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Abstract:  In this paper, we present mathematical model of depression that related hypothalamic-pituitary-adrenal (HPA) axis. 

HPA axis is an endocrine responsible for stress management that effects from changing level of hormones in HPA axis. Stress 

management affects the function of the HPA axis causing abnormal hormone secretion, which results in a tendency to 

depression. Dynamic of depression model is proposed by analysing positive and bounded solutions, existence of equilibria, local 

stability and sensitivity analysis of equilibrium point. Results of sensitivity analysis can determine which parameters have the 

most effect on the behaviour of the system. We also analyse global attractivity for impulsive behaviour of the HPA axis model. 

Moreover, some numerical results of these models may be more inspiring to treat patients more thoroughly and help to diagnose 

specific patients for low level of risk for depression. 
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I. INTRODUCTION 

Feeling down from time to time is a normal part of life, but 

when emotions such as hopelessness and despair take hold 

and just won't go away, you may have depression. More 

than just sadness in response to life's struggles and setbacks, 

depression changes how you think, feel, and function in 

daily activities [1]. Depression is a mental disorder 

characterized fundamentally by depressive mood, loss of 

interest, and enjoyment of the positive aspects of life and 

fatigue, which impoverish the quality of life and generate 

difficulties in the family, work, and social environment of 

those who suffer it. Depression can manifest itself 

regardless of age, gender or socio-economic status. 

More than 350 million people in the world suffer from 

depression, and this can become a serious health problem, 

especially when it is of long duration and moderate to 

severe intensity, and can cause great suffering and disrupt 

work, school, family, economic, and emotional activities, 

among others. However, you experience depression, left 

untreated it can become a serious health condition. In the 

worst case, it can lead to suicide, which is the cause of 

approximately 1 million deaths annually [2].According to 
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the World Health Organization (WHO) 1 in 20 of the 

world's population are currently suffering from the disease 

and patients’ chance to become ill with repeated depression 

50-70%, the cause is that the teenage suicide is higher. 

Some illnesses have a specific medical cause, making 

treatment straightforward, depression is far more 

complicated. In addition, severely different biological, 

psychological and social factors also contribute to the risk 

of depression [1]. Depression is a mental disease diagnosed 

by psychiatrists. Such diagnoses are based on patient 

interviews and symptoms with uncertainties as high as 30% 

as a consequence. In 2011, Vinther et al. [3] studied the 

modeling of the Hypothalamic-Pituitary-Adrenal (HPA) 

axis using an analytical and numerical approach, combined 

with biological knowledge regarding physiological 

mechanisms and parameters. In 2013, Andersen et al. [4] 

developed new HPA models resulting in more accurate by 

taking into account saturation concentration. In 2014, 

Hoeyer et al. [5] have been studying depression which is 

associated with malfunctions in HPA axis, the endocrine 

system of glands and their synthesized hormones. Later in 

2017, Bangsgaard et al. [6] have developed a model of the 

HPA axis by mainly three hormones are CRH, ACTH and 

Cortisol. CRH is secreted in the hypothalamus where it is 

transported to the anterior pituitary then stimulates the 

synthesis of ACTH from the pituitary gland and ACTH 

stimulates the synthesis of the stress hormone cortisol. 

Cortisol has an impact on the whole body and especially 

feeds back by inhibit the secretion of CRH and ACTH from 

the respective glands. In this work, we develop the HPA 

axis model [6] with/without impulse and analyse dynamics 

and behaviors of three hormones as the following diagram. 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 

 

 

Fig. 1. The diagram of depression model 

The HPA axis can be classify three hormones of CRH 1( )x , 

ACTH 2( )x  and cortisol 
3( )x as the following: 

1 1 1
0 1 12

2 3 1

,
(1 ) ( )

dx a x
a C x

dt a x x



  

 
 (1) 

3 12
2 2

4 31
,

a xdx
x

dt a x
 


  (2) 

23
5 2 3 3 ,

dx
a x x

dt
    (3) 

where initial conditions 1 1 2 2(0) 0, (0) 0,x c x c   

3 3(0) 0x c   and all parameters are positive.The 

interpretation of parameter meanings for the model is shown 

in the following Table 1. 

