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Abstract:  This paper is to present an interactive binary segmentation approach on a 3D duo-spheres‎. ‎Our proposed approach 

has successfully partitioned the 3D mesh into two disjoint spheres‎. ‎Six weight functions are added as soft constraints‎, ‎together 

with the proposed max-flow min-cut to find the globally optimal binary segmentation‎. ‎Some experimental results are included to 

demonstrate the effectiveness of our proposed binary segmentation approach‎. 
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I. INTRODUCTION 

Since a plain 3D mesh consists of only a set of simple 

primitives (vertices, edges and faces), the direct 

interpretation of 3D mesh by computer can be challenging. 

Hence, the exploitation of high-level semantics by dividing 

the 3D mesh into more manageable and corresponding 

segments for further analysis is required. It serves as a vital 

cornerstone in the pre-processing stage for various 

application such as 3D mesh unfolding [1], 3D printing [2-

4], surveillance system, skeleton extraction [5,6], morphing 

[7,8], 3D model composition [9,10] etc. Additionally, the 

performance and quality of the segmentation are strongly 

dependent on the context in which it will be used. 

In this paper, we proposed a binary segmentation approach 

for a 3D mesh in a strictly controlled setting, whereby it is 

composed of primitive geometric shapes: the spheres 

(details can be found in Table 1). The cutting edge for the 

tested 3D mesh is not obvious. Thus, it can be used to test 

the robustness of our proposed approach. 

Generally, there are two significant phases in 3D mesh 

segmentation: the soft constraints definition and the 

partition process with hard constraints imposed by user. We 

have defined our own soft constraints on every edge based 

upon reciprocation on the existing cost functions extracted 

from 3D mesh simplification [14, 15]. Without soft 

constraints definition, a 3D mesh is just a collection of 

primitive structure without useful information for deciding 

which elements belong to the same segment. 

The reciprocation is aimed to magnify the weightage of the 

edges of the 3D mesh in order to incorporate with the 

improved max-flow min-cut algorithm [17] during the 

partition process. Max-flow min-cut is one of the famous 

algorithm in combinatorial optimization by finding the 

largest amount of flow supported on every edge starting 

from the source, s to the sink, 𝑡. The saturated edges 

become the cutting edges of the 3D mesh, which partition 

the mesh into two disjoint parts {𝑆, 𝑇}. 

Overall, there are four stages in our implementation [18]: i) 

3D mesh construction using the Korea Mathematical 

Methods for Curves and Surfaces (KMMCS) application 

[19], ii) Soft constraints definition, iii) Partition process 

with hard constraints and iv) The segmented 3D mesh. 

The remainder of this paper proceeds as follows: Section 2 

describes the existing and our newly formulated weight 

functions as the soft constraints definition. Then, the 

proposed partition algorithm with hard constraints is 

presented in Section 3. Section 4 demonstrated and 

discussed the results and performance. The conclusion and 

potential improvements of the proposed approach are 

described in Section 5. 

 

Available online at: https://ijact.in 

Date of  Submission 

Date of  Acceptance 

16/06/2020 

22/07/2020 

Date of  Publication 01/08/2020 

Page numbers 3768-3774 (7 Pages) 

ISSN:2320-0790 

https://ijact.in/index.php/ijact/issue/view/80


COMPUSOFT, An international journal of advanced computer technology, 9(7), July-2020 (Volume-IX, Issue-VII) 

 

3769 

 

Table 1. The Details for 3D Duo-spheres 

Primitives Quantity 

No. of Vertices 3648 

No. of Edges 2412 

No. of Faces 2412 

 

II. PROPOSED SOFT CONSTRAINTS 

A common approach to define the soft constraints is 

assigning weight values based on the cardinality, geometric 

and topological characteristics [13] between adjacent 

vertices, faces or in dual graph of a mesh. In this paper, we 

present the newly formulated weight functions that are 

assigned onto all edges of the 3D duo-spheres. This comes 

from the notion of 3D mesh simplification, 2.1 Reciprocal 

Melax (RM) where the visual content of the object or scene 

is taken into account for the calculation. It takes high-

detailed mesh with many polygons and generates the mesh 

with fewer polygons that looks reasonably similar to the 

original. The existing cost functions aim at minimizing the 

visual change to the 3D mesh during the simplification 

process. Thus, the small, coplanar triangles and 

insignificant portions of the mesh are designated to be the 

minimal cost and are favoured to be collapsed [15]. The 

visual-sensitive parts with higher cost tend to lie on the 

contours of concave discontinuity of the tangent planes and 

ridge-valleys, as stated in the minima rule [20]. 

