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Abstract:  In this paper, the obesity and tumor model with cancer stem cells has been analyzed. We aim to show that all 

solutions of the model are non-negative and bounded. Next, we find all equilibria of the models. We also investigate the 

conditions for the existence of positive equilibria for the model. Next, the local of the positive equilibrium is determined by the 

linearization method. Finally, we illustrate the numerical results using some advantages of mathematical software to support the 

analytic results and show the effect of some parameters for the model. 

 

Keywords: Obesity, Stem cells, Tumor model, Time delay, Stability Analysis 

I. INTRODUCTION 

A tumor is formed in body due to abnormal cellular growth, 

and it becomes cancer when the tumor is malignant. It is one 

of the most serious world health problems [1]. There are 

many common causes of tumor, such as, smoking and 

tobacco, diet and physical activity, sun and other types of 

radiation, viruses and other infections. Recently, many 

previous works [2 – 6] show that obesity is a risk factor for 

many serious diseases such as type-II-diabetes, 

hypertension, hearth problem, including tumor and cancer. 

Therefore, the relationship between obesity and tumor 

growth is an interested topic for many researchers. 

Observing several experimental studies between cancer and 

obesity, [7, 8] the International Agency for Research on 

Cancer (IARC) has reported linkages between cancer and 

obesity in cases of colorectal cancer, breast cancer in 

postmenopausal women, endometrium cancer, renal cancer, 

and esophagus cancer [9]. In previous work [8 – 10], it has 

been found that obesity and excess weight are two major 

health problems in countries around the world. These 

problems are mostly caused by a sedentary lifestyle and 

excess eating. Obesity occurs when excessive amounts of 

fat cells are stored in the body. It is well known that the fat 

cell population increases rapidly during childhood. In 

adulthood, the fat cell population remains almost constant or 

increases slowly unless there is a dramatic weight gain or 

loss [11]. 

In the tumor, we also find that the cancer stem cell which 

states that malignant tumor cell populations are developed 

and maintained by a population of tumor cells. The cancer 

stem cell act similarly to adult stem cells. These specialized 

cancer cells, known as cancer stem cells, are believed to 

repopulate tumor cell populations. The population of cancer 

stem cells is generally small which makes it harder to detect 

and therefore, harder to eradicate. Because the tumor cell 
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population may be repopulated by cancer stem cells, it is 

important to eliminate both tumor cells and cancer stem 

cells to prevent cancer recurrence [12]. 

In theoretical cancer researches, mathematical modeling is 

one of the more successful methodologies by applying 

experimental data to create mathematical equations with 

describing tumor growth. In 2013, Okwan-Duodu et al. [13] 

studied simulation models to assess the effect of obesity on 

mortality of cancer patients. In 2016, Ku-Carrillo et al. [10] 

assumed that the obesity of an individual is directly 

proportional to the carrying capacity of their body to store 

fat which means that the obesity degree of an individual can 

carrying in the organism which tumor can be occurred, so 

obesity can carry in tumor. 

In 2003, Villasana et al. [14] developed the logistic growth 

function with time delay for studying the effect of drug to 

the tumor cells by tumor-growth model. In 2014, Rihan et 

al. [15] had shown that a time delay between the 

interactions of the immune cells and the tumor cells and the 

growth rate of the immune cells are important for 

developing a suitable response after recognizing the tumor 

cells.  

In 2017, Abernathy et al. [16] presented the system of 

ordinary differential equations with cancer stem cells which 

have increased in tumor cells.  

Table- I: The meaning and unit of parameters for the obesity and stem 

cells in tumor model 
 

Parameter Meaning Unit 

s  A constant rate of migration 

of immune cells into the 
tumor. 

1 1.Density mL day   

  A positive constant 1day  

  A positive constant 1.Density mL  

1d  The natural death rate of the 

immune cells. 

1day  

2d  The natural death rate of the 
tumor cells. 

1day  

1r  The growth rate for the 

cancer cells. 

1day  

2r  The growth rate for the 

normal cells. 

1day  

3r  The growth rate for the 
density of fat cells. 

1day  

4r  The growth rate for the 
density of cancer stem cells. 

1day  

5r  The growth rate for the 

density of tumor cells by 
cancer stem cells. 

1day  

1b  The inverse of the carrying 

capacity for the tumor cells. 
.Density mL  

2b  The inverse of the carrying 

capacity for the normal cells. 
.Density mL  

3b  The inverse of the carrying 
capacity for the density of 

fat. 