 

 

 

Table-I:The meaning of parameters for depression model 

[6] 

Parameters Meaning Unit 
m  Half saturation constant pg/mL  

0a  Basic level of secretion 

of CRH 
pg/(mL min)×  

1a  Maximal synthesis of 

CRH 
pg/(mL min)×  

2a  Controls the inhibition 

of the synthesis of CRH 

through cortisol 

2(dL/ g)m  

3a  Stimulation of ACTH 

by CRH 

-1min  

4a  Inhibition of the 

synthesis of ACTH by 

cortisol 

dL/ gm  

5a  Stimulation of cortisol 

by ACTH 2

g/dL

min(pg/mL)

m
 

1w  The elimination rates of 

CRH 

-1min  

2w  The elimination rates of 

ACTH 

-1min  

3w  The elimination rates of 

cortisol 

-1min  

C  Circadian rhythm -  

 

II. POSITIVE AND BOUNDED SOLUTIONS OF THE MODEL 

First, we show that the levels of three hormones in the HPA 

axis model are non-negative as following lemma. 

Lemma 1All levels of three hormones of Eqs.(1)-(3)with 

any positive initial conditions are non-negative for all 

0t… . 

Proof:Consider a solution ( )1 2 3( ), ( ), ( )x t x t x t ofEqs.(1)-

(3)with the positive initial conditions. Assuming that there 

exists a 
1 0t > such that 

1 1( ) 0x t = and
1 1( ) / 0dx t dt„ . 

The equation (1)implies that  

1 1
0

( )
0,

dx t
a

dt
= >  

which contradicts with
1 1( ) / 0dx t dt„ , so

1( ) 0x t > for all

0t > . 

Next, the solution of Eq.(3)is gives 

 3 3 32

3 3 5 2
0

( ) (0)   ( ) 0,
t

t t s
x t x e a e x s e ds

w w w- -
= + >ò  

so 3( ) 0x t > for all 0t > . 

Lastly, the solution of Eq.(2), we have 

2 2 21
2 2 3

0
4 3

( )
( ) (0)  

1 ( )

t
t t sx s

x t x e a e e ds
a x s

w w w- -
æ ö÷ç ÷= + ç ÷ç ÷ç +è ø

ò  

So, 
2 ( ) 0x t > for all 0t > . This proof is complete. W 

Lemma 2 All hormone levels in the HPA axis model (1)-(3) 

with any positive initial conditions are bounded. 

Proof: From, Eq.(1), we have 
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therefore 
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so,
1 1( )x t M„ . From Eq.(2), we have 

 

3 12
2 2

4 3

3 1 2 2

( )( )
( ),

1 ( )

( ),

a x tdx t
x t

dt a x t

a M x t„

w

w

= -
+

-

 

Which gives ( )2 3 1 2 2( ) /     , as x t a M M t„ w = ® ¥ .  

Finally, in Eq.(3), it obtains 

 

23
5 2 3 3

2

5 2 3 3

( )
( ( ) ) ( ),

( ).

dx t
a x t x t

dt

a M x t„

w

w

= -

-

 

Hence ( )2

3 5 2 3 3( ) /  as x t a M M t„ w = ® ¥ .  

The proof is complete. W 

 

III. EXISTENCE OF EQUILIBRIUMS 

 
From Eqs. (1)-(3), the system of algebraic equations as 

 

( )

*
*1 1

0 1 1** 2
12 3

*
*3 1

2 2*

4 3

* 2 *

5 2 3 3

0,
( )1 ( )

0,
1

( ) 0,

a x
a C x

xa x

a x
x

a x

a x x

w
m

w

w

+ - =
++

- =
+

- =

 (4) 

can provide the first equilibrium point 
0(0,0,0),E

0( 0)a = and the second equilibrium point
0( 0),a ¹

* * *

1 1 2 3( , , )E x x x , where ( )* * 2

3 5 2 3( ) / 0x a x w= > , the values 

of 
* *

1 2, 0x x >  are in the system of equations, 

 
( )* * 2 *

1 1 1 1 2 2

* * * * 4

2 1 2 1 2 1 2 2 2

( ) 0,

( ) ,( )

A x B C x x

A x B x C x D x E

+ + =

+ + + =
 (5) 

where the constants are 

 

1 3 3 1 2 3

* 2

1 4 5 2 2

2 2 2 * 2

2 1 3 1 3 1 3 1 0 3

2 2 2

2 2 5 1 2 0 2 5 2 5 1

2 2

2 0 2 5 2 0 3

,                  ,

( ) ,

,

,           ,

,           .

