
COMPUSOFT, An international journal of advanced computer technology, 9(5), May-2020 (Volume-IX, Issue-V) 

 

3690 

 

 
Cite This Paper: Kuntida K, S.Koonprasert, Akapak C. Three types of kinetics 

and instability for enzymatic glucose fuel cell models, 9(5), COMPUSOFT, An 

International Journal of Advanced Computer Technology. PP. 3690-3697. 

 

 
This work is licensed under Creative Commons Attribution 4.0 International License. 

 
 

 

THREE TYPES OF KINETICS AND INSTABILITY FOR ENZYMATIC 

GLUCOSE FUEL CELL MODELS 
Kuntida Kawinwit

1
, Sanoe Koonprasert

2,4
, Akapak Charoenloedmongkhon

3,4
 

1
Graduate student in Department of Mathematics, Faculty of Applied Science, King Mongkut's University of 

Technology North Bangkok, Bangkok 10800, Thailand. 
2
Associate Professor in Department of Mathematics, Faculty of Applied Science, King Mongkut's University of 

Technology North Bangkok, Bangkok 10800, Thailand. 
3
Lecturer in Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology 

North Bangkok, Bangkok 10800, Thailand. 
4
A researcher in Centre of Excellence in Mathematic, CHE, Si Ayutthaya Road, Bangkok, Bangkok 10400,  

Thailand kun.kuntitda02@gmail.com
1
, sanoe.k@sci.kmutnb.ac.th

2
, akapak.c@sci.kmutnb.ac.th

3 

 

Abstract:  Mathematical modeling plays an important role in biochemistry having various enzymatic fuel cell problems. 

Enzymes are the basis of life activities and involved in almost all chemical reactions in organisms. The metabolic system of 

many anabolic and catabolic reactions under the catalysis of enzymes, which the study of the chemical reactions that are 

catalyzed by enzymes is called enzyme kinetics. This paper aims to discuss the enzyme kinetics term of the enzymatic glucose 

fuel cells. We apply three types of enzyme kinetics including the Michaelis Menten equation, the Morrison equation (Quadratic 

Velocity Equation) and the multiple substrate binding sites into the models. We analyze the equilibrium points, local stability of 

the models and plot some graphs of the glucose and hydrogen ion concentrations with time across the enzymatic glucose fuel 

cells by the Maple program. 
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I. INTRODUCTION 

In biological chemistry systems, the enzymatic fuel cells 

(EFCs) have emerged as an eco-friendly energy-producing 

technology based on the capacity of naturally available 

redox enzymes to transform a wide diversity of fuels and 

oxidants with high specificity and high-efficiency [1]. 

Glucose is a metabolic intermediate which implicated with 

many of the body's essential processes when coupled to a 

reduction reaction; electrochemical glucose oxidation 

allows generating energy called glucose fuel cells. It enables 

such energy harvesting via chemical mechanisms from 

blood metabolites such as glucose, wherein the electrodes 

modified with naturally occurring glucose and oxygen 

selective enzymes derived from micro-organisms are used 

to oxidize and reduce glucose and oxygen, respectively. 

Enzyme kinetics is the study of the chemical reactions that 

are catalyzed by enzymes. It has been around for a long 

time, as one of the earliest areas where mathematics was 

utilized to understand biological phenomena. The chemical 

reaction between enzyme and glucose is shown in Figure 1 

illustrated in the following diagram. 

 

Figure 1: Schematic diagram of the chemical reaction between enzyme 
and glucose. 

Available online at: https://ijact.in 

Date of  Submission 

Date of  Acceptance 

23/12/2019 

16/03/2020 

Date of  Publication 31/05/2020 

Page numbers 3690-3697 (8 Pages) 

ISSN:2320-0790 

mailto:kun.kuntitda02@gmail.com1
mailto:sanoe.k@sci.kmutnb.ac.th2
https://ijact.in/index.php/ijact/issue/view/80


COMPUSOFT, An international journal of advanced computer technology, 9(5), May-2020 (Volume-IX, Issue-V) 

 

3691 

 

 In Figure 1, the Michaelis Menten equation [5] which 

is one of the best-known model of enzyme kinetics with the 

reaction rate are 

[ ]
( ) ,

[ ]

max
G

G

m G

V C
f C

K C



(1) 

where ( )Gf C is reaction velocity to glucose 

concentration, GC is concentration of glucose in the 

enzyme layer, [ ]max cat TV K E is the maximum velocity 

achieved by the system at maximum (saturating) glucose 

concentrations, mK is Michaelis Menten constant.  On the 

other hand, Schematic diagram provides the Morrison 

equation (Quadratic Velocity equation) [6] with the reaction 

rate as: 

2( [ ]) ( [ ]) 4[ ][ ]
( ) ,

2[ ]

G G G

maxG

a C a C E C
f C V

E

   
 (2) 

where ,[ ] ma E K   E is given by [ ]TT E whenT is the 

thickness of the enzyme layer.  