With the benefits offered by these existing cost functions, 

we have reformulated these equations into our weight 

functions by employing the principle of reciprocation. 

Therefore, the edges along the concave seam would have 

the minimal cost and higher chance to be the cutting edge 

during the partition process. This is the new attempt among 

the existing criteria definitions that has successfully 

facilitated the segmentation. Three existing cost functions 

from 3D mesh simplification are selected, studied and 

implemented: Melax (M) [16], Kims-Levin (KL) [21] and 

Lindstrom-Turk (LT) [22]. We have reciprocated these 

existing cost functions as our newly proposed weight 

functions. Table 2 exhibits the comparison results between 

the existing cost functions and our newly defined weight 

functions for the binary segmentation approach. 

A. Reciprocal Melax (RM) 

 
Figure 1. Geometric attributes to compose Eq. (1) and Eq. (2). 

 

Stan Melax [16] has developed an algorithm to reduce the 

polygons via a sequence of edge collapses. In the operation 

of collapsing the edges of the model, two vertices 𝑣𝑖  and 

𝑣𝑖+1, or an 𝑒𝑑𝑔𝑒(𝑣𝑖  , 𝑣𝑖+1) are/is selected and one of them 

(𝑣𝑖) iscollapsed onto the other side (𝑣𝑖+1). 

The author defined the cost of collapsing an edge based on 

the local features such as the length of the edge multiplied 

by a curvature term. The curvature term for collapsing an 

𝑒𝑑𝑔𝑒(𝑣𝑖  , 𝑣𝑖+1) is determined by comparing dot products of 

face normalin order to find the triangle adjacent to 𝑣𝑖+1that 

faces furthest away from the other triangles that are along 

the 𝑒𝑑𝑔𝑒(𝑣𝑖  , 𝑣𝑖+1)as denoted in Eq. (1). The meaning for 

each respective parameter is illustrated in Figure 1. 

𝑤𝑒𝑖𝑔𝑕𝑡 𝑀 𝑒𝑑𝑔𝑒 𝑣𝑖  , 𝑣𝑖+1  = 

  𝑣𝑖 − 𝑣𝑖+1  ×

max𝑓∈𝑇𝑣𝑖
 min𝑛∈𝑇𝑣𝑖𝑣𝑖+1

 
 1−𝑓⋅𝑛𝑜𝑟𝑚𝑎𝑙 ⋅𝑛⋅𝑛𝑜𝑟𝑚𝑎𝑙  

2
   (1) 

where 𝑇𝑣𝑖  is the set of triangles that contain 𝑣𝑖 , while 

𝑇𝑣𝑖𝑣𝑖+1
 is the set of triangles that contain both 𝑣𝑖  and 𝑣𝑖+1. 

Edges along a trough, coplanar surfaces, short and with 

fewer triangles surrounding vertices 𝑣𝑖  and vertices 𝑣𝑖+1are 

assignedwith some values (Eq. (1)) and these minimal 

edges are chosen to collapse; hence, the overall shape of 

the mesh is remained. 