A a B

C a a x

A Ca x a

B a a C a a a a a

D a a a E a

w w w

w

w mw w w w w

w m w

m m w

= =

=

= - - +

= - = -

= = -

 

The Newton-Raphson method [7] can be applied to solve
* *

2 3,x x . 

IV. THE BASIC REPRODUCTION NUMBER 

A basic reproductive number
0( )R  is the average ratio 

number for the current levels of hormones as the first stage 

and the level of the hormone at the next time as second 

stage, which is widely used to analyse whether increasing 

or decreasing levels of hormones [8]. We apply the next-

generation method [9] to compute a basic reproductive 

number
0( )R by compartment the HPA axis model as 

1 1

2 1 1 0
2 3 1

3 1
2 2

4 3

2

5 2 3 3

( 1)(

0

0

)

,  .
1

Ca x
x a

a x x
a x

x
a x

a x x

F V

w
m

w

w

é ù
é ùê ú -ê úê ú+ +
ê úê ú
ê úê ú= = - +ê úê ú +ê úê ú
ê úê ú - +ê úê ú ë û

ê úë û

 

Two Jacobian matrices of F  and V  at 
0(0,0,0)E  can 

provide the next generation matrix as 

 

1 1

1

0 0

0 0 0 ,

/

0 0 0

Ca

FV

mw
-

é ù
ê ú
ê ú=
ê ú
ê ú
ë û

 

where all eigenvalues of 
1FV -

 are
1 1 1/ ,Cal mw=

2, 3 0l = . Consequently, the basic reproduction number 

0( )R  is 

 1
0 0

1

,  where   0.
Ca

R a
mw

= =  (6) 

If
0 1R < , i.e. 

1 1Ca mw<  then the hormone cortisol will 

gradually decrease to 0, which means that the depression is 

slowing down. On the other hand, if 
0 1R >  cause more 

depression which affects to a patient. 

 

V. THE LOCAL STABILITY OF THE HPA AXIS MODEL 

The stability is a way of determining behaviour for three 

hormones and some sufficient conditions of local stability. 

Lemma 3 The hormone-free equilibrium 
0(0,0,0)E  of 

HPA axis model Eqs. (1)-(3) is locally asymptotically 

stable if 
0 1R <  and unstable if 

0 1R > . 

Proof:The Jacobian matrix of Eqs. (1)-(3) at 
0(0,0,0)E  is 

obtained by 

 

( )1 1 1

0 3 2

3

0 0

( ) 0 ,

0 0

/Ca

J E a

mw w

w

w

é ù-
ê ú
ê ú= -ê ú
ê ú-ê úë û

 

where the characteristic equation is 

 1
3 2 1( )( )( ) 0. 

a C
l w l w l w

m
+ + - + =  

The necessary condition for local stability is the real parts 

of all eigenvalues must be negative. It is obvious that 

1 3 2 20, 0l w l w= - < = - <  and 
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 ( )1 1
3 1 0 01 0,   1.

Ca
RR

mw
l w

m

-
= = - < <  

So, the hormone-free equilibrium 
0(0,0,0)E is locally 

asymptotically stable if 
0 1R <  and unstable if 

0 1R > . W 

Lemma 4The equilibrium 
* * * *

1 1 2 3( , , ), 0,iE x x x x … 1,2,3i=

in (1)-(3) is locally asymptotically stable, when 
1 2 3d d d>  

which is sufficient conditions of the Routh-Hurwitz 

criterion [10]. 