Moreover, the reaction of multiple substrate binding 

sites [7] can be determined by Schematic diagram in Figure 

2. with the reaction rate ( )Gf C as: 

 

Figure 2: Schematic diagram of the multiple substrate binding sites. 
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where 1 1[ ],max cat TV K E 2 2[ ],max cat TV K E  

1
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EC C
 1catK and 2catK are 

constants [7,8].The enzymatic glucose fuel cells use 

glucose as a fuel to produce electrical energy and enzymes 

as a biocatalyst to convert chemical energy into electrical 

energy [2,3]. The anodic reaction is given by the following 

reaction [9,10] and the cathodic reaction is given by the 

reaction 

6 12 6 2 6 12 7C H O H O C H O 2e 2H     (4) 

2 2

1
O 2H 2e H O

2

    (5) 

 Many researchers are interested in the performance of 

glucose fuel cells. Scott Barton [11] has looked at the 

various types of models that can be used to describe 

enzymatic glucose fuel cells. Debika [12] has attempted to 

a model batch type direct glucose cells by considering 

activation, ohmic and concentration over potentials. 

Rajendran [13] had developed an approximate analytical 

solution for nonlinear diffusion equations in a mono 

enzymatic biosensor involving Michaelis Menten kinetics. 

Malinidevi [14] had developed a model to study the 

reaction and diffusion of enzymes immobilized in an 

artificial membrane. 

II. MATHEMATICAL MODEL 

The model is assumed as the transport of glucose by 

diffusion. It is one entity instead of modeling individual 

components of a cell and one-dimensional transport of 

hydrogen ion across the fuel cell. The glucose is sent in 

from the anode to the cathode. The conversion of glucose 

to hydrogen ion occurs across the enzyme layer that 

describes a schematic diagram in Figure 3. 

 

Figure 3: Schematic diagram of an enzymatic glucose fuel  

cell. 

 The rate of hydrogen ion can be determined by three 

reaction rates ( ( ))Gf C are the Michaelis Menten equation, 

the Morrison equation and the multiple substrate binding 

sites. Owing to the reaction of enzymatic glucose fuel cells, 

the transport equation can explain the concentration of 

glucose ( )GC is the following: 

2

2
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the initial-boundary conditions are 
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 The hydrogen ion concentration ( )
H

C  satisfies the 

transport equation for hydrogen ion as the following: 

2 *

2

2 ( ), 0 ,

H H H

H H

H

C C Cv
D yD

t x l x
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the initial-boundary conditions are 
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Table 1: Positive parameters for the transports of glucose and hydrogen 

ion concentrations 

 

 In this paper, the glucose and hydrogen ion 

concentrations that occur in the enzymatic glucose fuel 

cells can illustrate as the system of partial differential 

equations in Eqs.(6)and (8) with three types of reaction 

rates: the Michaelis Menten equation, the Morrison 

equation, and the multiple substrate binding sites. We 

develop symbolic computations in Maple program for 

computing an equilibrium point, Jacobian matrix and eigen 

values. Moreover, numerical results for glucose and 

hydrogen ion concentrations are illustrated by finite 

difference methods. 

Case 1: The Michaelis Menten equation 

Due to the Michaelis Menten equation in Eq. (1) and 

the transport equations of glucose concentration ( )GC u

and hydrogen concentration ( )
H

C v  satisfy the system 

of partial differential equations are given by 

2
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(10) 

Where 0 x L   and 0t   with the initial-boundary 

conditions Eqs. (7),(9). Firstly, we analyze the equilibrium 

point
* *( , )u v  of Eq. (10) by calculating the values of 

* *,u v  in the following system  

*
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

 

so that, the equilibrium point is
* * *

0 ( , ) (0, )E u v v when

*v  is any positive. Next, we consider the local stability at

0E by calculating the Jacobian matrix of Eq. (10) at 0E  
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The characteristic equation is 
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The eigen values are
1 2

[ ]
0, 0,cat

m

K E

K
 


   thus the 

equilibrium point 0E is locally stable. We use the 

parameters values in Table 2 to compute the numerical 

results of glucose and hydrogen ion concentrationswith the 

Michaelis Menten. 
 