.Density mL  

4b  The inverse of the carrying 
capacity for the cancer stem 

cells. 

.Density mL  

5b  The inverse of the carrying 
capacity for the density of 

the tumor cells by cancer 

stem cells. 

.Density mL  

1c  The competition coefficients 1.Density mL day  

between immune cells and 

tumor cells. 

2c  The competition coefficients 

between tumor cells and 

immune cells. 

1.Density mL day  

3c  The competition coefficients 
between tumor cells and 

normal cells. 

1.Density mL day  

4c  The competition coefficients 
between normal cells and 

tumor cells. 

1.Density mL day  

5c  The competition coefficients 
between tumor cells and fat 

cells. 

1.Density mL day  

6c  The competition coefficients 
between immune cells and 

cancer stem cells. 

1.Density mL day  

7c  The competition coefficients 
between cancer stem cells 

and fat cells. 

1.Density mL day  

Note that all variables are assumed to be non-negative and 

allparameters are assumed to be positive. 

In this work, we extend the model interaction between 

tumor cells and obesity represented by the positive 

nonlinear growth term for the immune cells 
( ) ( )

( )

I t T t

T t

  

 

 

 
 

and the competition between immune cells and tumor cells 

1 ( ) ( )c I t T t    with a time delay  We also add 

population of cancer stem cells in the model. Hence, we 

generalized the model for the interaction between tumor and 

obesity with cancer stem cells as 

 

       

   

 

.

4 4 6 7

.

1 1

.

1 1 2 3

2 5 4 5

5

.

2 2 4

( ) ( )(1 ( )) ( ) ( ) ( ) ( ),

( ) ( )
( ) ( ) ( ) ( ),

( )

( ) ( ) 1 ( ) ( ) ( ) ( ) ( )

 1 

( ) ( ) 1

( ( )) (1)

( )

,

C t r C t b C t c I t C t c C t F t

I t T t
I t s c I t T t d I t

T t

T t rT t b T t c I t T t c T t N t

d T t r C t b C t b T t

c T t F t

N t r N t b N t c T

  
 

 

   

 
     

 

   

  



  

 
.

3 3

( ) ( ),

( ) ( ) 1 ( ) ,

t N t

F t r F t b F t 

 

where  is the density of cancer stem cells at time 

is the density of immune cells at time  is the 

density of cancer - tumor cells at time is the density 

of normal cells at time represents the density of fat 

cells at time  and . The parameters of the model (1) 

are in the Table I. 

II. NON-NEGATIVITY AND BOUNDEDNESS OF SOLUTIONS 

In this section, we aim to show that all solutions of the 

model are non-negative and bounded. 

Theorem 1All solutions of the model (1) with any positive 

initial conditions are non-negative and bounded for all 

0t  . 

Proof: If any population becomes negative, then there must 

be one population which is the first population to become 

( ).

( )C t

, ( )t I t , ( )t T t

, ( )t N t

, ( )t F t

t 0 
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zero and the time derivative of the population at the zero 

point must be negative. We prove that this necessary 

condition is not possible for any of the populations. 

First, we assume that C  is the first population becomes 

zero at time 
Ct  with all other populations non-negative. 

Then, from (1), we have 

4 4 6 7( )(1 ( )) ( ) ( ) ( ) ( ) 0.C C C C C C

dC
r C t b C t c I t C t c C t F t

dt
    

 

Hence, ( )C t  is non-negative for all 0t  . Similarly, we 

also show that ( )N t   and ( )F t  are non-negative for all 

0t  . 

Next, we assume that T  is the first populationbecomes 

zero at time 
Tt  with all other populations non-negative. 

Then, from (1), we have 

 

       

   

.

1 1 2 3

2 5 4 5

5

( ) ( ) 1 ( ) ( ) (

( ( ))

0

) ( )  

1 

.

( )T T T T T T

T T T T

T T

T t rT t bT t c I t T t c T t N t

d T t r C t b C t b T t

c T t F t

   

 

 

  

Hence, ( )T t  is non-negative for all 0t  . 

Finally, we assume that I  is the first population to become 

zero at time  
It   with all other population non-negative. 

Then, from(1), we have 

1 ( ) 0,I

dI
s d I t

dt
    

with the condition 
1(t ) / .II s d  

Hence, ( )I t  is non-negative for all 0t  .Then, all 

solutions of the model (1) with any positive initial 

conditions are non-negative for all 0.t   

We next to show that all solutions of (1) are uniformly 

ultimately bounded. From the last equation of (1), it 

provides 

3 3

( )
( )(1 ( ))

dF t
r F t b F t

dt
   

which gives 

3

1
( ) .F t

b
  

We also apply this process and show that the first and forth 

equations of the model (1), give 

2

1
( )  N t

b
 and 4 3 7

4 3 4

( )
r b c

C t
r b b


 . 