Proof: The Jacobian matrix of the model at 1E  is 

* * *

2 1 3 1

* *

1 4 3 2 4 1

*

5 2 3

0 2 ( )

( ) ( 1) ,

0 2

D Aa x x x

J E B a x Ba x

a x

m

w

w

é ù- +
ê ú
ê ú= + - -ê ú
ê ú-ê úë û

 

where ( ) ( )* 2 * * * 2

2 3 1 1 2 3 1( ) 1 ( ) ( ) 1D A a x x Ax a xm w= + + - + - ,

( )
2

* 2 * 2

1 2 3 1/ ( ) 1 ( )A a C a x xm= + +  and
* 2

3 4 3/ ( 1)B a a x= + ,  

so the characteristic equation becomes 

 
3 2

1 2 3 0,d d dl l l+ + + =  

and all coefficients are 

1
1 1 2 3 * * 2

2 3 1
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3 4 5 1 2
2 1 2 3 2 3* 2

4 3

1 2 3

*2 * 2
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m
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m
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m w w
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+

+
- >
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* * * * * *

1 2 3 5 1 2 3 4 3 4 1 3
3 * 2 *2 2 * 2
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* * * *

1 3 5 1 2 2 1 3 4

* 2 * 2 2 * 2
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3 4 5 1 1 2
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Since 
1 30, 0d d> > , if 

1 2 3 0d d d- >  which satisfies the 

Routh-Hurwitz criterion, then 
* * *

1 1 2 3( , , )E x x x  is 

asymptotically stable. W 

In numerical simulation for the HPA axis model, the 

parameter values are given in Table 2. 

 

Table-II:The parameter values of depression model [6] 

Parameters Meaning Unit 
m  25.8300 10´  pg/mL  

0a  43.9031 10-´  pg/(mL min)×  

1a  126.8390 10´  pg/(mL min)×  

2a  91.7809 10´  2(dL/ g)m  

3a  42.2803 10´  -1min  

4a  51.7745 10´  dL/ gm  

5a  44.6170 10-´  
2

g/dL

min(pg/mL)

m
 

1w  0.0337  -1min  

2w  0.0205  -1min  

3w  0.0238  -1min  

C  0.07978  -  

 

The numerical results and all parameters in Table 2, the 

equilibrium 
1(8.895,14.218,3.922)E  is local stability by 

Lemma 4 where the values of 
1 0.045 0,d = >

2 0.001 0d = >  and 
7

1 2 3 2.507 10 0.d d d -- = ´ > The 

graphs of solutions are depicted for determining the local 

stability for 0 14400t„ „  (mins) as shown in the 

following graphs. 

 

 
Fig. 2: Graph of local stability for the depression model. 
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VI. SENSITIVITY ANALYSIS OF THE EQUILIBRIUM POINT 

 

A sensitivity analysis is the study of how changing values 

of parameter that effect to some levels of hormones in the 

HPA axis model. The sensitivity index can determine the 

most effective parameters for changing levels of a 

hormone. Define
* * * *

1 2 3{ , , }ix x x xÎ and

0 1 2 3 4 5{ , , , , , , ,jk a a a a a a mÎ 1 2 3, , },  1,2, ,10.jw w w = ¼

The sensitivity index [6] of 
*

ix  with respect to parameters 

jk  is defined by 

 

*
*

*
( , )    ,  1,2,3,  1,2,3, ,10.

j i
i j

i j

k x
SI x k i j

x k

æ ö¶ ÷ç ÷ç= = = ¼÷ç ÷÷ç¶è ø
 

Taking partial derivative for each 
*,  1,2,3ix i =  in the 

system (4)with respect to the parameter 0a , it obtains 

( )( )

*
*1 1

0 1 1* 2 *
0 2 3 1

* ** *

3 3 4 1 31 2
2* * 2

4 1 0 0 4 1 0

**
* 32

5 2 3

0 0

1,
1 ( )

0,
1 (1 )

2 0,

a x
a C x

a a x x

a a a x xx x

a x a a a x a

xx
a x

a a

w
m

w

w

æ ö÷¶ ç ÷ç + - = -÷ç ÷ç ÷¶ + + ÷çè ø

æ ö æ ö æ ö¶¶ ¶÷ ÷ ÷ç ç ç÷ ÷ ÷- - =ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç+ ¶ ¶ + ¶è ø è ø è ø

æ ö æ ö¶¶ ÷ ÷ç ç÷ ÷- =ç ç÷ ÷ç ç÷ ÷ç ç¶ ¶è ø è ø

 

 