However, our goal is to magnify the obvious cutting edge 

to facilitate the partition process later. Hence, we reformed 

the existing equation into a new weight function by 

reciprocating it as described in [18]. It is written as: 

 

𝑤𝑒𝑖𝑔𝑕𝑡 𝑅𝑀 𝑒𝑑𝑔𝑒 𝑣𝑖  , 𝑣𝑖+1  =

                              
1

𝑤𝑖𝑔𝑕𝑡  𝑀 𝑒𝑑𝑔𝑒  𝑣𝑖 ,𝑣𝑖+1   in  Eq .  (1)
 (2) 

 

B. Reciprocal Kims-Levin (RKL) 

 

 
Figure 2. A vertex 𝑣𝑖  and related variables‎: ‎dihedral angle 𝛽𝑖 ‎, ‎angle𝛼𝑖  and 

the length of the edge | 𝑒  |. 

 

Apart from the use of basic geometric information such as 

the distance and normals mentioned in section A, we have 

also tested the other geometric attributes: curvatures on 

discrete surfaces. According to [21, 23, 24], 3D triangle 

meshes do not have any curvature at all, since all faces are 

flat. However, by assuming a 3D mesh as a piecewise 

linear approximation of an unknown smooth surfaces, the 

value of curvature can be estimated. 

The main attributes in computing discrete curvature is the 

sum of absolute principle curvatures |𝑘1| and |𝑘2| at every 

vertex ofa mesh as follows: 

 

 𝑘1 +  𝑘2 =  
2 𝐻 ,             if 𝐾 ≥ 0,

2 𝐻2 − 𝐾,     otherwise.
  (3) 

 

𝐾 represents the Gaussian curvature while |𝐻| represents 

the absolute mean curvature. These two curvatures have to 

be derivedin order to compute the discrete curvature. 

Gaussian curvature 𝐾 of a vertex is related to angles and 

faces that are connected tothat vertex. As the absolute mean 

curvature |𝐻| is related to dihedral angles and edge lengths 
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as shown in Figure 2. Since the computation has to involve 

the total curvature attributed to a vertex 𝑣 with respect to 

the area 𝑆 = 𝑆𝑣  , the integration for both 𝐾 and the integral 

absolute mean curvature |𝐻 | can be obtained by the 

following equation: 

𝐾 =  𝐾
𝑆

= 2𝜋 − 𝛼𝑖

𝑛

𝑖=1

 

 

|𝐻 | =   𝐻 
𝑆

=
1

4
 ||𝑟𝑖   

𝑛

𝑖=1

|| |𝛽𝑖| 

 (4) 

[21, 23] assumed the curvatures are uniformly distributed 

around the vertex, simply normalize the curvatures at 

vertex 𝑣 from these integral values as defined in Eq. (5) by 

the area: 

𝐾 =
𝐾 

𝑆
 

 

𝐻 =
|𝐻 |

𝑆
 

 (5) 

This existing cost function (Eq. (6)) is then reciprocated by 

the sum of absolute principle curvatures denoted in Eq. (3) 

for all vertices of the 3D mesh in Eq. (7). Then, the mean 

value for the length of the ||𝑒𝑑𝑔𝑒(𝑣𝑖 , 𝑣𝑖+1)|| is multiplied 

by the mean of theprinciple curvatures at adjacent vertices 

𝑣𝑖  and 𝑣𝑖+1. 

𝑤𝑒𝑖𝑔𝑕𝑡 𝐾𝐿 𝑒𝑑𝑔𝑒 𝑣𝑖  , 𝑣𝑖+1  = 

  𝑣𝑖 − 𝑣𝑖+1  ×  
𝑣𝑖  𝑘1 + 𝑘2  +𝑣𝑖+1  𝑘1 + 𝑘2  

2.0
  (6) 

𝑤𝑒𝑖𝑔𝑕𝑡 𝑅𝐾𝐿 𝑒𝑑𝑔𝑒 𝑣𝑖  , 𝑣𝑖+1  = 
1

  𝑣𝑖−𝑣𝑖+1  × 
𝑣𝑖  𝑘1 + 𝑘2  +𝑣𝑖+1  𝑘1 + 𝑘2  

2.0
 
 (7) 

 

C. Reciprocal Lindstrom-Turk (RLT) 

The previous weight functions involved local features of 

the 3D mesh. While [22] introduces a positioning strategy 

that focuses on the preservation of volume and boundary 

area. They include consideration of the local and global 

features of the3D mesh in the calculations. 

