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Abstract:  The main objectives of this works are to present a Chebyshev wavelet method to solve approximately analytical 

solutions which it can apply to the beam problem. The analytical solutions of this problem can be written as Chebyshev wavelet 

series that can compute the unknown coefficient of Chebyshev wavelet solutions with nonlinear algebraic system. With our 

numerical results, the Chebyshev wavelet technique is simple and powerful method for calculating any beam problems. The 

validity and accuracy of our method have been shown through analytical results, absolute error and absolute residue error. 

Additionally, it is appropriate for solving some fractional order of Caputo fractional in nonlinear time-fractional integro partial 

differential equations. 
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I. INTRODUCTION 

Beam structures are one of the most used elements in 
structural engineering and it consists of a core that serves to 
support the vertical weight taken into the support base. The 
forces that act the beam can produce bending moment and 
shear forces along the beam which can cause strains, 
defections, and internal stress. The problem of beams can 
determine a horizontal structure which has a load point 
along the length of the beam, causing vertical shear forces. 
The beam is used for resistance against vertical shear 
strength and bending moment [1–3]. 

In this paper, we focus on the initial-boundary value 
problems for the nonlinear Caputo time-fractional integro 

partial differential equation which generalizes partial 
differential equation for beam application of Woinowsky- 
Krieger [4] 
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where the fractional order (1,2]  , the constants ,ò 

and  are positive, with the initial condition 

  ,0   0,u x   (2) 

and the boundary conditions 
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II. PRELIMINARIES 

In this section, some definitions of the Caputo fractional 
derivative and properties of Chebyshev polynomials will be 
introduced. 
Definition 1: The Caputo fractional derivative of

( ) [ , ]nu x AC a b is defined by [5] 
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where the order R and n      which is the smallest 

integer greater than or equal to .  The gamma function 

1

0
( ) .t zz e t dt


     Under natural condition on the function 

( ),u x  if 0,   then ( ) ( )aD u x u x  and if ,n  then 

( )
( ) .

n

a n

d u x
D u x

dx

   It is obvious that the Caputo fractional 

derivative is a linear operator similar to integer order 

differential operators and some properties of Caputo 

fractional derivatives are as follows [5]. 
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A. Chebyshev wavelet method 

By a definition, Chebyshev wavelets consist of a family of 

functions that are coming from dilation and translation of a 

Chebyshev function named a mother wavelet, which n  as a 

dilation parameter and m  as translation parameter vary 

continuously. The following family of continuous 

Chebyshev wavelets [6, 7] is defined on the interval [0,1)  

by 
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where k  can be determined as any positive integer and 

2
( ) ( ),m mT t T t


 ( ), 0,1,2, ,mT t m M  are the first kind 

Chebyshev polynomials which are defined on the interval 

[ 1,1]  and satisfy the following recursive formulas 
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B. Operational matrix 

Definition 2: The matrices A  and B  are given by: 
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The Kronecker product A B  is the mp nq matrix[8, 9]: 
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Here are some Kronecker product properties 

 ( ) ( ), where is a scalar.A B A B      

 ( ) ( ) ( ).A B C A C B C       

 ( ) ( ) ( ).A B C A B A C       

 ( ) ( ) .A B C A B C      

 ( )( ) .A B C D AC BD     

 

Definition 3: For two m n  matrices A and ,B  
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The Hadamard product [10] A B is a matrix of the same 

dimension as the operands, with elements given by 

 

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

n n

n n

m m m m mn mn

a b a b a b

a b a b a b
A B

a b a b a b

 
 
 
 
 
 






   



 

where some important properties are given as 

 .A B B A   

 ( ) .T T TA B A B   
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 ( ) ( ) ( ).C A B C A C B      

 ( ) ( ) ( ).A B A B A B       

III. CHEBYSHEV WAVELETS APPROXIMATION 

An arbitrary function of two variables 
2( , ) ( )u x t L R R  

defined over [0,1) [0,1),  can be approximated by 

Chebyshev wavelets basis as: 
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where the Chebyshev wavelets 
, ( )n m   in Eq. (7). In the 

other hand, the function ( , )Nu x t  in Eq. (8) can be rewritten 

as a finite sum of entries of the spatial matrix 
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where ( , )ij x t  are entries of the Hadamard-Kronecker 

product matrix  ( ) ( )x t A  where the matrices 
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and the 12k M   matrix 
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The h -order derivative of Chebyshev wavelets matrix is 

obtained by ( 1,2, )h    
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and the Caputo fractional order   derivative of Chebyshev 

wavelets matrix is given by (1 2)   in Eq. (6) 
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IV. CHEBYSHEV WAVELET SOLUTIONS FOR 