 

it obtains the matrix equation 

 

*

1

0

1 *
* * 2

4 3 2 4 1
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5 2 3 *

3

0
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0 2 0

x
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D E
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where 

 

( )

( )( ) ( )

31

2 * 2* 2 * 2
4 32 3 1

* 2 * * * 2

2 3 1 1 2 3

* * *

2 1 3 1

, ,
( 1)( ) 1 ( )

( ) 1 ( ) 1 ,

2 ( ).

aa C
A B

a xa x x

D A a x x Ax a x

E Aa x x x

m

m

m

= =
++ +

= + + - +

= - +

 

The partial derivatives 
*

0/ ,  1, 2,3ix a i¶ ¶ =  can be solve, 

3i = , for exaple the sensitivity index is 

 

( )

*
* 0 3
3 0 *

3 0

2 * 2

0 3 4 5 2 3

( , ) ,

2 ( )
,

a x
SI x a

x a

Ba a a x

M

w w

æ ö¶ ÷ç ÷= ç ÷ç ÷ç¶è ø

+
=

 

where 

( )

3 * * 5 *

2 4 5 1 2 1

2 * 3 * * *

2 5 3 2 2 2 1 1

2 * * *

3 1 4 5 1 2 2 3 2

2 ( ) ( 2 )

( ) 4 ( )

( )(2 ) .

(

)

M ABa a a x x x

Aa a x x Bx x

A Ba a x x x

m

w mw m

w m w w w

= + -

- +

- - +

 

The sensitivity index of 
* *

1 2,x x  and 
*

3x  for each parameter 

can be shown in Table 2 with the parameters in Table 3. 

 

Table-III:Sensitivity indices for the equilibrium point 

 

Parameters *

1x  
*

2x  
*

3x  

m  0.00097 0.00032 0.00064 

0a  0.74092 (3) 0.24697 0.49395 (2) 

1a  -0.74092 (3) -0.24697 -0.49395 (2) 

2a  -0.98790 (1) 0.00403 0.00807 

3a  0.98790 (1) -0.00403 -0.00807 

4a  -0.49395 -0.49798 0.00403 

5a  -0.72979 (4) -0.24326 -0.48653 (3) 

1w  -0.74189 (2) -0.24730 -0.49459 (1) 

2w  0.98790 (1) -0.00403 -0.00807 

3w  0.49395 0.49798 -0.00403 

 

Table 3 shows that the parameters 
3 4, ,a a  and 

2w  are the 

most effective parameters to hormone
1x . For example, if 

4a  and 
2w decrease or 

3a increases, then the hormone 

levels of 
1x decreases rapidly.In the other hand, decreasing 

hormone cortisol 
3x  we have to increasing 

1 2, aw and 

deceasing 
1a for reducing hormone cortisol. 

 

VII. GLOBAL ATTRACTIVITY OF THE HPA AXIS MODEL 

Too much stress that affects from high levels of hormone 

cortisol may cause abnormally high levels of risk for 

depression. In this section, we extend the HPA axis model 

by including impulsive condition in order to controlling 

high levels of risk for depression as 

1 1 1
0 1 12

2 3 1

3 12
2 2

4 3

23
5 2 3 3

1 1

2 2

3 3

,
(1 ) ( )

, ,
1

,

( ) ( ),

( ) ( ), .

( ) (1 ) ( ),

dx a x
a C x

dt a x x

a xdx
x t nT

dt a x

dx
a x x

dt

x t x t

x t x t t nT

x t q x t

w
m

w

w

+

+

+

üïï= + - ïï+ + ïïïïï= - ¹ý
ï+ ïïïïï= - ïïïþ

üï= ïïï= =ý
ïïï= - ïþ

 (7) 

In addition, 
1 2( ), ( )x t x t 

and 
3( )x t  represent the levels 

of hormones CRH, ACTH and cortisol after the 
thn pulse. 

We determine the amount of medication dispensed to 
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patients [0,1)q at each moment of pulsing time ,nT

where 1,2,n  , and T  is the period of impulsive effect, 

into the HPA axis model. Here, some definitions, notations 

are useful for our main results. 

