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Abstract: The main objectives of this works are to present a Chebyshev wavelet method to solve approximately analytical
solutions which it can apply to the beam problem. The analytical solutions of this problem can be written as Chebyshev wavelet
series that can compute the unknown coefficient of Chebyshev wavelet solutions with nonlinear algebraic system. With our
numerical results, the Chebyshev wavelet technique is simple and powerful method for calculating any beam problems. The
validity and accuracy of our method have been shown through analytical results, absolute error and absolute residue error.
Additionally, it is appropriate for solving some fractional order of Caputo fractional in nonlinear time-fractional integro partial
differential equations.
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partial differential equation which generalizes partial

I. INTRODUCTION differential equation for beam application of Woinowsky-

Beam structures are one of the most used elements in
structural engineering and it consists of a core that serves to
support the vertical weight taken into the support base. The
forces that act the beam can produce bending moment and
shear forces along the beam which can cause strains,
defections, and internal stress. The problem of beams can
determine a horizontal structure which has a load point
along the length of the beam, causing vertical shear forces.
The beam is used for resistance against vertical shear
strength and bending moment [1-3].

In this paper, we focus on the initial-boundary value
problems for the nonlinear Caputo time-fractional integro
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Krieger [4]
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0 u(x,t)+éa u(x,t)_ﬁa u(x,t)
ot” ox* ox? )
o%u(x,t) L|6u(x,t)|2
- dx =f (x,t
T -[0 | ox | xH

where the fractional order « € (1,2], the constants o, S

and « are positive, with the initial condition
u(x,0) =0,

and the boundary conditions

()


https://ijact.in/index.php/ijact/issue/view/80

COMPUSOFT, An international journal of advanced computer technology, 9(5), May-2020 (Volume-IX, Issue-V)

uo.H = 62‘2?’” UL =

2

olu(L,t)
o 0 @

Il. PRELIMINARIES

In this section, some definitions of the Caputo fractional
derivative and properties of Chebyshev polynomials will be
introduced.

Definition 1: The Caputo fractional

u(x) e AC"[a,b] is defined by [5]

1 r a6 4
r(n-a)’a (x—7)<™ '

derivative of

Dyu(x) = 4)

where the order e R "and n=[« | which is the smallest
integer greater than or equal to «. The gamma function

I'(z)= J': e't”*dt. Under natural condition on the function

u(x), if =0, then D;u(x)=u(x)and if a—n,then

DI u(x) :%. It is obvious that the Caputo fractional
X

derivative is a linear operator similar to integer order
differential operators and some properties of Caputo
fractional derivatives are as follows [5].

D;C =0, where C is a constant (5)
0, B<|eal,

Dyx” =1 T(B+1) 4. (6)
m X y ﬂ > |Va_|

A. Chebyshev wavelet method

By a definition, Chebyshev wavelets consist of a family of
functions that are coming from dilation and translation of a
Chebyshev function named a mother wavelet, which n as a
dilation parameter and m as translation parameter vary
continuously. The following family of continuous
Chebyshev wavelets [6, 7] is defined on the interval [0,1)

by

— -1 n
T (Kt—2n+1), o<t
von® =17 b st )
0, otherwise,

where k can be determined as any positive integer and
T ()= ETm t), T (t),m=0,12,...,M are the first kind
VA
Chebyshev polynomials which are defined on the interval
[-1,1] and satisfy the following recursive formulas
T(t) =1,
T,(t) =2t
T, @) =2tT ) -T,.,(), m=123,...,

and orthogonal with respect to the weight function
1

12

w(t) =
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B. Operational matrix

Definition 2: The matrices A and B are given by:

a, &, a, b, by, by,
Aol B B g P P2 B
aml am2 amn mxn bpl bp2 bpq pxq

The Kronecker product A® B is the mpxng matrix[8, 9]:

a,B a,B a,,B
AQB < a,B a,B a,,B
a.B a.B --- a B

ml m2 mn

Here are some Kronecker product properties
¢ A®(aB)=a(A®B), where « is ascalar.
¢ (A+B)®C=(A®C)+(B®C).
e A®(B+C)=(A®B)+(A®C).
¢ A®B®C)=(A®B)®C.
e (A®B)(C®D)=AC®BD.