FPDES  

Consider the nonlinear Caputo time-fractional integro 

partial differential equation 
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where (1,2],   with the initial condition 

  ,0   0,u x   (13) 

and the boundary conditions 
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We assume that the Chebyshev wavelet solution can be 

written as 
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where
ij  are entries of the matrix  
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and the unknown coefficient matrix A  in Eq. (10) can be 

determined and the matrix ( )   in Eq. (11). 
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where the matrix  is 
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The matrices of the initial and boundary conditions in Eq. 

(13) and Eq. (14) are then 

  ( ) (0) , = x A 0  (20) 

  (0) ( ) , = t A 0  (21) 

  2 (0) ( ) ,D t  A 0  (22) 

  ( ) ( ) , = L t  A 0  (23) 

  2  ( ) ( ) . =D L t  A 0  (24) 

Next, the collocation points of time and space are defined 

as 
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Picking 0x   and 12 3 2
0, , , , k M

t t t t   and substituting into 

Eq. (21) we have 
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Picking x x where
12 2k M   and 12 3 2

0, , , , k M
t t t t  

and substituting into Eqs. (19) and (20) we have 
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Picking x L and 12 3 2
0, , , , k M

t t t t   and substituting into 

Eq. (24) we have 
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Finally, Picking x L and 12 3 2
0, , , , k M

t t t t   and 

substituting into Eq. (23) we have 
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For the system 2 2 22 k M  equations, solving coefficients of 

the matrix A  must include all initial and boundary 

conditions in Eqs. (20) – (24) matrices. We next apply 

Newton's iterative method and Maple program to calculate 

all coefficients of the matrix .A It provides the known 

approximate solution ( , )Nu x t  in Eq. (9) which is the 

analytical solution of the time-fractional integro PDEs for 
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application to the beam problem. 

V. NUMERICAL RESULTS 

In this section, we give some examples to present the 

applicability and preciseness of the proposed method. All 

numerical computations were operated using the Maple 

program. 

Example 1: Consider the nonlinear integro partial 

differential equation of the beam problem 
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By applying the Chebyshev wavelet method, the 

approximate solution with 1, 8)(k M   is given by: 
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The accuracy of our method can be illustrated by the 

absolute error | |N

exactu u  in Table-I and the graph that 

represents the Chebyshev wavelet solution is depicted in 

Figure 1. 
 

Table- I: Absolute errors of numerical result for Example 1. 

 t = 0.2 t = 0.5 t = 0.8 

x = 0.1 62.197 10  
63.321 10  

62.202 10  

x = 0.2 64.269 10  
65.975 10  

64.286 10  

x = 0.3 65.544 10  
67.248 10  

65.572 10  

x = 0.4 66.299 10  
67.891 10  

66.338 10  

x = 0.5 66.549 10  
68.085 10  

66.591 10  

x = 0.6 66.299 10  
67.892 10  

66.338 10  

x = 0.7 65.543 10  
67.249 10  

65.575 10  

x = 0.8 64.271 10  
65.976 10  

64.287 10  

x = 0.9 62.198 10  
63.325 10  

62.204 10  

 
Figure1 Graph of the solution for Example 1. 

Example 2: Consider the nonlinear integro partial 

differential equation of the beam problem 
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By applying the Chebyshev wavelet method, the 

Chebyshev wavelet solution can be computed as: 
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The absolute residual errors are reported in Table-II 

 
Table-II: Absolute residual errors of numerical result for Example 2. 

 

 t = 0.2 t = 0.5 t = 0.8 

x = 0.1 64.695 10  61.174 10  51.878 10  

x = 0.2 73.864 10  79.668 10  61.547 10  

x = 0.3 72.189 10  75.477 10  68.768 10  

x = 0.4 72.916 10  77.287 10  61.165 10  

x = 0.5 103.017 10  101.06 10  101.57 10  

x = 0.6 76.299 10  77.405 10  61.624 10  

x = 0.7 72.268 10  75.662 10  79.056 10  

x = 0.8 74.065 10  61.016 10  64.287 10  

x = 0.9 65.012 10  51.253 10  52.005 10  

 
 

and the graph of the solution is shown in Fig. 2.  1,k 

8 .M   

 

Figure 2 Graph of the solution for Example 2. 

