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Abstract: The set of parameters by which the true density function is realizable by a statistical model is a common set of zero
points defined by finite polynomials by applying Hilbert’s basis theorem. We calculate the parameterization of this algebraic set
by considering the elimination ideal of the ideal defined by the finite polynomials. In this paper, we show the calculation results

for recurrence formula by using computer algebra system.
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I. INTRODUCTION

Let the statistical model be a three-layer neural network
with H = 1linput unit, n hidden units, 1 output unit, and let
the activation function be defined by the hyperbolic tangent
and let the true density function be a three-layer neural
network with H, = m hidden units.

We consider the analytic set of parameters by which the
true density function is realizable by the statistical model.

Wy = {w € R*"|p(ylx,w) = q(y, %)}
= {w € R?"|a, tanh(b,x) + **- + a, tanh(b, x)
= a, tanh(b;x) + -+ + a,, tanh(b,,, x)

Let us define d = n + m. Since tanh(x)is an odd function,

let b; be satisfying the condition b; = 0. By using the

Taylor expansion of the activation function, we obtain
gr(ayq, ... an, by, ..., by, a'1, R YR

Z b2k Z @bk,

The defining equatlon is represented as follows:
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i 22k+2(22k+2 _ 1)sz+2x2k+1
2k + 2)! Gk
k=0

where g, is a function of a, ..., a,, by, ... , by, ay, ..., Gy,
by, ... ,b,,, and B,means denotes the Bernoulli’s numbers.
Since the set of functions {x%**1} are linearly independent,
W, is a common zero point defined by infinite
polynomials: Wy:= {w € R?"|g, = g, = - = 0} where
I = (90,91, 92, -, 9x), then it defines a non decreasing
sequence of ideals. In the elimination theory, one of basic
strategy is Elimination Theorem [1].

Theorem 1(Elimination Theorem) Let I < k[xy,...,x,]
be an ideal and let G be a Grobner basis of Iwith respect
to lex order where x; > x, > - > x,. Then, for every
0 <!l <n,thesetG; =G N k[x;41,-..,%,]is @ Grobner
basis of the Ith elimination ideal I;.

For the elucidation of various phenomena, the result of the
calculation of the elimination ideal becomes the key.


https://ijact.in/index.php/ijact/issue/view/80

Il. APPLICATION IN A STATISTICAL MODEL

By using taylor expansion of activation function, the set of
parameters that true density function is realizable by a
statistical model is a common zero points defined by finite
polynomials [2].

Theorem 2 (Hilbert’s basis theorem) For an arbitrary ideal
Iin R[x{,x,,...,x4], the ideal is generated by a finite
polynomials.

Lemma 1: For 4-variable polynomial g, (a, b, c,d), let us
define an ideal I, ={(g0,91,92 - ,9x) - Then this
polynomial defines a nondecreasing sequence of ideals.
There exists ksuch that I; = I.

Proof: Using Mathematica, we input as the following:
fi= 9o —ab —cd;

fo = g1 —ab® — cd?;

f3 = g, — ab® — cd;

GroebnerBasis[{fi, f, fs},{a, b, c,d},
MonomialOrder— > Lexicographic]

The output is Grobnerbasis. We input the following to
calculate the Grobner basis of the ideal eliminated a, c:

GroebnerBasis[{fi, 2, f3},{a, b,c,d},{a,c},
MonomialOrder— > Lexicographic]

Then the output is as follows: b%d?g, — b?g; — d*g, + g,.

Therefore, g, € (go, g1). We input as the follows:

fo=gs—ab’ —cd’;
GroebnerBasis[{fi, f2, f3, fa}, {a, b, c,d},
MonomialOrder —> Lexicographic]

The output is Grobnerbasis. We input the following to
calculate the another Grobnerbasis of the ideal eliminated
a,c:

GroebnerBasis[{fi, f, f3, fa}, {a, b, c,d}, {a,c, g,},
MonomialOrder —> Lexicographic]

Then the output is as follows:
b*d*g, + b*d*gy — b*gy — b*d* g, — d* gy + gs.
Therefore, g; € (go, 91)-
By using Mathematica, similarly, we get: g,, g3 € (9o, 91)-
Then, the following recurrence formula holds:
Gk+1 = g1(b* +d*) — go(b*d** + b**d?)
+ (b*d*) gy
Thus, Yk = 1, it holds as follows: g, € (g¢, 91)- 0

