] and can be obtained 

by applying an L2 penalized term to the cost function of a 

linear regression model. Compared to ridge regression, 

ridge LR can be obtained by maximizing the likelihood 

function with an L2 penalized term applied to all variable 

coefficients except the intercept. The mathematical 

expression can be shown in Equation (9): 
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where C2 denotes the regularization parameter of L2. 

Compared to L2, the advantage for L1 is that L1 penalized 

parameter is prone to get more sparse resolutions, which 

can reduce the difficulty of prediction for the LR models 

[16]. In this work, learning curve is used to determine the 

optimal C1 and C2 values in lasso and ridge LR, 

respectively. The range of the values is set from 0.0 to 2.0 

and the interval is set to 0.05. Table 1 displays the optimal 

values of C1 and C2.  

Table 1. The optimal C values for Lasso and Ridge LR 

Models 
Penalized 

parameter 

Sample size of lasso and ridge LR 

20000-20000 2000-2000 200-200 

Lasso LR C1 0.05 0.55 0.25 

Ridge LR C2 0.10 0.90 0.05 

D. Performance Measure 

The accuracy values for training, validation and testing 

datasets are considered to evaluate the model’s 

performance. Since LR model’s output is a probability 

value from 0 to 1, a threshold value is needed when 

transforming the probability into a binary label value. The 

selection of the threshold highly affects the results of 

performance measure. Therefore, a more robust evaluation 

measure is needed. Receiver operating characteristic (ROC) 

curve is a proper substitute to accuracy for model 

evaluation.  

ROC curves are two-dimensional graphs depicting the 

performance of the classifiers [19]. The x-axis and y-axis 

denote the false positive rate and true positive rate, 

respectively. The area under the curve (AUC) is a 

commonly used index to compare the model’s performance 

quantitatively.  

III. EXPERIMENTAL DESIGN 

The total number of pixels are 3,004,631, including 20,245 

landslide pixels and 2,984,386 non-landslide pixels. The 

imbalance ratio (IR) of the whole dataset is around 1:150. 

By using random sampling method, three types of datasets 

are selected from landslide (positive) and non-landslide 

(negative) pixels, independently. The total number of 

samples for the three types of datasets with balanced 

sample ratio are 40,000, 4,000 and 400, respectively. Each 

of the three datasets are randomly split into 90% and 10% 

for model training and validation, respectively. In order to 

test the prediction power of the LR models trained using 

dataset with relatively small sample size, the 2,000 samples 

are randomly selected from the 20,000 samples, and the 

200 samples are randomly selected from the 2,000 samples. 

In other words, the models trained using a relatively large 

dataset consider more information than the models trained 

using a relatively small dataset. A testing dataset with 200 

samples, including 100 positive samples and 100 negative 

samples, is selected from the rest of the whole dataset using 

random sampling method. Figure 3 displays the sampling 

procedure. The magnitude of the ellipse is unrelated to the 

number of samples.   

In order to be clearer about the names of datasets and 

models, let us define the ordinary LR models trained and 

validated using dataset with 20,000 negative and 20,000 

negative samples as Ordinary_20000. Similarly, 

LassoLR_2000 and RidgeLR_200 denote the lasso LR 

model trained using 2,000 negative and 2,000 positive 

samples and the ridge LR models trained using 200 

negative and 200 positive samples, respectively.   

During the model testing process, the testing dataset is 

divided into two sub-testing datasets each with 100 positive 

samples and 100 negative samples, respectively. The whole 

dataset can be considered as a special testing dataset to 

some degree, since most of the samples in the dataset are 

unknown to the LR models. 

 

Figure 3. Random sampling procedure 

IV. RESULTS AND DISCUSSIONS 

All the experiments are conducted in Windows 10 

serverwith an Intel Core i5 2.40GHz processor. All the 

models are trained in Python 3.7.0 based mainly on sklearn, 

numpy and pandas libraries. SPSS 20.0 is used for some 

data preparation. ArcGIS is used to produce landslide 

susceptibility maps.Table 2 displays the training, validation 

and testing accuracy values for three types of models 

trained using three different datasets. 