Example 3: Consider the nonlinear integro partial 

differential equation 
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In procedure of Chebyshev wavelet technique, the 

Chebyshev wavelet solutions with different kinds of 

fractional order 1.4,1.6,1.8   and 2,  respectively can be 

calculated as 
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0.004 0.097 0.001 0.074 0.018

Nu x t x x x x

x x x x x

t t t t

t x x

x x x x x



 







     

    

    

     

    

 



 

6 5 4 3 2

12 2 3 4

5 6 7 8

14 4 3 2

2048 6144 691 358 840 72 1

1.0 10 0.004 0.009 0.006

0.001 0.001 0.008 0.019

9.97 10 128 256 160 32 1

t t t t t t

x x x x

x x x x

t t t t
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2 3 4 5 6

1.6

7 8 13 2

3 4 5 6 7

8 14 14

15 2 3 4

( , ) 0.022 0.046 0.027 0.006 0.005

0.003 0.008 3.0 10 0.003

0.006 0.003 0.002 0.004 0.003

0.001 1.03 10 2 1 6.28 10

5.43 10 0.003 0.007 0.005

0

Nu x t x x x x x

x x x x

x x x x x

x t

x x x

 



 



    

     

    

     

     

 

 





5 6 7 8 2

13 2 3

4 5 6 7 8

15 8 7 6

5 4 3 2

.001 0.009 0.009 0.002 8

8 1 1.0 10 0.001 0.003

0.001 0.003 0.08 0.006 0.015

8.2 10 32768 131072 212992

1802 8440 2154 2688 128 1

x x x x t

t x x x

x x x x x

t t t

t t t t t





  

     

    

   

     



 



12 2 3 4

1.8

5 6 7 8

2 3 4 5 6

7 8 15 2

2 3 4 5 6

( , ) 2.0 10 0.023 0.048 0.027

0.006 0.007 0.005 0.001

0.01 0.005 0.005 0.007 0.04

0.004 0.001 3.9 10 8 8 1

0.004 0.008 0.006 0.001 0.001

0.001

Nu x t x x x x

x x x x

x x x x x

x x t t

x x x x x

x









     

   

     

     

    

 

 

 

7 8 14 3 2

2 3 4

5 6 7 8

15 14

0.019 2.1 10 32 48

18 1 0.05 0.009 0.003

0.002 0.007 0.006 0.001

7.7 10 2 1 3.046 10

x t t

t x x x

x x x x

t



 

   

     

   

    





 





12 14 2 3

2

4 5 6 7 8

6 5 4 3 2

14 2 3 4

5 6 7 8 7

( , ) 2.0 10 4.7 10 0.006 0.012

0.004 0.002 0.007 0.006 0.001

2048 6144 6912 3584 840 72 1

5.3 10 0.011 0.018 0.004

0.003 0.017 0.014 0.003 8192

Nu x t x x x

x x x x x

t t t t t t

x x x

x x x x t



 





       

    

     

    

   

 





6 5 4 3 2

12 14

2 3 4 5 6

7 8 5 4 3

2

28672 39424 26880 9408 1568

98 1 1.0 10 4.0 10

0.006 0.012 0.005 0.002 0.006

0.004 0.001 512 1280 1120

400 50 1 .

t t t t t

t x

x x x x x

x x t t t

t t

 

    

     

    

   

  

Graphs of the approximate Chebyshev wavelet solutions 

for order 1.4,  1.6,  1.8   and 2 are shown in Fig.3 

 1, 8 .k M   
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Figure 3 Graphs of the solutions where   1.4, 1.6, 1.8 and 2 

VI. CONCLUSION 

In this paper, the Chebyshev wavelet method is applied to 

solve initial-boundary value problems of the Caputo time-

fractional integro-differential partial differential equation 

which application for a beam problem. This method is 

simple and a good mathematical method for finding 

analytical solutions of Caputo time-fractional integro-

differential partial differential equation.  The validity, 

accuracy and applicability of our Chebyshev wavelet 

method have been illustrated through numerical results by 

showing the absolute errors between an exact solution and 

Chebyshev wavelet solutions in Table-1 and accuracy and 

efficiency of our method are reported by the absolute 

residual errors in Table-2. Moreover, Chebyshev wavelet 

technique is powerful method for solving Caputo time-

fractional nonlinear integro partial differential equations in   

some varieties of fractional order   of Caputo fractional 

derivative as shown in Example 3. 
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