Similarly, from the third equation of the model (1), we 

obtain 

1 1 5 4 5

5

( )
( )(1 ( )) ( )( ( ))(1 ( ))

( ) ( ),

dT t
rT t b T t r C t b C t b T t

dt

c T t F t

   



 

2

4 3 7

1 1 5 4 1

4 3 4

5

3

2

1 1 1 1

( )
( )(1 ( )) (1 ( ))

( ),

( ) ( ,)

r b cdT t
rT t b T t r b b T t

dt r b b

c
T t

b

rT t rb T t M

 
    

 



  

 

which gives 

1 1 1

1 1

41
( ) 1 ,

2

r b M
T t

b r

 
   

 
 

where 
2

4 3 7

1 5 4

4 3 4

.
r b c

M r b
r b b

 
  

 
 

Finally, we also show that ( )I t  of the second equation of 

(1) is uniformly bounded by using the generalized 

Gronwall Lemma [17]. From the first equation of the 

model(1), we obtain 

1

1

0

1

( ) ( )
( ) (0)

( )

( ) ( ) .

( (

) )

t
d t

d u

I u T u
I t e I s

T u

c I u T u e du

  

 

 

  
  

 

  


 

Since / ( ) 1T T    and 1 (0,1]d te   , we get 

1 1

( )1 1 1

1

0
1

( )

0
1 1

2

( ) (0) ( ) ,

(0) (0)

.

( ( ) )
t

d

u

t
d t d u

d t d u
t e dd u

s
I t I e I u e du

d

se se
I e I e du

d d

M

  

 






   

   





  

The generalized Gronwall Lemma gives 
2( )I t M  where 

2M  is uniformly bounded, then ( )I t  is uniformly 

bounded.  

III. ANALYSIS OF EQUILIBRIA 

In this section, we derive conditions for the existence of 

equilibrium populations 
* * * * *( , , , , ).C I T N F  From the 

last equation of (1), it is obvious that 
* 0F   or 

31/ .b   We 

also show that 
* 0N   or 

* *

2 4 2 2( ) /N r c T r b   from the 

forth equation of (1). From the first equation of (1), the 

solutions are 
* 0C    and 

* * *

4 6 7 4 4( ) / .C r c I c F r b    We 

can find the solutions of *I  from the second equation of(1), 

the solutions are 
*

1/I s d  when 
* 0T   and 

*
*

* 2 *

1 1 1 1

( )

( ) ( )

s T
I

c T c d T d



  




   
 when 

* 0T  . If 

* 0,F   i.e., no fat inside the tumor. The equilibrium 

points as follows: 

For 
* 0N   and

* 0,C   then the equilibrium points are 

 * *

1 2

1

0, ,0,0,0   and   0, , ,0,0 ,
s

E E I T
d

 
  
 
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where 
*

* 1 2 1

1 1

.
r c I d

T
rb

 
  

For 
* *

2 4 2 2( ) /N r c T r b   and 
* 0,C   then the 

equilibrium points are 
*

* * 2 4

3 4

1 2 2 2

1
0, ,0, ,0   and   0, , , ,0 ,

r c Ts
E E I T

d b r b

   
    
   

 

where 
*

* 2 2 2 2 3 2 2 2 2

1 2 1 2 3 4

( )
.

r b r b c d b c b I
T

r r b b c c

  



 

For 
* 0N   and 

* *

4 6 4 4( ) / ,C r c I r b   then the 

equilibrium point is 
*

* *4 6

5

4 4

, , ,0,0 ,
r c I

E I T
r b

 
  
 

 

where  
* *2

* 5 4 6 4 4

* * *25
1 1 4 2 4 2 4 1 4 4 6 4 4

5

(( ) / )
.