[12] and [22] explained that there are basically two factors 

that are crucial for the quality of the 3D mesh 

simplification. The first factor is to determine the new 

vertex position for an edge that is intended for collapsing, 

while the second factor is to decide the next edge to be 

collapsed. This is usually done by evaluating the edges and 

sorting them in a priority queue. By processing and 

removing the element at the top of the queue each time, the 

smallest error is applied in every single step. 

The objective function 𝑓(𝑒, 𝑣) defined by [22] optimizes 

the volume and the boundary area information about a 3D 

mesh and it is written in linear combination as follows: 

𝜆𝑓𝑉 𝑒, 𝑣 +  1 − 𝜆 𝐿 𝑒 2𝑓𝛽(𝑒, 𝑣) (8) 

Where, 𝑉 represents the objective function for volume, 

while 𝛽 represents the objective function for boundary. 

Based on the setting by [19], the parameter 𝜆 can be used to 

weight the partial costs differently and decided to set 

𝜆 = 0.5. The squared edge length 𝐿(𝑒2) as additional 

factor provides identical units for both terms and makes the 

edge weight function invariant under scaling. Each 

respective function is defined as follows: 

 Volume Optimization 

The derived objective function aims at minimizing the 

unsigned volume of each individual tetrahedron as follows: 

𝑓𝑉 𝑒, 𝑣 = 𝑣𝑇𝐻𝑉𝑣 + 2𝑐𝑉
𝑇𝑣 + 𝑘𝑉  

= 𝑣 𝑇  
𝐻𝑉 𝑐𝑉

𝑇

𝑐𝑉
𝑇 𝑘𝑉

 𝑣  

=
1

36
𝑣 𝑇  𝐺 𝑉𝑖

𝑇

𝑖

𝐺 𝑉𝑖𝑣  

 (9) 

Where, 𝑣  denotes corresponding homogeneous coordinates 

of 𝑣 and𝐺 𝑉𝑖  represents the 1-by-4 block matrix: 

𝐺 𝑉𝑖 =   𝑣0
𝑡𝑖 × 𝑣1

𝑡𝑖 + 𝑣1
𝑡𝑖 × 𝑣2

𝑡𝑖 + 𝑣2
𝑡𝑖 × 𝑣0

𝑡𝑖 
𝑇

−  𝑣0
𝑡𝑖 , 𝑣1

𝑡𝑖 , 𝑣2
𝑡𝑖   

 (10) 

associated with triangle 𝑡𝑖 . 
 Boundary Optimization 

In order to minimize the sum of squared magnitudes of the 

directed area vectors. The function adds up to: 

𝑓𝛽 𝑒, 𝑣 =
1

4
𝑣 𝑇  𝐺 𝑉𝛽𝑖

𝑇

𝑖

𝐺 𝛽𝑣  

 (11) 

with the 3-by-4 block matrix 

𝐺 𝛽𝑖 =    𝑣𝑖
𝑒𝑖 − 𝑣0

𝑒𝑖 × − 𝑣1
𝑒𝑖 × 𝑣0

𝑒𝑖  

=   𝑒1𝑖 × − 𝑒2𝑖  (12) 

Note that in all cases where the collapsed 𝑒 is a non-

boundary edge, the value of 𝑓𝛽(𝑒, 𝑣) equals zero, so that it 

has no bearing on the total weight. Thus, we have defined 

two additional weight functions for our criteria: the existing 

and the reciprocated. 