Definition 1(Dini derivative [11]) 

The right upper Dini derivative ( )D f t  of a continuous 

function :f    at t  is 

 
0

( ) ( )
( ) sup .li m

h

f t h f t
D f t

h





 
  

If f is differentiable at t , then ( ) ( ) /D f t df t dt  , where 

( ) /df t dt is the usual derivative at t . 

Definition 2A model is said to be globally attractive [12], 

if for any two solutions 1( )x t and 2 ( )x t , then 

1 2lim ( ) ( ) 0.
t

x t x t


   

Lemma 5(Barbalat's lemma [13]) Let f  be a non-

negative function defined on [0, )  such that f  is 

integrable on [0, )  and uniformly continuous on [0, ) , 

then lim ( ) 0.
t

f t


  

Theorem 1Suppose that there exist constants 

0,   1,2,3i i    such that 0,  0,1, 2jA j   where 

 

 

 

  

(1) (2)

0 1 1 1 1 1

2

2 3 1 1

(1) (2)

2 2 2 3 1

4 3 4 3

2 31 1
1 1 1 2

4 32 3 1

2 2 2 3 5 2

sign ( ) ( )

1 1

(1 )( ) ( )

sign ( ) ( )

1 1
,

1 1

,
11

2 ,

A x t x t a CM

a M M m

x t x t a M n

a M a m

aa C
A

a ma m m

A a M



 




 



  

 

 
   

    

 

 
   

   

 
 







 (8) 

where
1 2,M M  and 

3M  are given in Lemma 2. Then 

solution of Eqs. (1)-(3)is globally attractive. 

Proof: Let  (1) (1) (1)

1 2 3( ), ( ), ( )x t x t x t  and 

 (2) (2) (2)

1 2 3( ), ( ), ( )x t x t x t  be any solutions of the HPA axis 

model in Eqs. (1)-(3). From Lemma 2, without loss of 

generality, we may assume that 
 

( ) ( ) ( )

1 1 1 2 2 2 3 3 3( ) , ( ) , ( ) ,k k km x t M m x t M m x t M„ „ „ „ „ „  
 

for all 0t…  and 1,2k  . We define a function is 

(1) (2)

1 1 1 1( ) ( ) ( )V t x t x t   then the right upper Dini 

derivative of 
1( )V t  along Eq. (1) is given by 

  

 

   

   

(1) (2)

1 1 1 1

(1) (2) (1) (2)

1 1 1 1 1

(1) (2)

1 1 1

(1)

1
1 2

(1) (1)

2 3 1

(2)

1

2
(2) (2)

2 3 1

(1) (2)

1 1 1

( ) ( ) ( ) ,

sign ( ) ( ) ( ) ( ) ,

sign ( ) ( )

( )

1 ( ) ( )

( )

1 ( ) ( )

( ) (

D V t D x t x t

x t x t D x t D x t

x t x t

x t
a C

a x t x t

x t

a x t x t

x t x













 

 

 

  

 

 
 

 
  






 
  



  
 



(1) (2)

1 1 1

(1) (2)

1 1
1 2

1 2 3 1

(1) (2)

1 1 1

) ,

sign ( ) ( )

( ) ( )

( ) (1 )( )

( ( ) ( )) ,

t

x t x t

x t x t
a C

m a M M

x t x t



 





  
   

    

 

„

 

 



   

(1) (2)

(1) (2) 1 1

1 1 1 1

1 1

(2) (2)

1 1

2

1 2 3 1

(1) (2)

1 1 1

(1) (2) (1) (2)1

1 1 1 1 1

1

1 1

1

( ) ( )
sign ( ) ( )

( ) ( )

( ) ( )

( ) (1 )( )

( ( ) ( )) ,

sign ( ) ( ) ( ) ( )
( )

1 1

( ) (1

x t x t
x t x t a C

m m

x t x t

m a M M

x t x t

a C
x t x t x t x t

m

a CM
m


 

 








 
   

  


  

   

 


 



 
 

„



 

2

2 3 1

(1) (2)

1 1 1

(1) (2)

1 1 1 1 1

1

2

2 3 1

(1) (2)1

1 1 1 1

1

)( )

( ( ) ( )) ,

1
sign ( ) ( )

( )

1

(1 )( )