(( ) / )

r r c I r b
T

r
rb b c b I d b rb r c I r b

b




    

 

For 
* *

2 4 2 2( ) /N r c T r b   and 
* *

4 6 4 4( ) / ,C r c I r b   then 

the equilibrium point is 

* *

* *4 6 2 4

6

4 4 2 2

, , , ,0 .
r c I r c T

E I T
r b r b

  
  
 

 

The value of *T  satisfies the quadratic equation 

*2 * * 22 5 2 4

1 4 6 4 4

3 4 1 2 1 2

(( ) / ) 0,
r r b b

T a T r c I r b
c c r r b b

   


 

where 
2

*

*3 4 62 2

1 1 2 2 5 4 5

3 4 1 2 1 2 2 4 4

.
c r c Ir b

a r d c I r b b
c c r r b b b r b

  
 


  
  





 


 

As noted above, 
*

31/F b  is positive value. Repeating the 

steps given above, then the equilibrium points can be 

solved as follows: 

For 
* 0N   and 

* 0,C   then the equilibrium points are 

* *

7 8

1 3 3

1 1
0, ,0,0,   and   0, , ,0, ,

s
E E I T

d b b

   
    
   

 

where 

*

* 1 3 5 3 2 3 2

1 1 3

.
rb c b d b c I

T
rb b

  
  

For 
* *

2 4 2 2( ) /N r c T r b   and 
* 0,C   then the 

equilibrium points are 
*

2 4

9

1 2 2 3

1
0, ,0, , ,

r c Ts
E

d r b b

 
  
 

 

and 
*

* * 2 4

10

2 2 3

1
0, , , , ,

r c T
E I T

r b b

 
  
 

 

where 
*

2 3 3 2 3 2 2 5 2 3 1 2 3 2*

3 3 4 1 2 1 2

.
( )

 
( )r b c b b d b c b b r b b c I

T
b c c r r b b

   



 

For 
* 0N   and 

* *

4 6 7 3 4 4( / ) / ,C r c I c b r b    then the 

equilibrium point is 

* * *7

11 4 6 4 4 3

3

/ , , ,0,1/ ,
c

E r c I r b I T b
b

  
     

  
 

where  
* 2

* 5

* * 25 4 5
1 1 4 2 4 2 4 1 4

5 3

( )
.

( )

r C
T

r b c
rb b d b c b I C rb

b b



    

 

For 
*

* 2 4

2 2

r c T
N

r b


  and 

* *

4 6 7 3 4 4( / ) / ,C r c I c b r b    

then the equilibrium point is 
* *

* *4 6 7 3 2 4

12

4 4 2 2 3

/ 1
, , , , .

r c I c b r c T
E I T

r b r b b

   
  
 

 

The value of *T  satisfies the quadratic equation 
* 2

*2 * 2 5 2 4 6 7 3

2 2

4 4 3 4 1 2 1 2

( / )
0,

( )

r r b r c I c b
T a T

r b c c r r b b

 
  


 

where 

* *23 5
2 2 1 2 2 5 4 5

2 3

2

3 4 1 2 1 2

. 

c c
r b r d c I r b b C

b b
a

c c r r b b

 
     

 



 

In summary, the equilibrium points 
1 3 7, ,E E E  and 

9E , the 

tumor cell populations were zero. These states were 

therefore medically desirable tumor-free states. In the 

equilibrium points 
2 4 5 6 8 10 11, , , , , ,E E E E E E E  and

12 ,E the 

tumor cell populations were nonzero. These were therefore 

endemic equilibrium states. 
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IV. STABILITY OF THE MODEL 

In this section, we study the local stability of the model (1) 

about each equilibria by the linearization method [18]. Let 

( ) ( ( ), ( ), ( ), ( ), ( )) ,TW t C t I t T t N t F t  then the linearized of 

(1) about equilibrium 
* * * * *( , , , , )C I T N F  is given as 

follows 

* *0 0
11 6 7

0 0 0 0
1

* * *( ) ( )
31 2 22 3 5

*0 0 0
4 44

0 0 0 0
55

0 0 0 0 0

* *
* *0 0 0

1 1* * 2( ) ( ),
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

w c C c C

d

w c T w c T c T

c N w

w

T I
c T c I

T T

 

  

 
 
 
 
 

   
 
 
 
 
 

 
 
 

  
   

 
 
 
 
 

W t W t

W t



(1) 

where 

* * *

11 4 4 4 2 7

* *

31 5 4 5

* * * * *2

33 1 1 1 2 3 5 2 5 4 5

* *

44 2 2 2 4

*

55 3 3 3

2 ,

2 (1 ),

2 ,

2 ,

2 .

w r r b C c I c F

w r b C b T

w r rb T c I c N c F d r b b C

w r r b N c T

w r r b F

   

 

      

  

 

 

At all equilibria with 
* 0,F   then the characteristics 

equation of the model (1)are given by 

*

11 6

22 1 23

3 * *

31 2 33 3

*

4 44

0 0

0 0
( ) 0,

0 0

e c C
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It is obvious that one of eigen value is 
3 0,r    which is 

a positive. Hence, the equilibrium 
1 2 3 4 5, , , ,E E E E E  and 

6E  are unstable for 0.   Moreover, we can show that the 

equilibrium 
7E  is unstable for 0   as follows  
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It is obvious that one of eigen value is 
2 0,r    which is 

a positive. Hence, the equilibrium 
7E  is unstable for 

0.   

