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Abstract:  This paper presents a vision-based localization framework based on visual odometry.Visual odometry is a classic 

approach to incrementally estimate robot motion even in GPS denied environment, by tracking features in successive images. As 

it is subject to drift, this paper proposes to call  a convolutional neural netwok and visual memory to improve process accuracy. 

In fact, our framework is made of two main steps. First, the robot builds its visual memory by annotating places with their 

ground truth positions. Dedicated data structures are made to store referenced images and their positions. Then, during 

navigation step, we use loop closure corrected visual odometry. A siamese convolutional neural network allows us to detect 

already visited positions. It takes as input current image and an already stored one. If the place is recognized, the drift is then 

quantified using the stored position. Drift correction is conducted by an original two levels correction process. The first level is 

directly applied to the  estimation by substracting the error. The second level is applied to the graph itself using iterative closest 

point method, to match the estimated trajectory graph  to the ground truth one. 

Experiments showed that the proposed localization method has a centimetric accuracy. 

 

Keywords:visual odometry,  localization,  loop-closure, deep learning, convolutional neural network

I. INTRODUCTION 

Now a days autonomous vehicles are developed 

for various applications such as agriculture, transportation 

and security. In order to improve their performances and 

accuracy, communities focused their attention on 

autonomous vehicles. Despite these efforts, mobile robots 

location and orientation estimation is still a main issue. 

However, available commercial products depend on GPS to 

perform this task. Such sensors suffer from lack of 

precision, unavailability and can be jammed. In fact, 

commercial GPS systems generate errors of the order of 

meters and can’t be reliable in critic tasks. GPS with better 

percision are expensive. Besides, positionning systems and 

satellites are goverments and states property which is a 

strategic matter. 

Regarding these constraints, other alternatives  could be 

adopted like vision based approaches. The main advantage 

of visual sensors is that they are inexpensive and available.  

Existing works adopt a wide variety camera based 

approaches. Monocular, stereo or omnidirectional cameras 

were used. Besides, visual odometry and visual 

Simultaneous Localization and Mapping (SLAM) are most 

common algorithms. While SLAM aims to build robot 

surroundings model and localize it locally, visual odometry 

calculates robot egomotion by incrementing relative 

rotations and translations estimations. These estimations 

are made by extracting features from incoming frames and 

matching them. This process leads to incremental drift 

growth. To decrease the drift, some methods consist in 

fusing visual odometry with other sensors like Inertial 

Measurment Units (IMUs) or gyros using filters. Other 
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approaches exploit loop closure detection method to 

estimate error and reduce it. 

Namely, such techniques use loop closure as a constraint to 

improve future estimations. This constraint could  be 

applied to the process itself or to generated graph. Loop 

closure detection could also be seen as place recognition. It 

is based on learning a database of georeferenced images 

then the unmanned vehicle has to match between current 

incoming frame and this database. Some works used visual 

Bag-of-Words to build the reference database, others used 

Deep Learning approaches. 

In this paper, we propose a framework which aims to 

perform visual odometry correction based on loop closure 

detection. The loop closure detection is made using a pre-

trained CNN, presented in a previous paper [19]. Then 

visual place recognition will be performed in order to 

estimate drift and correct it. Our idea is to perform two-

level  correction : graph-level and process-level.  

II. RELATED WORKS 

Visual Odometry methods were developed for 

decades and were applied for many purposes like 

augmented reality and autonomous vehicles. Recently, 

many works paid attention to this technique. [1] and [2] 

could be considered as important works as they explain 

different implementations and applications of visual 

odometry. A more recent work [3] detailed the evolution of 

visual odometry.  

In fact, visual odometry is a method that estimates the 

vehicle pose using video stream input. It measures image 

features transformation between successive frames. Such 

technique is cost-efficient and versatile. Many methods 

have been developed depending on sensors types 

(monocular [4], stereo [5] and omnidirectional [6]) and on 

extracted features from frames (feature-based approaches 

as in [7] and apparance-based approaches as in [8]).  

However, visual odometry suffers from increasing  drift. 

These errors have many reasons. First of all, imaging 

conditions such as light, blur, textures lead to a low 

estimation accuracy, due to the lack of informations in the 

image and unaccurate pixel displacement measurement. 