( ) ( ) .
( )

a M M

x t x t

x t x t a CM
m

a M M

a C
x t x t

m










 


 
 
 






 


  

 


   

  
 



   

   

Define
(1) (2)

2 2 2 2( ) | ( ) ( ) |V t x t x t  . The right upper 

Dini derivative along Eq. (2), we have 
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(1) (2)
( ) sign ( ) ( )

2 2 2 2

(1) (2) (2) (2)
( ) ( ) ( ) ( )

1 1 1 1(
3 1 1 1 1

4 3 4 3 4 3 4 3

(1) (2)
( ) ( ) ,

2 2 2

(1) (2)
sign ( ) ( )

2 2 2

(1) (2)3 ( ) ( )
1 11

4 3

D V t x t x t

x t x t x t x t
a

a m a m a m a M

x t x t

x t x t

a
x t x t

a m







    
 

 
 

       
 

   
 

  
 

  
  

„

 



(1) (2)

2 2 2 3 1

4 3

(1) (2)3

2 1 1

4 3 4 3

(1) (2)

2 2 2

1 1

3 1 1 1
4 3 4 3

(1) (2)
( ) ( ) ,

2 2 2

1
sign ( ) ( )

1

1
( ) ( )

1 1

( ) ( ) .

a M
a m a M

x t x t

x t x t a M
a m

a
x t x t

a M a m

x t x t














 
 

   
 


 



  
 



 
 
 
 





 
 
 





„

 

Finally define
(1) (2)

3 3 3 3( ) ( ) ( )V t x t x t  . Then the Dini 

derivative of 
3V  is 

     
 

 

   

 

(1) (2) (1) (2)

3 3 3 3 5 2 2

(1) (2)

3 3 3

(1) (2) (1) (2)

3 3 3 5 2 2

(1) (2) (1) (2)

2 2 3 3 3

(1) (2) (1) (2)

3 3 5 2 2 2

2 2

3

( ) sign ( ) ( ) ( ) ( )

( ) ( ) ,

sign( ( ) ( )) ( ) ( )

( ) ( ) ( ) ( ) ,

sign ( ) ( ) 2 ( )

D V t x t x t a x t x t

x t x t

x t x t a x t x t

x t x t x t x t

x t x t a M x t x











  

 

 







  

 „  

 

 

(1) (2)

3 3 3

(1) (2) (1) (2)

3 5 2 2 2 3 3 3

( )

( ) ( ) ,

2 ( ) ( ) ( ) ( ) .

t

x t x t

a M x t x t x t x t



 

 

  „

Define the Lyapunov function
1 2 3( ) ( ) ( ) ( ),V t V t V t V t    it 

obtains 

 

 

 

(1) (2)

1 1 1 1 1

2

2 3 1 1

(1) (2)

2 2 2 3 1

4 3 4 3

(1) (2)2 31 1
1 1 1 1

1 4 3

(

2 2 3 5 2 2

( ) sign ( ) ( )

1 1

(1 )( ) ( )

sign ( ) ( )

1 1

1 1

( ) ( )
( ) 1

2

D V t x t x t a C M

a M M m

x t x t a M

a M a m

aa C
x t x t

m a m

a M x



 




 



  

  


 
  

 

 
   

   

 
    

  

 
 


 

 

„

 





1) (2)

2

(1) (2)

3 3 3 3

(1) (2)

0 1 1 1

(1) (2) (1) (2)

2 2 2 3 3 3

( ) ( )

( ) ( ) ,

( ) ( )

( ) ( ) ( ) ( ) .

t x t

x t x t

A A x t x t

A x t x t A x t x t

 



 

   

   

For ,   1, 2,t nT n   , we can obtain that 

1 2 3

(1) (2) (1) (2)

1 1 1 2 2 2

(1) (2)

3 3 3

(1) (2) (1) (2)

1 1 1 2 2 2

(1) (2)

3 3 3

(1) (2) (1)

1 1 1 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

| (1 ) ( ) (1 ) ( ) |,

( ) ( )

,

(

V t V t V t V t

x t x t x t x t

x t x t

x t x t x t x t

q x t q x t

x t x t x t

 



 



 

   

   

   

 

  

   

 

   

   

   (2)