Table 2: Value of Parameters (estimation) 

 
Symbols Parameters Units 

cGD  113.6 10  2 1m s  

H
D 

 94.5 10  2 1m s  

[ ]E  73.645 10  2mol m  

catK  30.8 10  1s  

mK  38  3mol m  

*V  
0.1            V 

L  5  m  

y  2   

1maxV  0.5  2 1mol m s    

2maxV  0.5  2 1mol m s    

1DK  
73.645 10  2mol m  

2DK  
77.290 10  2mol m  

 

The numerical results of the system Eq. (10) with 

parameter values in Table 2 can be computed by finite 

difference method. The graphical results of the glucose and 

Symbols Parameters 

GC  Concentration of glucose   

H
C 

 Concentration of hydrogen ion 

cGD  Diffusion coefficient of glucose 

H
D 

 Diffusion coefficient of hydrogen ion 

[ ]E  Enzyme concentration at enzyme layer 

[ ]TE  Total enzyme concentration 

T  Thickness of the enzyme layer 

catK  Kinetic enzyme reaction rate constant for 

glucose oxidation 

mK  Michaelis Menten constant 

V  Dimensional voltage drop across the cell 

*V  
Dimensionless voltage drop across the cell 

L  Distance between anode and cathode 

y  Stoichiometric coefficient 

x  Coordinate direction normal to the anode (m) 

t  Time (min) 
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hydrogen ion concentrations with satisfy the initial 

boundary conditions Eqs. (7),(9) are shown in Figures 4-7. 

 

 

 

 

 

 

 

Figure 4: Graph of glucose concentration with the Michaelis Menten 

equation at 0 5, 0 20.x t     

 

Figure 5: Levels of glucose concentration with the Michaelis Menten 

equation, 0 5, 1,5,10,20.x t    

Figures 4 and 5, the glucose concentration with the 

Michaelis Menten decreases along with distance ( )x and 

time ( )t . Initially, glucose enters full in the cells (anode), 

therefore, the domain is held at constant concentration of 

1 
3mol m at 0.t  Over time the glucose concentration 

decreases exponential decay with 1,5,10,20,t 

respectively. 

 

Figure 6: Graph of hydrogen ion concentration with the Michaelis Menten 

equation at 0 5, 0 20.x t     

 

 

Figure 7: Levels of hydrogen ion concentration with the Michaelis Menten 

equation 0 5, 10,20,30,40.x t    

 Figures 6 and 7 show that the hydrogen ion 

concentration rapidly increases at the beginning of time 

( ).t After that, it slowly increases and tends to the
* 0,v   

which is the equilibrium point. 

Case 2: The Morrison equation (Quadratic velocity 

equation) 

 The second model with the Morrison equation in Eq. 

(2) of glucose and hydrogen ion concentrations are given 

by 

 

2
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(11) 

where 0 ,x L  and 0t  with the initial-boundary 

conditions (7),(9). The equilibrium point can be calculated 

from the system 

* * 2 *

* * 2 *

( ) ( ) 4[ ]
0,

2

( ) ( ) 4[ ] 0.

cat
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a u a u E u
K

K a u a u E u
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  



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 It's result is the same equilibrium [15] point as the 

previous model,
* * *

1( , ) (0, )E u v v when
*v is positive. 

Calculating the Jacobian matrix of Eq. (11)at 1E is 

*

1

(0, )
1

0
,

2 0v

d
J

d

 
  

 

 

Where, 
1

[ ]

[ ]

cat

m

K E
d

K E




which gives  1 0,d   and eigen 

values,
1 2 10, 0,d     thus the equilibrium point 1E is 

local stability. 

 From Eq. (11), by finite difference method, it obtains 

the numerical results with including parameter values in 
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Table 2 and satisfies the initial boundary conditions 

Eqs.(7),(9)as following in Figures 8-11. 