Lemma 2: For 6-variable polynomial g, (a, b, c,d, e, f), let
us define an ideal I, . Then this polynomial defines a
nondecreasing sequence of ideals. There exists k such that
12 = Ik .
Proof: Since Mathematica can’t calculate with 6-
variables, as the first step, we calculate with a
basis of 4-variable polynomials. We input as follows:
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fi = gl0] — gy —eh; f, = g[1] — g, — eh?;

f3 = gl2] + b*d*go — (b* + d*) gy — eh’;

fo= gl3]1+ (b*d* + b*d") g, — (b* + b*d* + d")g,
—eh’;

GroebnerBasis[{fi, f>, f3, f4}, {b,d, e, h},

MonomialOrder —> Lexicographic]

We input the following to calculate the Grobnerbasis of the
ideal eliminated e, g, g1 .

GroebnerBasis|{fy, f2, f3, fa}, {b, d, h}, {e, go, 91},
MonomialOrder— > Lexicographic]

Then the output is as follows:
b?d*h?g[0] — b%d?g[1] — b?h%g[1] — d*h?g[1] +
b*g[2] + d*g[2] + h*g[2] - g[3]

Therefore, g3 € (g0, 91,92) Similarly, by using
Mathematica, the following holds: g4, g5 € (g0, 91, 92)-
Then, it holds the following recurrence formula:
Givz = G2 (b + d* + f25)
_ gl(bdek + beZk + bdeZk + deZk 4+ bZku
+ defZ) + go(bZdeZk + bZdefZ 4+ bdeZfZ)
+ (d*f? + b*f? + b?d?*) g — 2(b*d* ) gy 1.
For vk = 2, it holds as follows: g, € (g9, 91, 92)- U

Definition 1: Let G(d, i)be the sum of all polynomials with

that choose ichosen from by, ..., byand take the product.:
j2 i

G"(1,0) = G"(by, by, ..., b)) = Z

]1=0 l=1
Jk+1
G (ki) = Z G (k—1,0),
Jk=0
d i
G (d,1) = G (by, by, .., by) = Z ﬂbfﬂ.l,

j1=0 I=1

d
G (i,d) = Z G (i—1,1),
j1=0 , ,
G(d,0):=1, G(di)=G(d—-1ii
Lemma 3: For polynomials of 2d-variables
d

Fn(al, ...,ad,bl, '"!bd) = Z akbﬁnﬂ ,

k=1
we consider an ideal I, = (Fy, Fi, F,, ..., F;). Then this
ideal defines a nondecreasing sequence of ideals.: 3ksuch
that I, = I.
Proof: For the above polynomials of 2d -variable, we
show the following recurrence formula:



Fria—1
= Fd_l(bfkbgk 4o g bjk)
— Fy_p(b7b3* + bEb3* ) + Fy_3(bib3b3* + ---)

+ -+ Fo(b#*b3b% -+ b3 + -+ + bib3b? - b3¥)
+ (bfb3 + b3 -+ + bi_1b§)Fiya-3
— 2(bfb3b3 + +IFiyaa + -
+ (—D%(d — D(BFb3b3 - b Fy—y
Let polynomials of 2-variable be f" = f"(a;, b)) =

alblan, then Fn(al, ., Ay, bl, . bd) = Z(ljzl fln.
Next, we show the following recurrence formula:

d
k+d—
2

Z{fd 1(b2k

+b1b )+fd 3(b?bZbZ*
<)+ + fO(bEKb3b2 - b§+
+ b2b3b3 -+ b3¥) + (bib3 + b7b3 +
+ b3 b = 2(bfbEbE + - )fFTE 4
+ (=1D%(d — 1) (bfb3b3 - b},
For polynomials f*, we show that following recurrence
formula holds:
flk+d—1
= 17 (bP* + b3* + -+ bF¥)
—ftd_z(b1b +bEb3* ) + 173 (bf b3 + )
+ -+ f2(b#*b3b% -+ b3 + -+ + bibZb? - bZ¥)
+ (bb% + bEbE -+ bi_ bDf 3
— 2(b?b3b3 + - )ff A .
+ (=1)%(d — 1) (b{b3b3 - bHf .
Let the above first half of the right right-hand side of the
above be as follows:
fiTH (b + b3 + -+ b ) — 172 (b b3* + b b3"
+ fA73(bEb2bEx + ---) +
+ f,°(b#*bZb3 - b} + -+ + b?b3b3 -
d