𝑤𝑒𝑖𝑔𝑕𝑡 𝐿𝑇 𝑒𝑑𝑔𝑒 𝑣𝑖 , 𝑣𝑖+1  = 

                       𝜆𝑓𝑉 𝑒, 𝑣 +  1 − 𝜆 𝐿 𝑒 2𝑓𝛽(𝑒, 𝑣) (13) 

𝑤𝑒𝑖𝑔𝑕𝑡 𝑅𝐿𝑇 𝑒𝑑𝑔𝑒 𝑣𝑖 , 𝑣𝑖+1  = 
1

𝜆𝑓𝑉  𝑒,𝑣 + 1−𝜆 𝐿 𝑒 2𝑓𝛽 (𝑒,𝑣)
 (14) 

III. PROPOSED PARTITION ALGORITHM 

 

Figure 3. Our proposed algorithm for the partition process. 
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This paper has adapted the improved max-flow min-cut 

algorithm proposed by [17]. The authors have improved the 

empirical performance of the standard augmenting path 

techniques on graph. Maximum-flow minimum-cut (max-

flow min-cut) is the combinatorial optimization approach 

on a graph to find the maximum amount of flow that begins 

from source, 𝑠 to sink,𝑡 saturates several edges 

(augmenting paths), resulting the division of nodes into two 

disjoint sets 𝑆, 𝑇 corresponding to aminimum cut [25]. The 

duality relationship between max-flow and min-cut has 

been proved in [26]. 

The augmenting path
1
 found by the improved max-flow 

min-cut algorithm is not necessarily the shortest one unlike 

[27]. Thus, the time complexity of the shortest augmenting 

path is no longer valid. 

The source vertex, 𝑠 and sink vertex, 𝑡 (also called terminal 

vertices) are treated as hard constraints imposed by user to 

facilitate the binary segmentation. Intuitively, these hard 

constraints provide hints on how the 3D mesh intends to 

segment. 

Figure 3 illustrates our adapted partition process. There are 

four involved modules: 3D graph construction, growth, 

augmentation and adoption. The description for each 

respective module is explained as follows: 

D. 3D Graph Construction 

We have to transform the semantic information of the 3D 

duo-mesh into a graph so that the improved max-flow min-

cut algorithm [17] can be used as partition process. The 

steps can be outlined as follows: 

1. Firstly, the terminal vertices (source vertex, 𝑠 and the 

sink vertex, 𝑡) are selected by user as depicted in 

Figure 4. Thisis to provide some guidance to the 

algorithm that the top sphere belongs to the source 

sets, 𝑆 while the bottom spherebelongs to the sink sets, 

𝑇. 

2. Count the number of vertices, count_nodes (excluding 

the terminal vertices). 

3. Count the number of edges, count_edges(excluding the 

edge adjacent to terminal vertices). 

4. Find all the connected pair of adjacent vertices that 

form the edges (excluding those that are adjacent to 

the terminal vertices) into a vector array, 

tmpNormalEdges. 

5. Sort tmpNormalEdges in sequence, remove the 

duplicate vertices and store in normalEdges. 

6. Construct a weighted directional graph, 𝐺. The 

connectivity between the intermediate vertices 

(add_node) and edges(add_edge)are formed(without 

the terminal vertices). At the same time, the weight 

values are assigned to each respective edges 

(add_tweights) based on the defined weight functions 

(explained in Section 2). 

 

                                                           
1
A path for flow, 𝑓 in a graph, 𝐺 from source node, 𝑠 to sink node, 𝑡 

consisting of edges in the support of 𝐺𝑓  (edges with positive capacity in 

𝐺𝑓 ) 

The constructed weighted directional graph, 𝐺 is then 

applied to the next modules. The term nodes and paths are 

used torepresent vertices and edges respectively in the next 

section. The algorithm maintains two non-overlapping 

search trees 𝑆 and𝑇 with the roots at the source, 𝑠 and sink, 

𝑡 throughout the process. Therefore, four types of vertices 

are used during theformation of search trees: 

 

 
Figure 4. (a) 3D duo-spheres (facets). (b) Top: The source vertex (in 

green), 𝑠 selected by user. Bottom: The sink vertex (in blue), 𝑡 selected by 
user. 

 

 Free: Nodes that are neither in search tree S nor search 

tree T (nodes that have no parents). 

 Active: Nodes that at the outer border of the search 

trees. 

 Passive: Nodes that at the outer border of the search 

trees. 