 

Figure 8: Graph of glucose concentration with the Morrison equation 

tends to equilibrium point *( 0).u   

 

Figure 9: Levels of glucose concentration with the Morrison equation,

0 5, 1,5,10,20.x t    

 Figure 9 shows that when 1,5,10,20,t  the glucose 

concentration decreases exponential decay entered to 

steady state
*( 0).u   

 

Figure 10: Graph of hydrogen ion concentration with the Morrison 

equation at 0 5, 0 20.x t     

 

Figure 11 : Levelsof hydrogen ion concentration with the Morrison 

equation, 0 5, 10,20,30,40.x t    

 Figures10 and 11 shows that the hydrogen ion 

concentration increases across the cells near the cathode

( 5)x  and slowly increases to the equilibrium point

*, .v t   

Case 3:  The multiple substrate binding sites 

 The third model with the multiple substrate binding 

sites in Eq.(3) of glucose and hydrogen ion concentrations 

are given by 
2

1 22

1 1 2

22

1 1 2
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2

1 2

1 1 2

2

1 1 2
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
(12) 

where 0 x L  and 0t  with the initial-boundary 

conditions Eqs. (7),(9).The equilibrium point can be 

calculated from the system 

* *2

1 2

1 1 2
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* *2
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 The equilibrium points are
* * *

2 ( , ) (0, )E u v v and 

* * *

3 2( , ) ( , )E u v d v when 2 1
2

2

0D max

max

K V
d

V


  and

*v

is positive. As 2d is negative, we can ignore the equilibrium
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3E . By Analyzing the Jacobian matrix of Eq. (12) at
2E is 

computed by 

*
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The characteristic equation is 
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K
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The eigen values are 1
1 2

1

0, 0,max

D

V

K
     thus the 

equilibrium point 2E is locally stable. The numerical results 

using finite difference methods and satisfy the parameter 

values in Table 2 with the initial boundary conditions Eqs. 

(7),(9) can be shown as the following Figures 12-15. 

 

Figure 12: Graph of glucose concentration with the multiple substrate 

binding sites at 0 5, 0 20.x t     

 

Figure 13: Levels of glucose concentration with the multiple substrate 

binding sites, 0 5, 1,3,5,10.x t    

 Figures 12, 13 shows that the glucose concentration 

when across the cells almost disappear entered to steady 

state
*( 0)u  in the short period. 

 

 

Figure 14: Graph of hydrogen ion concentration with the multiple 

substrate binding sites at 0 5, 0 20.x t     

 

Figure 15: Levels of hydrogen ion concentration with the multiple 

substrate binding sites, 0 5, 3,5,7,15.x t    

 Figures 14, 15 show the hydrogen ion concentration 

with the multiple substrate binding sites along with the time

( )t and distance (x). It is similar to before two cases of the 

reaction rate. It approaches the equilibrium point
*( 0).v   

III. COMPARRISON OF NUMERICAL RESULTS 

In this section, we compare the glucose and hydrogen 

ion concentrations with three types of reaction rate for 

enzyme kinetics: the Michaelis Menten equation, the 

Morrison equation (Quadratic velocity equation) and the 

multiple substrate binding sites. 

 

(a) 
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(b) 

Figure 16(a) & (b): Graphs of glucose concentration with three types 

reaction rates at 10,20.t   

Figure 16, the numerical results shows that the 

multiple substrate binding sites (reaction rate) are the most 

effective reducing the glucose concentration which 

approach to zero *( 0)u  in short period. The graphical 

results show that at 10t   and 20,t   the glucose 

concentration is similarly decreasing, the efficiency of 

decreasing glucose concentration depends on the multiple 

substrate binding sites, the Michaelis Menten equation, and 

the Morrison equation (Quadratic velocity equation), 

respectively. When t increases, the glucose concentration 

decreases faster. 

 

 

Figure 17: Graphs of hydrogen ion concentration with three types reaction 

rates at 10,20.t   

Figure 17, the most efficient of the reaction rates for 

increasing the hydrogen ion concentration is the multiple 

substrate binding sites for a very short period. The reaction 

rates of the Michaelis Menten equation and the Morrison 

equation (Quadratic velocity equation) increase at the same 

level. When time ( )t getting large, the multiple substrate 

binding sites are gradually steady, but the Morrison 

equation (Quadratic velocity equation) and the Michaelis 

Menten equation still increase eventually. 

IV. CONCLUSION 

The mathematical model is developed to study the 

enzymatic glucose fuel cells by applying three types of 

enzyme kinetics including the Michaelis Menten equation, 

the Morrison equation (Quadratic Velocity Equation) and 

the multiple substrate binding sites. In numerical results, it 

is obvious that the glucose concentration decreases across 

the cells tend to steady-state
* 0.u  By the reaction rate of 

the multiple substrate binding sites, it causes the 

concentration of glucose to rapidly decrease quicker than 

the Morrison equation and the Michaelis Menten equation, 

but the hydrogen ion concentration increases. The most 

efficient reaction rates for increasing the hydrogen ion 

concentration is the multiple substrate binding sites for a 

very short period and tend to nonzero steady state. 
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