Definition 3: For two mxn matrices A and B,

all a12 aln bll b12 b1n
A= A Ay vt Ay, B— b21 bzz b2n
a., a a b, b b

ml m2 mn ml m2 mn

The Hadamard product [10] Ao B is a matrix of the same
dimension as the operands, with elements given by

a:llbll a12b12 a1nbln
AO B — a21b21 a22b22 aanZn
amlbml amzbmz amnbmn

where some important properties are given as
e AoB=B-oA
e A oB'=(A-B).
e (AoB)(CoD) =AC"oBD' =AD" -BC'.
e Co(A+B)=(CoA)+(CoB).
e  a(AoB)=(aA)oB=A-(aB).

I1l. CHEBYSHEV WAVELETS APPROXIMATION

An arbitrary function of two variables u(x,t) € *(R xR)

defined over [0,2)x[0,D),

Chebyshev wavelets basis as:
u(x,t) =u™(x,t)

2t M1t M

= Z Z Z anmn’m’l//nm (X)l//n'm' (t):

n=1 m=0 n'=1m’'=0

can be approximated by

(®)
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where the Chebyshev wavelets y, () in Eq. (7). In the

other hand, the function u™(x,t) in Eq. (8) can be rewritten

as a finite sum of entries of the spatial matrix
22k72 MZ

uN (X7t) = Z ZQij (X,t),

i=1 j=1
where Q; (x,t) are entries of the Hadamard-Kronecker
product matrix Ao (¥(x)®W(t)) where the matrices

a1010
a:lOZO

©)

& (m-11m-1)

A m-12(M-1)

A= , (10)

a

2k7102k710 a

2L (M -1)2¢ (M -1)

Wi (X) @ (1)
Wy (X) ® (1)

Vim-y (X)®@W¥(t)
Y(X)®Y(t) = V/2<M71)(>:<) ®W(t)

VioOPO vy, (0BYE)
and the 2'xM matrix

Wi () vy ()
Vo () Y ()

Vim-1 )

‘//Q(M -1) ()

¥() = (11)

Vg ) Yoy ) Vi )
The h-order derivative of Chebyshev wavelets matrix is
obtained by (h=1,2,..)
Dh‘/’lo ) Dhl/’n )
Dh‘//zo ) Dh‘//zl ()

Dh‘/’lM 40)

D"¥()= DhWZ:M 40) ’
Dhl//zk—lo () Dhl/IZHl () Dhl//zk—l M -1 ()

and the Caputo fractional order « derivative of Chebyshev

wavelets matrix is given by (L<a <2) in Eq. (6)

Dy () D () D vima ()
DY() = D, l/{zo () D; (/T21 ¢ D, ‘//z:M 1 )

D:Wzkflg () Dgl//zk’h () D: Yoprma ()

IV. CHEBYSHEV WAVELET SOLUTIONS FOR
FPDES

Consider the nonlinear Caputo time-fractional integro
partial differential equation
o“u(x,t) . d'u(x,t)  du(x,t)
1O VR 2
ot OX OX
_Kazu(x,t)J'L|6u(x,t)
x| ax

B
(12)

|2

dx = f(x,t)
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where « € (1,2], with the initial condition

u(x,0) =0, (13)
and the boundary conditions
2 2
u(0,t) = M —u(L,t) = w -0. (14)
OX OX

We assume that the Chebyshev wavelet solution can be
written as
22k72 MZ

INCHEDIPICI (15)
i=1 j=1
where Q; are entries of the matrix
Q=A(Y(X)®¥(t)), (16)

and the unknown coefficient matrix A in Eq. (10) can be
determined and the matrix ‘W(-) in Eq. (11).

The matrix Q can take Caputo fractional
derivative with respectto t as

°Q
=A°(Y(X)®D"Y(t)), 17
e (w0 ®) 17)
and also take derivative order n as
g =A°(D"W()®W¥(t), n=L2ord (18)

OX
Substituting Egs. (17) and (18) into Eq. (12), it obtains the
matrix equation as

Ao(W(X) @D ¥(t))+DoAc(D¥(X)® V(1))
—pD o Ao(D*W(x) @ (t)) - kDo Ao(DP(x)@F(t)) (19)
jOL|Ao(D\y(x)®\y(t))|2dx = F(x,1)D,

where the matrix @ is

0

0 0

= .
00 0 22k-2, 2

The matrices of the initial and boundary conditions in Eqg.
(13) and Eq. (14) are then

Ao(¥(x)®¥(0)) =0, (20)
Ao(P(0)®¥(t)) =0, (21)
Ao(D*¥(0)®¥(t))=0, (22)
A (P(L)®Y()) =0, (23)
A°(D*¥(L)®¥(t)) = 0. (24)