Z{( D x it l(Zb“G(d i~ Dl o>}

i=1
or G(d,i—1) , we define g;(d,i—1) as follows:
91(d,i = 1):=G(d,i = 1),
We divide ¥, b?*G(d, i =1, into terms which
contain b} *and terms which do not contaln b
ZbZkG(dz—l)lb o= bg(di-1) % Z BG(d, i — Dy o -

j= j=1j#l

K4+ b)) — [0 (bEbFE

")

The above first half of the above satisfies holds as
following:

d d
Z{(—n”l XY BG(d 1)|b,._o}

i=1 j=1

d d
= > (=D x fA7 b g (d,i - 1) + B

j=1,j#l

where B = b**G(d,i — DIy, =o-
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Then we prove the following equations hold:
d

D {0 x i (b g@,i - 1))

i=1

= b+ Y (D X b g, ).

d
(=1t x fa-t b*G(d,i =)= | = 0.
) R
)

First, we prove equation (1). We divide equation (1) into

thefirst term and the other terms:
d

D {0 x gt (b ga,i - 1))

i=1

d
= aleZd—leZk + Z{(_l)Hl x fld—i x (bf"g(d, i — 1))}

i=2
d

= a; b7 'b* + Z(—l)i+1 X fif~'b*g(d, i — 1).

(1)

i=2
We change i to i + 1 in all on terms except the first term:
d—-1

abR41p2k +Z( DI x fA1p2k g(d, D).

Next, we prove equatlon (2).

d
Z{(—l)"“ xff“( > b,-“c(d,i—l)n,:o)}
J

i=1 j=1,#l

d d
= Z {Z {(_1)i+1 x fi-i (bjzk(;(d,i - 1)|bj_0)}}.

j=1j#l \i=1
Then we show the following equation holds:
d

D {0 x £ (56,1 = Dl )} = 0

i=1
We divide the equation into the first term and the other

terms:
d

D {0 (076, 1= Dy )}

i=1

d
= @b B 4 D {1 X ¢ (B i = Dl o)
i= 2
— aleZd—1b]2k +Z( 1)1+l de lekG(d i— 1) |b -0
d 1
— aleZd_1bj2k + Z(_l)l Xﬁd_i_1bj2k6(d, l) |bl-=O'
i=1
3
Then we divide G(d,i)into terms which contain b? and
terms which do not contain b?:
G(d, Dlp;=0 = bt gi(d,i = Dlp;=0 + g1(d, D1y, =0-
Next, we divide the second term into a first term and other
terms.

DD XG0

= —a;bf* b G(d, Dlb,=0
d-1

+ Z(—l)i X ft T bk (blzgz(d' i = Dlp= +ag:(d, i)|bj:o)-

i=2



We divide G(d,i)into terms which contain b?and terms
which do not contain b?.

G(d.1)|b]-:o = big,(d, 0)|b]-:0 + 9.(d, 1)|b]-=0
= b} + g,(d, Dlp;=o,
—a;b? 7B (b? + u(d, 1lp;=0 ) + B (~ 1) X

fE 12 (b gi(d, i = Dl + 9:(d Dlsy0)
(4)
By using equations (3) and (4), then equation (2) becomes
isas follows:
@b} bP* — a,bP? 3h* (bz +9:(d, 1)|bj=0)
d-1