Add to that, the calibration errors are accumulated at each 

iteration. Another limitation of visual odometry process, is 

its unability to estimate scale, particularly for monocular 

variant like it is noted in [9]. All these drawbacks and 

limitations led researchers to look for solutions to reduce 

the drift.  

[2] explains drift propagation and presents some ways to 

reduce the errors. One way is to use pose optimization. It 

consists in using known successive transformations as 

constraints. Loop closure is a constraint that allows to 

estimate the drift when a place is revisited. Papers [10] and 

[11] use different approaches to detect loop closure, and 

different ways to estimate and to correct the drift.  

Another way to reduce the errors is to use filtering 

methods, in order to merge sensors datas, like in [12] and 

[13]. 

In our proposed method, we use loop closure constraint to 

reduce drift .We can classify loop closure detection 

methods in two categories. Appearance-based approaches 

like [10], [11], [14] and [15]. The second category is more 

recent and based on Convolution Neural Networks (CNN), 

like [16] and [17]. 

In [10], the correction is based on estimating the drift 

between the pose currently estimated by the visual 

odometry algorithm and the pose given when the place was 

previously visited. The main idea of [11] is to measure 

transformation between first and last frame. If it is equal to 

identity then there is loop closure. If not, the correction is 

made by back propagating error. In [17], a deep CNN is 

used (MobileNetV2) to extract incoming frame features. 

These features are coupled to SURF [18] features to gain 

invariance. A distance between CNN  features is then 

calculated to select loop closure detection candidates. Then, 

using SURF features and hash function, these candidates 

are then filtered to generate final loop closure detection. 

In our previous work [19], we compared different 

architectures in performing loop-closure detection. It shows 

that Siamese ResNet has a good accuracy, up to 94%.  

In this paper we were inspired by [20] and [21]in 

the implemention of a visual memory. Yet, our method 

uses visual odometry as position estimation technique. 

Besides, our key frame selection criterion is  based on the 

traveled distance. In fact, authors in [20] introduce a vision 

based navigation and guidance system. It uses the scenes 

appearances as descriptor and stores them. The system 

needs a learning stage that acquires a set of key frames to 

build visual reference path. The set of key frames is then 

used during a localization stage when the vehicle is in 

autonomous mode. In the other hand, [21] presents a vision 

navigation system based on three stages which are memory 

building, localization and servoing. It uses also a set of key 

frames to build a visual route. Athors used Harris corner 

detector [22] as a criterion to guide key frame selection. 

The memorized visual route is explored to localize the 

robot. 

Finally, [23] presents a hybrid visual odometry method for 

Micro Aerial Vehicles (MAVs). Besides, it implements 

mapping task. In fact, the framework is made of two 

parallel threads, one for estimating the camera motion, and 

a second one for mapping, like in [24]. The camera motion 

is estimated through sparse model-based image alignment 

which seeks to find the transformation that minimizes the 

photometric error. It tracks patches brightness and gradient 

information. 

Through this work, we seek to introduce an original and 

novel framework implementing monocular feature-based 

visual odometry, combined with CNN to achieve loop-

closure detection. Our approach is structured in two stages, 

the first one for learning and the second one for 

localization. We don’t focus on control step in this work. 

The next section is dedicated to detail our method. 
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III. PROPOSED APPROACH 

A. Overview 

Our approach is focused on feature-based 

monocular visual odometry which is improved using 

external sensors and constrained by loop closure detection. 

It is based on two main steps. 

The first one is Learning Step, where the autonomous 

vehicle builds its visual memory. This memory is made of 

key frames and positions. It is needed to improve the 

second step which is the Localization Step. 

The second step core is visual odometry (Fig.1). The visual 

odometry, here, has two main objectives : it estimates 

robot’s 2D positions and altitude information from 

altimeter and turns2D position estimation into 3D position 

estimation. As monocular visual odometry is unable to 

guess the scale, i.e traveled distance between two 

successive images [1], we extract velocity information 

from speed sensor to ensure traveled distance estimation. 

This information allows to know the traveled distance 

between two captures. Besides, in order to reduce visual 

odometry drift, a loop closure detection module is called. 