Next, the collocation points of time and space are defined
as

_2i-1 t 21

Som Y o2m]
Picking x=0 and t=0,t,,t;,...,t,,  and substituting into

Eg. (21) we have

i=12,..2"M. (25)
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Ao(¥(0)®W(0))
Ao(F(0)®W(L,))
Ao(‘P(O)@‘P(t3))

0
61
0

As(¥(0)®¥(ty.,))=0.
Picking x=0 and t=0,t,,t,,...,
Eq. (22) we have

tiy, and substituting into

Ao(D*¥(0)®¥(0)) =0
Ao(D*¥(0)®¥(t,))=0
Ao(D*P(0)®¥(t,))=0

Ao(D*W(0)®¥(t,.,))=0.
Picking x=x, and t=0,t,t,....t
into Eqgs. (19) and (20) we have
Ao(¥(x)®¥(0))=0
Ao(W(x,)®DW(L,))
+0DoAc(D*W(x,)®W(L,))
— Do Ao(D*W(x) ®W(L,))

o1y and substituting

—xDoAo(D*W(x) ®W(L,))
[[|Ac(D¥(x) ®W(t,)) dx =  (x, t,),

Ao(P(x)® D“Y(t,))

+0D o Ao( D" (x,)® V(L))

— pDoAo(D*W(x) ® (L))

— kDo Ac(D?W(x) ® (t;))

[[|Ac(D¥(x) ®¥(t,)) dx = f (%, t;)@,

Ao(¥(x)® D ¥(t,.,))
+0D o Ao(DW(x,) ®W(t,,))
—pDo Ao(D V(%) @ (L, ))
—k® o Ao(D*P (%) ® (1))

).

2k1

HAO D¥ (%) ®¥(t., ))\ dx—f(xgt

Picking x = x, where =2'M —2andt =0,t,.t,, ...,
and substituting into Egs. (19) and (20) we have

tzk*1 M
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Ao(P(x,)®¥(0))=0

Ao(¥(x,)®DY(,))
+0D o Ao(D"W(x,)®F(t,))
—pDoAo(DF(x,)®W(L,))
—xDoAo(D*¥(x,)®W(t,))

J.OL|Ao(D‘P(xn)®‘P(t2))|2dx = £(x,,1,),

Ao(W(x,)®D V(L))
+0D o Ao(D"P(x,) ® (L))
- p0oAs(DW(x,)® V(L))
—x®oAo(D¥(x,)® (L))

[[|as(D¥(x) @ w(t)) dx= f(x,.t,),

Ao(W(x,)®D"¥(t,y.,,))
+0D o Ao(DW(x,)®¥(ty,,))
—p® oA (D*W(x,)®W(t,.,))
—kDoAo(D*W(x,)®W(t,.,))

‘Ao (D¥(x,)®¥(t,., ))\ dx = f(x ,t,, ).

,] Zk 1

Picking x=Land t=0,t,,t,,...,
Eq. (24) we have

L and substituting into

Ao(D*¥(L)®¥(0))=0
Ao(D*W(L)®W(,))=0
Ao(DzLP(L)®‘{’(t3)) 0

Ao(D*W(L)®¥(t,.,))=0.

Finally, Pickingx=Landt = O,tz,ts,...,tzk,lM and
substituting into Eq. (23) we have
Ao(¥(L)®¥(0))=0,
Ao(P(L)®¥(t,))=0,
Ao(P(L)®Y(L)) =6,

Ao(P(L)®¥(tys,,))=0.

For the system 2%72 x M ?equations, solving coefficients of
the matrix A must include all initial and boundary
conditions in Egs. (20) — (24) matrices. We next apply
Newton's iterative method and Maple program to calculate
all coefficients of the matrix A.It provides the known

approximate solution u(x,t) in Eg. (9) which is the
analytical solution of the time-fractional integro PDEs for
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application to the beam problem.

V. NUMERICAL RESULTS

In this section, we give some examples to present the
applicability and preciseness of the proposed method. All
numerical computations were operated using the Maple
program.
Example 1: Consider the nonlinear integro partial
differential equation of the beam problem
o%u(x,t) 6“u(x ) d°u(xt)
ot? ox* ox?
82u(x t) jl|6u(x t)|

= f(x,1),

0<x<1 0<t<], W|th the initial condltlon
u(x,0) =0,

and the boundary conditions

82u(0 t)

u(0,t) = —uLt) =

o%u (1, 1))
—5 =0
OX

where f(x,t) =7 sm(;zx)sm(;z‘t)—;z2 sin(zx)sin(zt) +
7° sin(zx)sin(zt)(1— z° cos(xt)® + z°), which  the exact
solution is u(x) =sin(zx)sin(xt).