2

(1) (2)

3 3 3

1 2 3

) ( )

(1 ) ( ) ( ) ,

( ) ( ) (1 ) ( )    ( ).

x t

q x t x t

V t V t q V t V t



 

  

    

 

Since , 0,1, 2jA j   are defined in Eq.(8) and

3 3 3 0A    . Then we select 0   such that 

0 1 2min{ , , }A A A  . In consequence, we obtain for all 

0t T…  





(1) (2) (1) (2)

1 1 2 2

(1) (2)

3 3

( ) 1 ( ) ( ) ( ) ( )

( ) ( ) ,

  ( ),

D V t x t x t x t x t

x t x t

z t





     

 



„

„

 (9) 

where
(1) (2) (1) (2) (1) (2)

1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ,z t x t x t x t x t x t x t     

so ( )      ( )    ,  0D V t z t N N„ „   . 

Consider 1 2 3min{ , , }     in Eq. (9), then 

(1) (2) (1) (2)

1 1 1 2 2 2

(1) (2)

3 3 3

( ) ( ) ( ) ( ) ( )

( ) ( ) ,

( ),

z t x t x t x t x t

x t x t

V t

  



  

 



„

 (10) 

taking the right upper Dini derivative along Eq.(10), 

we have ( )  ( )    ,D z t D V t N„ „   thus ( )   ( / )    ,D z t N M„    
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and ( )D z t  is bounded. Integrating Eq. (9)from 
0T to 

t , then we have 

 

0

0 ( ), ( ) ) (

t

T

V t z s ds V T  „  

which gives 

 

0 0

0( ) ( ) ( ) ( ),  ( ) 0.

t t

T T

z s ds V t z s ds V T V t   „ „  

Hence, 

 

0 0

( )  or  ( ) .

t t

T T

z s ds z s ds       (11) 

So, ( )z t  is integrableon[0, ) . Since 0,  0,1, 2,3jA j 

and the solutions  (1) (1) (1)

1 2 3( ), ( ), ( )x t x t x t  and 

 (2) (2) (2)

1 2 3( ), ( ), ( )x t x t x t  on [0, ) are bounded by 

Lemma 2. So, 
(1) (2) (1) (2)

1 1 2 2( ) ( ) , ( ) ( )x t x t x t x t  and 

(1) (2)

3 3( ) ( )x t x t are bounded and uniformly continuous 

[14]on[0, ) . By Lemma 5, then 

 

(1) (2)

1 1

(1) (2)

2 2

(1) (2)

3 3

lim ( ) ( ) 0,

lim ( ) ( ) 0,

lim ( ) ( ) 0.

t

t

t

x t x t

x t x t

x t x t







 

 

 

 

Therefore, all solution are globally attractive. W 

The following graphs show the levels of three hormones 

1 2 3( , , )x x x  with two initial conditions (2,18,10),

(60,30,18)  respectively in 5000 minutes. 

 

 

 
Fig. 3. Graphs of hormones 

1 2,x x  and 
3x  respectively 
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Fig. 4. Phase planes of hormones 

1 2( , )x x , 
1 3( , )x x  and 

2 3( , )x x  

 
Fig. 5. Graph 3-D of all three hormones 

 

Finally, we compare numerical results of the model 

between without impulse and impulse behavior, where 

0.01q   and 1T   for [0,5000]t  with the initial 

condition (20,18,2) by using the parameter values in 

Table 2. 

 

 

 
Fig. 6. Graphs of hormones 

1 2,x x  and 
3x  respectively 
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Fig. 7. Phase planes of hormones

1 2( , )x x , 
1 3( , )x x  and 

2 3( , )x x  

 

VIII. CONCLUSION 

In this work, we studied the mathematical HPA axis model 

with/without impulse condition and further analyzed it in 

the case of the HPA axis model in order to be able to 

interpret system behavior over a longer period of time. For 

sensitivity analysis of the equilibrium point, we are able to 

determine which parameters are the most affect to 

hormonal changes in the system. Finally, we investigate 

conditions for global attractivity for impulsive behavior of 

the HPA axis model. The results of sensitivity analysis and 

global attractivity in the HPA axis model can be used for 

treatment and medication to patients precisely. 
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