 Orphan: Nodes that are adjacent to the parents 

becomes invalid due to saturated edges. 

 

The next three modules: growth, augmentation and 

adoption are repeated iteratively until an active node in one 

of the trees detects a neighbouring node that belongs to the 

other tree (details can be found in [17]). Consequently, an 

augmenting path is found. The overall structure of the 

algorithm is as follows: 

 

Algorithm 1 The overall structure of the improved max-

flow min-cut algorithm. 

Require: Initialization: source node, 𝑺 =  {𝒔}, sink node,                  

    𝑻 =  {𝒕}, active nodes, A = {s,t}, orphan nodes, O = {∅} 

1: 

2: while true do 

3:        grow 𝑺 or 𝑻 to find an augmenting path 𝑷 from 𝒔 to 

𝒕 
4: 

5:         if 𝑷 =  {∅} then terminate 

6:         augment on 𝑷 

7:         adopt orphans 

8: end while 
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Table 2. Comparison Results Among Various Weight 

Functions including Ours (Highlighted) on the 3D Duo-

spheres 

Tested Weight 

Functions  

Acronym Results 

Stan Melax M × 

Reciprocal Melax  RM  

Kims-Levin  KL × 

Reciprocal Kims-Levin  RKL △ 

Lindstrom-Turk  LT × 

Reciprocal Lindstrom-

Turk  

RLT × 

 

:Successfully partition the 3D mesh into two segments. 

△: Inconsistent partition- sometimes successful, and 

Sometimes failed. 

×: Unsuccessfully partition the 3D mesh into two segments. 

IV. RESULTS & DISCUSSION 

We have conducted some experiments over the 3D duo-

spheres using our proposed algorithm. 

Soft Constraints Definition. Six various weight functions 

are tested and the results are summarised in Table 2. It has 

proved that by using RM as the weight function produces 

the best influence on the partition among others. 

Partitioning. Two terminal nodes as hard constraints for 

segmentation are imposed by user as shown in Figure 4. 

The source node is denoted in green colour while the sink 

node is denoted by blue colour. These hard constraints 

provide some indications to certain nodes definitely have to 

be part of the source and certain nodes have to be part of 

the sink. These selected terminal nodes are preferred to be 

salient, peak, saddle or centroid vertices in order to 

maintain the consistency in our experiment. 

 

As presented in Table 2, the existing weight functions of 

M, KL and LT are insufficient for augmentation stage due 

to the weight values for the terminal edges are equal to 

zero. In other words, these edges are saturated. Thus, the 

algorithm is unable to grow both search trees and 

consequently, all the nodes are assigned to source, 𝑠 by 

default as illustrated in Figure 5(a), (b) and (c). 

Nevertheless, our proposed weight functions of RM is able 

to produce two segments (source, 𝑠 and sink, 𝑡) due to the 

calculated weight values are large enough to saturate the 

potential paths from source to sink, including the terminal 

edges. Thus, the maximum flow is achieved and 

corresponding minimum cut at the cutting edges of the 3D 

duo-spheres. 

However, the weight function of RLT produces only one 

segment which is the sink set, 𝑇. This is because the weight 

values for the edges are more than zero, thus paths can be 

saturated from the source, 𝑠 to the sink, 𝑡. The order of 

processing (First-In-First-Out) the active nodes and 

orphans may also have the significant effects on this result. 

On the other hand, the weight function of RKL sometimes 

produces binary segments, but mostly failed to do so. This 

scenario might be due to the unpredictably changes during 

the adoption stage. 

Overall, the experiment has proved that our proposed 

weight function Reciprocal Melax (RM) is the optimal 

weight function to be used as the soft constraint together 

with the adapted max-flow min-cut algorithm for binary 

segmentation. 

V. CONCLUSIONS & FUTURE WORK 

We have tested our proposed binary segmentation 

algorithm on 3D duo-spheres. Six weight functions are 

used as the soft constraints including three of our newly 

defined weight functions. These weight functions are used 

to facilitate the partition process. We have adopted the 

improved maximum-flow minimum-cut algorithm as 

partitioning in the 3D domain. As a conclusion, our 

proposed weight function of Reciprocal Melax (RM) is 

effective and robust for binary segmentation on the 3D 

duo-spheres. 