By applying the Chebyshev wavelet method, the
approximate solution with (k =1,M =8) is given by:

u™ (x,t) = 3.282x10™ +1.482x +0.0004 x* — 2.443x°

+0.019x* +1.145%° +0.114x° —0.425x" +0.106x®

+(5.136x10° X +1.8x10™ ~5.099x10”" X’
+1.206x107° x* —2.382x107 x* —3.486x107° X°
+6.243x10° x° —4.355x10"° X" +1.089x10°x’)
(2t-1)+(-1569x—4.571x10™ - 4.231x10* x*
+2.584%% —0.02x* —1.211x° —0.121x° + 0.449X’
~0.112x°)(8t* -8t +1)+...+(2.119x10° x
~1.799x10° x? —3.097 x10°° x* — 3.483x10°° x*
+2.106x107° x5 —4.178x1075 X® —2.436x107° X’
+6.089x107 x° +1.561x10° ) (327t° ~131t’
+212t° —180224t° +84480t* — 21504t> + 2688t
-128t +1).

The accuracy of our method can be illustrated by the

absolute error |u,., —u" | in Table-1 and the graph that

represents the Chebyshev wavelet solution is depicted in
Figure 1.

Table- I: Absolute errors of numerical result for Example 1.

3681

x=01| 2197x10°
x=02 | 4.269x10°
x=03 | 5544x10°
x=04| 6.299x10°
x=05| 6549x10°
x=06 | 6.299x10°
x=07 | 5543x10°
x=08 | 4.271x10°

x=09 | 2.198x10°

3.321x10°°
5.975x10°°
7.248x10°
7.891x10°°
8.085%x10°
7.892x10°
7.249x10°°
5.976x10°°

3.325x107°

2.202x10°
4.286x10°°
5.572x10°°
6.338x10°°
6.591x10°°
6.338x10°
5.575x10°°
4.287x10°°

2.204x107°®

Figurel Graph of the solution for Example 1.

Example 2: Consider the nonlinear
differential equation of the beam problem

o%u(x,t) a“u(x ) d*u(x.t)

atZ

ox* ox?

62u(x t)J |ou(x, t)|

of ox |

integro partial

dx = xt,

0<x<1 0<t<], Wlththe initial condition

u(x,0) =0,

and the boundary conditions

u(o,t) =

o%u(o, t)
ox?

=uLt)=

)
Y

=0.

We firstly define an absolute residual error given by

Where, the operator Lu=

E, =|Lu - f|,
o%u(x,t) a“u(x ) du(x.t)

atZ

ox* ox?

azu(x t)J' |ou(x, t)I dxand f(x,t) = xt.
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By applying the

Chebyshev  wavelet

method,

Chebyshev wavelet solution can be computed as:

the

u™(x,t) =1.0x10 ™" x+0.008x* —0.012x* +...+0.059x°
+(1.0><10’12 X +0.008x* —0.013x* + 0.068x"

+0.004%° +0.004x° +0.007x" +0.597x°

~5.73x10™) (2t —1)+...+(-1.286x10 **x

+3.7x107% +4.524x10™° x* +7.96x10 7 x°
—-5.07x107"" x* +9.35x107* x* —9.76 x10 " x°

+5.713x10 2 x” —1.406x10 72 x® )(32768t8

—131072t7 +2129t® —1802t° +844t* —215t3
+2688t% —128t +1).

The absolute residual errors are reported in Table-I1

Table-11: Absolute residual errors of numerical result for Example 2.

t=0.2 t=05 t=0.8
x=01| 4.695x10° 1.174x10°  1.878x10°
x=02| 3.864x107 9.668x107  1.547x10°
x=03 | 2.189x107 5.477x107  8.768x10°
x=04 | 2916x107 7.287x107  1.165x10°
x=05| 3.017x10™ 1.06x107" 1.57x107"
x=06 | 6.299x107 7.405x107  1.624x10°
x=07 | 2.268x107 5.662x107  9.056x10”
x=08 | 4.065x107 1.016x10°  4.287x10°®
x=09 | 5.012x10° 1.253x10°  2.005x10°

and the graph of the solution is shown in Fig. 2. (k =1

M =8).
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Figure 2 Graph of the solution for Example 2.