Next, we investigate local stability of the equilibrium 
8.E  

From (1), the characteristic equation of (1) at 
8E  is 
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The characteristic equation of (2)is given by 
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Therefore, the conditions of stability of non-delay case for 

8E  are given by the following theorem. 

Theorem 2If 
* * 4 3 72
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T I d g g
c c


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8E  of the model (1) is locally 
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Similarity, we also find local stability of the equilibrium 

9.E  From (1), the characteristic equation of (1)at 
9E  is  
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Hence, all eigenvalues of the characteristic of (4) are 
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Then, the conditions of stability of 
9E  are given by the 

following theorem. 

Theorem 3 If 
2 2 2

* 2 3 3 1 2 2
1 3 1 3 2 5 3 1 2

3 3 4 1

( ),
r b c d r b

T rb d b c s c d b d d
b c c d


     

and 
* * 4 3 72

4 3 2

,
2

r b cr
T I

c b c



  then 

9E  of the model (1)is 

locally asymptotically stable for all 0.   

V. NUMERICAL SIMULATION RESULTS 

In this section, we implement mathematical programs of 

Maple software package to simulate numerical results for 

local stability, necessary conditions of behavior of 

bifurcation and effecting some parameters for tumor model 

(1). The parameter values in Table II and the initial 

conditions  

 0 1,C   0 0.52,I   0 0.94,T   0 1.3N   

and  0 1.1,F   which gives the endemic equilibrium 

point is
8 (0,0.505541473,0.9206153173,0,1).E   

 

Fig. I: The numerical simulation of Cancer stem cells, Immune cells, 

Tumor cells, Host cells and Fat cells. 

 

Graphs in Fig. I shows that all numerical solutions for the 

host population classes converge to 
8.E  Those results 

agree with the theoretical results provided in Theorem 2, 

which show that the equilibrium point 
8E  is asymptotically 

stable. 

Next, we provide the numerical simulation of the model 

(1)with the parameter values in Table III and the initial 

conditions  

       0 1, 0 0.52, 0 0.94, 0 1.3C I T N     

and  0 1.1,F   which gives the endemic equilibrium 

point is  

Table- II: The value of parameters for the obesity and stem cells in 

tumor model 

Parameter Values 

used 

Unit Reference 

s  0.22 1 1.Density mL day 
 

[10] 


 0.01 1day

 
[10] 

  0.1 1.Density mL
 

[10] 

1d
 

0.1 1day

 
[10] 

2d
 

0.42 1day

 
Estimated 

1r  
1 1day

 
Estimated 

2r  
0.9 1day

 
[10] 

3r  
0.1 1day

 
Estimated 

4r  
0.01 1day

 
Estimated 

5r  
0.1 1day

 
Estimated 

1b
 

0.8 .Density mL
 

[10] 

2b
 

0.42 .Density mL
 

Estimated 

3b
 

1 .Density mL
 

Estimated 

4b
 

0.5 .Density mL
 

Estimated 

5b
 

0.1 .Density mL
 

Estimated 

1c
 

0.44 1.Density mL day
 

[10] 

2c
 

0.5 1.Density mL day
 

Estimated 

3c
 

0.5 1.Density mL day
 

[10] 

4c
 

0.6 1.Density mL day
 

[10] 

5c
 

0.8 1.Density mL day
 

Estimated 

 9 0,  4.00,  0,  2.39,  1 .E 
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6c
 

1.5 1.Density mL day
 

Estimated 

7c
 

0.01 1.Density mL day
 

Estimated 

 

 

Fig. II The numerical simulation of Cancer stem cells, Immune cells, 
Tumorcells, Host cells and Fat cells. 

Graphs in Fig. II shows that all numerical solutions for the 

host population classes converge to  Those results 

agree with the theoretical results provided in Theorem 3, 

which show that the equilibrium point  is asymptotically 

stable. 