From the results, all the three types of LR models trained 

and validated using the datasets with 40,000 and 4,000 

samples are not over-fitted or under-fitted based on the 

training and validation accuracy values. However, the 

models trained using the dataset with only 400 samples 

show severe under-fitting according to the big difference 

between training and validation accuracy. A probable 

explanation is that the variance of the training dataset (90%) 

is bigger than that of the validation dataset (10%) due to the 

small sample size and uneven split. Although all the 

models are trained and validated using balanced datasets, 

the prediction accuracy values for the dataset with only 

positive samples are always higher than the values for the 

datasets with only negative samples. The reason may be for 

landslide hazard research, the landslides may occur in the 

places without landslide occurrence previously. 
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Table 2. The accuracy values for training, validation and testing datasets 

Sample size Model type 
Accuracy (%) 

Train Validate Test 

(real) 

Test  

(-) 

Test (+) Test 

(average) 

Overall  

20000-20000 

Ordinary 72.15 71.98 69.50 55.00 62.00 58.50 64.22 

Lasso 72.04 72.08 70.00 53.00 67.00 60.00 62.98 

Ridge 72.18 72.23 68.00 52.00 73.00 62.50 62.62 

2000-2000 

Ordinary 72.72 74.25 69.00 52.00 65.00 58.50 64.71 

Lasso 72.61 75.50 68.00 51.00 67.00 58.00 63.55 

Ridge 73.36 74.75 68.50 50.00 73.00 61.50 63.11 

200-200 

Ordinary 72.78 90.00 65.50 56.00 68.00 62.00 66.76 

Lasso 72.78 92.50 64.50 56.00 73.00 64.50 61.70 

Ridge 71.67 92.50 66.00 52.00 74.00 63.00 61.58 

*Test(-) and Test(+) denote the test dataset with the number of 100 negative and positive samples, respectively.
 

 

For the places where landslides occurred, furthermore, it 

may become a landslide-free area in the near future. The 

prediction accuracy values for the testing dataset with 200 

samples should be the arithmetic mean of the two accuracy 

values of the two testing datasets only with one type of 

samples. For example, the value of 58.50% is obtained by 

averaging the two values of 55.00% and 62.00%, as shown 

in the box of Table 2. But the results are not like that. The 

reason for such a phenomenon is that the models trained and 

validated using the training data with balanced sample ratio 

cannot predict the testing data with only one type of 

samples. In ML area, a fundamental assumption is that the 

training and testing samples come from the same 

independent identical distribution (i.i.d.). The big difference 

of samples ratio in training and testing datasets leads to the 

results. Figure 4 displays the ROC curves for all the three 

types of LR models based on three datasets. Table 3 

displays the AUC values for the three types of LR models. 

Based on the AUC values, the group of models trained and 

validated using the dataset with 20,000 samples show the 

best performance than the other two groups. The model 

Ordinary_20000 with the AUC value of 0.783 outperforms 

LassoLR_20000 and RidgeLR_20000. The landslide 

susceptibility map produced by Ordinary_20000 is shown in 

Figure 5. The degree of hazardous for landslide occurrence 

is decreasing from the colour Red to Green to Blue until 

White. The predicted hazardous area mainly locates in the 

middle mountainous area, which is fitting to the real 

landslide occurrence situation to a high degree. 

 
Table 3. The AUC values for the types of LR models 

Model type 
AUC values 

20000-20000 2000-2000 200-200 

Ordinary 0.783 0.780 0.771 

Lasso 0.780 0.778 0.762 

Ridge 0.778 0.775 0.750 

 

 

 

 

 

 

 

 
(a) 

 

 
(b) 

 
(c) 

Figure 4. The ROC curves for different types of LR models trained using 

(a) 20000 (b) 2000 and (c) 200 samples 
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Figure 5. Landslide susceptibility map producedby Ordinary_20000 

V. CONCLUSIONS 

In this work, three types of LR algorithms, namely, 

ordinary, lasso and ridge LR, are applied in landslide 

spatial prediction research in Penang Island, Malaysia. 

Three types of datasets are generated to train and validate 

the LR models. An original testing dataset with 200 

samples is used to test the models. Two sub-testing datasets 

are derived from the original testing dataset, each with 100 

negative and 100 positive samples, respectively. The whole 

dataset is also considered as a testing dataset, since most of 

the samples are new to the trained models. The testing 

accuracy values for sub-testing dataset with 100 positive 

samples are all higher than the dataset with 100 negative 

samples.  

Overall, the lasso and ridge LR models have comparative 

performance compared to the ordinary LR models based on 

the AUC values, which indicates that all the eleven input 

features contribute to the models for the available data in 

this work to some degree. The penalty terms of L1 and L2 

play a negligible role in the LR models. Furthermore, lasso 

LR has a better performance than ridge LR, which may be 

due to the L1 penalized parameter which can be exactly 

equal to zero. 
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