DGRy et (A CHEE b

i=2
+91(d, Dl =0)-
Then, it holds thatf,?==1 x b? = £, and

2d—-1p2k 2d-172k 2d-3 3,2k
abj b] — ab; b] — aib; b, gl(drl)h;j:o
d-1

D1 B (A= Dl o
a1

D (D XA gy (@ Dl o

= bt g(d, Dy <o
d-1

1 B (A= Dl o
=2

i=
d-1

D (D X g (A Dl o
i=2
We change i to
i = 1inEi (D' x 77 b gi(d, D)y, <o,
d—-1

_alszd_3bj2k91(d,1)|,,j:(, + Z(—l)i X fld_ib;Zkgt(dri - 1)|b,:o
=2

d
+ DD g (A i = Dl o

Then allltzerms of the above polynomial except the first
term of above polynomial are equal to equals the second
term and the last term of the above polynomial, and it holds
that g,(d, d — 1)|b].=0 = 0 and
—a;b?* b g,(d, Dlpj=0 + (-1)?

x fi 72 gi(d, Dy =0 + (=D

x fb*g(d,d = D]y, = 0.
Let the above second half of right right-hand side of the
above be as follows:
(bfb3 + bfb3 -+ bi_1bDf/ 4

— 2(b12b22b32 + o )flk+d—4 + .-

+(=1)%(d — 1)(bfb3b5 - b f{

d—1

= D (DX TG i+ 1)
We show tri;\% the following equation holds:
dz_f(_l)Hl X flk+d—i—2b12gl(d, i).
(5)

d-1
Z(_l)Hli X f‘lkerfifZG(d’ i+ 1) —
i=1

3688

We divide equation (5) into the last term and the other
terms:
d—-2

Z(_l)i+1i X flk+d_i_26(d,i + 1)
i=1

+ (-1D4d - DfF 6, d).
We divide G(d,i+ 1) into terms which contain b? and
termswhich do not contain b?:
G(d,i+1)=b?g(d,i)+g,(di+1),
d-2

Z(—l)i“i x fi+42 (b gy(d, D) + gi(d,i + 1))
T (-D¥d - Dffbfg(d,d-1)
d-2

= ) DX g )
i=1
d—2

+ Z(_l)i+ll’ X flk+d_i_zgl(d,i + 1)
i=1

+ (D - DfF bR gi(d,d = 1),
The terms except the last term are as follows:
d—1
Z(_l)Hli X =220 (d, )

i=1
d-2

+ Z(—1)i+1i x ffrd=i=2g.(d,i +1).

i=1
We divide Y95 (—=1)*i x fFH4==2p2 g,(d, i) into the
firstterm and the other terms and we change ito i —

1 in REEEDMix 2 g(d i+ 1)
d-1
(~D?f43b7g,(d, 1) + ) (<D 2 g, (d, )
- ©)
d-1
D D= D).
- )

By using the relation i = 14+ (i—1), equation (6)

becomes is as follows:
d—1

(_1)2 X flk+d_3bl2gl(dr 1) + Z(_l)i-ﬂi X ﬁk+d—i—2b129!(d, i)

=
1% x ff*4 bt g,(d, 1)

-1

L~

D™+ G- DY x [ 2b g, (d, D)

1)2 X flk+d_3blz.gl(dr 1)

+
T

+ (_1)i+1 X flk+d_i_2blzgl (d, l)

i=

d-1
+ Z(_I)HI (i _ 1) X ﬁ!chd—i—ZblZgl (d, i).
i=2
Then the following holds as follows:
d-1
Z(_l)Hl X fzk+d_i_2b12g1(d, l)
i=1

d-1

+ Z(_l)i—l (i _ 1) X ﬁ!chd—i—ZblZgl (d, i)
i=2

N

(8)



By using equations (6), (7) and (8), then equation (5)

becomes as follows:
d-1

D=1 x g (@D
i=1

+ Z(_l)Hl X flk+d—i—2blzgl (d, i)
£

£ D= D X g (A, ).
i=2

Then the following holds:

d-1
D D= ) x b g(d, 1)
i

¥ Z( D= 1) x i g (4 ) = 0.

Thus, the followmg recurrence formula holds:
d-1

abPI b + ) (=1)' x £ Thikg(d,

i=1
d-1

NG R e SPIC
i=1
The following also holds:
d-1

D1 X T b,

i=1
d-1

+ Z( 1)1+1 X fk+d i— lg (d 1) =0.
Therefore, fork >d—1,F, €(Fy,F,Fy, ... ,Fj_1). 0
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