The major limitation of our proposed approach is the 

requirement of the 3D duo-spheres to be regular and 

consists of two separable geometric shapes. Hence, there 

are several possibilities in future directions for this work. 

 

A straightforward extension to our approach would be 

applying the proposed weight function of RM together with 

the proposed maximum-flow minimum-cut on the complex 

3D meshes. Apart from that, more analysis and studies are 

required in the partition algorithm in order to produce 

accurate segmentation. 

ACKNOWLEDGMENT 

Many thanks to the author’s supervisor, Professor Ewe 

Hong-Tat and co-supervisor Professor Lee Byung-Gook for 

their guidance and patience. It would not have been 

possible without their strong support. This research was 

also supported by the internal seed fund of University 

Tunku Abdul Rahman Research Fund (UTARRF) with the 

project number:  

IPSR/RMC/UTARRF/2014-C1/S02 (6200/S47). 

REFERENCES 

[1] Takahashi, S., Wu, H.Y., Saw, S.H., Lin, C.C. and Yen, H.C. 2011, 
September. Optimized topological surgery for unfolding 3d meshes. 

In Computer graphics forum. 30(7), 2077-2086. Oxford, UK: 
Blackwell Publishing Ltd. 

[2] Vanek, J., Galicia, J.G., Benes, B., Měch, R., Carr, N., Stava, O. and 

Miller, G.S. 2014, September. PackMerger: A 3D print volume 
optimizer. In Computer Graphics Forum. 33(6), 322-332. 

[3] Apaza-Agüero, K., Silva, L. and Bellon, O.R. 2015, September. 

Mesh segmentation with connecting parts for 3D object prototyping. 

In 2015 IEEE International Conference on Image Processing (ICIP). 
16-20. IEEE. 

[4] Bücking, T.M., Hill, E.R., Robertson, J.L., Maneas, E., Plumb, A.A. 

and Nikitichev, D.I. 2017. From medical imaging data to 3D printed 
anatomical models. PloS one.12(5), p.e0178540. 



COMPUSOFT, An international journal of advanced computer technology, 9(7), July-2020 (Volume-IX, Issue-VII) 

 

3773 

 

[5] Katz, S. and Tal, A. 2003. Hierarchical mesh decomposition using 
fuzzy clustering and cuts. ACM transactions on graphics 

(TOG).22(3), 954-961. 

[6] Sam, V., Kawata, H. and Kanai, T. 2012. A robust and centered 
curve skeleton extraction from 3D point cloud. Computer-Aided 

Design and Applications, 9(6), 869-879. 

[7] Gao, L., Lai, Y.K., Huang, Q.X. and Hu, S.M. 2013, May. A 

data‐driven approach to realistic shape morphing. In Computer 

graphics forum. 32(2pt4), 449-457. Oxford, UK: Blackwell 
Publishing Ltd. 

[8] Jiang, L., Ye, J., Sun, L. and Li, J. 2019. Transferring and fitting 

fixed-sized garments onto bodies of various dimensions and 
postures. Computer-Aided Design.106, 30-42. 

[9] Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, 

A., Rusinkiewicz, S. and Dobkin, D. 2004. Modeling by example. 
ACM transactions on graphics (TOG). 23(3), 652-663. 

[10] Dubrovina, A., Xia, F., Achlioptas, P., Shalah, M., Groscot, R. and 

Guibas, L.J. 2019. Composite shape modeling via latent space 

factorization. In Proceedings of the IEEE International Conference 
on Computer Vision. 8140-8149. 

[11] Philip Shilane, M.K.T.F. and Min, P. 2005. Princeton shape retrieval 

and analysis group: Princeton shape benchmark. 

[12] Thomas Ebner, L.B.-G. and Gumhold, S. 2006. Development of a 
surface simplification tool using the kmmcs data structure, Master’s 

thesis, University of Technology Dresden. 