Example 3: Consider the nonlinear integro partial
differential equation

o*u(x,t) . d'u(x.t)  2*u(xt)

ot” oxt ox?
2 2
_26 u(>§,t).[1|au(x,t)| dxe L ’
OX O| OX | X+t+1
0<x<1 0<t <1 wherel< a < 2with the initial condition
u(x,0) =0,

and the boundary conditions
0°u(0,1)) o°u(Lt))
u(0,t) =————*==u(,t)=———==0.
0,1) e (€N9) o
In procedure of Chebyshev wavelet technique, the
Chebyshev wavelet solutions with different kinds of

fractional order « =1.4,1.6,1.8 and 2, respectively can be
calculated as

Ul 4 (x,t) = 2.0x107 x+(6.0x107° x+0.004X —0.008x"
+0.004x* —0.001x° +0.001x°® —0.094x" +0.023x®
- 2.768><10’14)(512t5 —1280t* +1120t° — 400t?

+50t —1) +(4.22x10*° —0.003x" +0.007 x*
—0.004x* +0.097 x° —0.001x° + 0.074X’ —0.018x8)
(2048t° —6144t° + 691t* —358t° +840t* — 72t +1)
(1.0x10* x—0.004x" +0.009x° —0.006 X"

+0.001x° —0.001x°® +0.008x” —0.019x°
~9.97x107™ )(128t4 — 256t +160t? —32t +1)
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u o (x,t) =0.022x* —0.046x° +0.027x* —0.006 x> +0.005x° a=14
~0.003x" +0.008x" +(~3.0x10"*x~0.003x*
+0.006x° —0.003x* +0.002x° —0.004x° +0.003x’
~0.001x° +1.03x10* (2t —1) +6.28x10"™

+(~5.43x10™** —0.003%” +0.007x" —0.005x*
+0.001x" +0.009x° —0.009x” +0.002x° ) 8t*
—~8t+1)+...+(L0x10™ x~0.001x" +0.003x’

—0.001x* +0.003x° —0.08° +0.006x” —0.015x’
—~8.2x107)(32768t° ~131072t" + 212992t°

~1802t° +8440t* — 2154t> + 2688t —128t +1)

ul, g (x,t) =-2.0x10"*x +0.023x* —0.048x° +0.027 x*
—0.006x° +0.007x® —0.005x" +0.001x°
+ (—O.le2 +0.005x* —0.005x* +0.007 x> +0.04x°

~0.004x" +0.001x" +3.9x10™ ) (8t —8t +1)
+(0.004x* —0.008x° +0.006 X" —0.001x° —0.001x°
+0.001x” —0.019%" —2.1x107* ) (32t° - 48t
+18t—1)+...+(-0.05x* +0.009x° —0.003x"
+0.002x° —0.007x° +0.006x” —0.001x°
~7.7x107)(2t-1)-3.046x10™

ul, (x,t) ==2.0x10™ x +(~4.7x10™ - 0.006X* +0.012x’
~0.004x* +0.002x° —0.007x° +0.006x" —0.001x")
(2048t° - 6144t° + 6912t" —3584t° +840t° — 72t +1)
+(5.3x10™ +0.011x* —0.018x° +0.004 x*
~0.003x" +0.017x" —0.014x" +0.003x" ) (81921’
—28672t° +39424t° — 26880t* + 9408t° —1568t>
+98t—1)+...+(1.0x10™ x+4.0x10™

+0.006%% —0.012x° +0.005x* —0.002x® + 0.006°
~0.004x%" + 0.001X8)(512t5 ~1280t* +1120t°

—~400t° +50t —1).

Graphs of the approximate Chebyshev wavelet solutions
for order ¢=14,16,18 and 2 are shown in Fig.3

(k=1,M =8).

3683
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Figure 3 Graphs of the solutions where ¢ = 1.4, 1.6, 1.8 and 2

VI. CONCLUSION

In this paper, the Chebyshev wavelet method is applied to
solve initial-boundary value problems of the Caputo time-
fractional integro-differential partial differential equation
which application for a beam problem. This method is
simple and a good mathematical method for finding
analytical solutions of Caputo time-fractional integro-
differential partial differential equation. The validity,
accuracy and applicability of our Chebyshev wavelet
method have been illustrated through numerical results by
showing the absolute errors between an exact solution and
Chebyshev wavelet solutions in Table-1 and accuracy and
efficiency of our method are reported by the absolute
residual errors in Table-2. Moreover, Chebyshev wavelet
technique is powerful method for solving Caputo time-
fractional nonlinear integro partial differential equations in
some varieties of fractional order « of Caputo fractional
derivative as shown in Example 3.
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