Table- III: The second value of parameters for the obesity and stem 

cells in tumor model  

Parameter Values 

used 

Unit Reference 

s  0.4 1 1.Density mL day   [10] 

  0.01 1day  [10] 

  0.1 1.Density mL  [10] 

1d  0.2 1day  [10] 

2d  0.2 1day  Estimated 

1r  1.5 1day  Estimated 

2r  1 1day  [10] 

3r  1 1day  [10] 

4r  0.79 1day  Estimated 

5r  0.1 1day  Estimated 

1b  0.8 .Density mL  [10] 

2b  0.42 .Density mL  Estimated 

3b  1 .Density mL  Estimated 

4b  0.99 .Density mL  Estimated 

5b  0.1 .Density mL  Estimated 

1c  0.5 1.Density mL day  [10] 

2c  0.5 1.Density mL day  Estimated 

3c  0.5 1.Density mL day  [10] 

4c  0.6 1.Density mL day  [10] 

5c  0.5 1.Density mL day  Estimated 

6c  0.95 1.Density mL day  Estimated 

7c  0.21 1.Density mL day  Estimated 

Finally, we provide the numerical simulations of the model 

(1) with the parameter values in Table IV and the initial 

conditions  

     0 1, 0 0.52, 0 0.94,C I T    0 1.3N   

and  0 1.1,F   which gives the endemic equilibrium 

point is  12 1.45,  0.58,  1.18,  0.69,  1 .E   

All numerical solutions for the host population classes 

converge to  for all time delays . Graphs of numerical 

solutions in Fig. III are decreasingly oscillated to the 

equilibrium point which gives asymptotically stability, 

when 4.2.   For Fig. IV, 4.6   the solutions of cancer 

stem cells, immune cells, tumor cells and normal cells are 

widely oscillated about the equilibrium . 

Moreover, if obese people are tumors, the density of fat 

cells are rapidly decreasing, while the density of tumor 

cells are constantly oscillating and changing any time  

Table- IV: The third value of parameters for the obesity and stem cells in 

tumor model 
Parameter Values used Unit Reference 

s  0.4 1 1.Density mL day   [10] 

  0.01 1day  [10] 

  0.1 1.Density mL  [10] 

1d  0.1 1day  [10] 

2d  0.1 1day  Estimated 

1r  1.5 1day  Estimated 

2r  1 1day  [10] 

3r  1 1day  Estimated 

4r  0.79 1day  Estimated 

5r  0.1 1day  Estimated 

1b  0.8 .Density mL  [10] 

2b  0.42 .Density mL  Estimated 

3b  1 .Density mL  Estimated 

4b  0.99 .Density mL  Estimated 

5b  0.1 .Density mL  Estimated 

1c  0.5 1.Density mL day  [10] 

2c  0.5 1.Density mL day  Estimated 

3c  0.5 1.Density mL day  [10] 

4c  0.6 1.Density mL day  [10] 

5c  0.5 1.Density mL day  Estimated 

6c  0.95 1.Density mL day  Estimated 

7c  0.91 1.Density mL day  Estimated 

 

9.E

9E

12E

12E

.t



COMPUSOFT, An international journal of advanced computer technology, 9(4), April-2020 (Volume-IX, Issue-IV) 

 

3640 

 

 

 

 

 
 

 
 
Fig. III:  The numerical simulation of Immune cells, Tumor cells and Fat 

cells when 0.42  . 

 

 

 
 

 
 

 
 

Fig. IV:  The numerical simulation of Immune cells, Tumor cells and Fat 

cells when 0.46  . 

VI. CONCLUSIONS 

In this paper, we presented an analysis of the obesity and 

tumor model with cancer stem cells with time delay. We 

first show the non-negative and bounded of model with 

time delay for positive values of model parameters. The 

generalized Gronwall Lemma applied for finding the 

bounds of immune cells of model with time delay which is 

uniformly bounded. For stability of equilibrium points, we 

found that equilibrium points
1 2 3 4 5 6,, , ,,E E E E E E and

7E
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of the model with a time delay is always unstable. Next, the 

statement and determining of the conditions for local 

stability of 
8E with zero-time delay is given in Theorem 2. 

Also, the conditions for the local stability of
9E is stated and 

investigated in Theorem 3. In the numerical simulations, 

we used biologically reasonable values of parameters to 

test our analytical results, which the numerical simulations 

converged to the equilibrium point 
8E and 

9E for choices of 

parameter values satisfying the conditions in Theorem 2-3. 

The numerical simulations also showed convergence to 

12E for less time delays  and limit cycle behavior for large 

time delays . It can be concluded that the obesity, cancer 

stem cells and time delay affect the growth of tumors. 
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