[13] Shamir, A. 2008, September. A survey on mesh segmentation 
techniques. In Computer graphics forum. 27(6), 1539-1556. Oxford, 

UK: Blackwell Publishing Ltd. 

[14] Cohen, J., Olano, M. and Manocha, D. 1998, July. Appearance-
preserving simplification. In Proceedings of the 25th annual 

conference on Computer graphics and interactive techniques. 115-

122. 

[15] Luebke, D.P. 2001. A developer's survey of polygonal simplification 

algorithms. IEEE Computer Graphics and Applications.21(3), 24-35. 

[16] Melax, S. 1998. A simple, fast, and effective polygon reduction 
algorithm. Game Developer, 11, 44-49. 

[17] Boykov, Y. and Kolmogorov, V. 2004. An experimental comparison 

of min-cut/max-flow algorithms for energy minimization in vision. 
IEEE transactions on pattern analysis and machine intelligence, 

26(9), 1124-1137. 

[18] Saw, S. H.  Han, Y.-D. Lee, B.-G. and Ewe, H.-T.2015. A weighted 
min-cut max-flow approach for 3d mesh segmentation, China 

Academic Journal Electronic Publishing House, 574–577. 

[19] Ebner, T. 2006. Development of a surface simplification tool using 

the kmmcs data structure), Master’s thesis. 

[20] Hoffman, D.D. and Singh, M. 1997. Salience of visual parts. 
Cognition. 63(1), 29-78. 

[21] Hoffman, D.D. and Singh, M. 1997. Salience of visual parts. 
Cognition. 63(1), 29-78. 

[22] Lindstrom, P. and Turk, G. 1999. Evaluation of memoryless 

simplification. IEEE Transactions on Visualization and Computer 

Graphics. 5(2), 98-115. 

[23] Dyn, N., Hormann, K., Kim, S.J. and Levin, D. 2001. Optimizing 3D 

triangulations using discrete curvature analysis. Mathematical 

methods for curves and surfaces. 1, 135-146. 

[24] Desbrun,M., Meyer, M.,Schröder, P.,Barr, A.H. 2000. Discrete 
differential-geometry operators in nD.The Caltech Multi-Res 

Modeling Group. preprint 

[25] Ford Jr, L.R. and Fulkerson, D.R. 2015. Flows in networks. 
Princeton university press, London. 

[26] William, J. C., William, H. C., William, R. P. and Alexander, S. 

1997. Combinatorial Optimization. A Wiley-Interscience, New 
York. 1 ed. 

[27] Abdullah, N. and Hua T.K.2017. The Application of the Shortest 

Path and Maximum flow with bottleneck in Traffic Flow of Kota 
Kinabalu. Journal of Computer Science & Computational 

Mathematics. 7(2), 37-43. 

  



COMPUSOFT, An international journal of advanced computer technology, 9(7), July-2020 (Volume-IX, Issue-VII) 

 

3774 

 

 
Figure 5. Binary segmentation results on the 3D duo-spheres. (a)i, (b)i, (c)i, (d)i, (e)i and (f)i Wireframe segmented 3D mesh. (a)ii, (b)ii,(c)ii, (d)ii, (e)ii and (f)ii 

Facets segmented 3D mesh. (a), (b), (c), (e) Unsuccessful binary segmentation using the weight functions of M, KL,LT and RKL (consists of only one source 

segment, S which coloured in red for wireframe 3D segmented mesh but yellow for facets 3Dsegmented mesh). (f) Unsuccessful binary segmentation using the 

weight function of RLT (consists of only one sink segment, 𝑇 whichcoloured in blue for wireframe 3D segmented mesh and facets 3D segmented mesh). (d) 

Successful binary segmentation using the weightfunction of RM (consists of two segments: source, 𝑆 and sink, 𝑇 which coloured in pink and blue respectively 

for wireframe 3D segmentedmesh, while yellow and blue respectively for facets 3D segmented mesh). 
 

 

 

 