This one is based on a CNN (Siamese ResNet), it has been 

presented in our previous paper [19]. In fact, during 

localization step, the loop closure detection system 

compares incoming frame with key frames stored in the 

already built visual memory. The comparison is supervised  

by the estimated position to decrease processing time. Once 

a matching is detected by the system, we apply a two stage 

correction. A drift correction is applied into visual 

odometry core, and the Localization estimation graph is 

then optimized using Iterative Closest Point (ICP) method. 

Through this work, we propose not only to tackle visual 

odometry correction methods but also an original 

localization method for mobile robots in general and for 

UAVs in particular. The novelty in this work is the use of 

CNN in loop closure detection besides the two level 

correction. In the other hand, unlike [20] and [21], we make 

use of visual odometry as core process of localization step. 

Next subsections are dedicated to highlight each step of our 

proposed approach.  

B. Loop Closure Detection Based On CNN 

As presented in [19], we selected state-of-the-art 

CNNs which are AlexNet [25], GoogLeNet [26] and 

ResNet [27]. We chose these networks because they are 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) winners. Loop closure detection can be seen as 

binary classification. Such task could be performed by 

Siamese networks [28] and Multi-channel networks [29]. 

That’s why we implemented for each network a Siamese 

and a Multi-channel version. Then we obtain six CNNs for 

which we compared the respective performances. 

 

Figure 1 : Localization step architecture 

In order to compare these six networks, we trained them 

using customized dataset made of 9000 image pairs, 

splitted into positive and negative pairs equally. Each 

network was trained for 30 epochs using 80% of the total 

dataset, i.e 7800 pairs. 

The validation showed that Siamese ResNet outperforms 

other implemented CNNs in performing loop-closure 

detection task, as it is highlighted in Table I. 

In order to use the Siamese ResNet in our proposed 

framework, we have to acquire images. These images 

constitute the robot’s visual memory and serve as 

reference. That’s why a learning step has to be undertaken. 

C. Learning Step 

First, we make the assumption that the camera 

frame is rigidly linked to the UAV frame. The camera 

optical axis has the same direction as the robot longitudinal 

axis. We suppose that the CNN used here is already trained 

as presented in [19]. 

Table  I: TESTING RESULTS 

Network Accuracy TPR TNR 

6-Chan AlexNet  87.7%   63.09%   96.2%  

6-Chan GoogLeNet  82.38%   65.86%   96.65%  

6-Chan ResNet  93.55%   84.64%   97.65%  

Siamese AlexNet  93%   91.49%   94.53%  

Siamese GoogLeNet  83.61%   88.83%   78.67%  

Siamese ResNet  94.83%   96.42%   92.27%  

 

Let the UAV follows a loop like path. This kind of 

trajectory includes the properties of both closed and opened 

loop trajectories. 
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While [20] and [21] used a matching difference threshold, 

we build visual memory using a fixed travel distance. In 

fact, the path is divided into equidistant points. Let a be the 

spatial distance separating points (Fig.2). Then, 
1

𝑎
 is the 

Learning Spatial Resolution (LSR).  

 

Figure 2 : Learning Spatial Resolution 

During learning step we build two data structures to create 

the visual memory : 

• Referenced Images Dictionary (RID) : it is 

dedicated to store images with their ground truth positions. 

In fact, we use a key-value data structure, where the key is 

the ground truth position and the value is the saved 

image.The first frame 𝑰𝒓𝒆𝒇 is grabbed and referenced with 

its position. It is useful for initialization and alignment. 

Besides, it is used to automatically disable learning mode if 

needed. Then, each time the vehicle travels a distance equal 

to a, the grabbed frame is pushed into (RID) with its 

ground truth position. 

• Ground Truth Position List (GTPL) : it is 

dedicated to store ground truth positions only. It is an 

array-like data structure where we store only the ground 

truth position for each grabbed frame during learning step. 

The algorithm depicted in figure 3 implements the 

Learning stage. As these functions are not the object of our 

study, we assume that getFrame(), getPosition() and 

getEndLearningEvent() are predefined functions. They 

grab incoming frame, read current ground truth position 

and return end of learning event respectively. We suppose 

also that the camera and position sensor are synchronized.  

D. Localization  Step 

The localization step is launched once the learning 

step is ended. The main goal of this step is to localize the 

vehicule using its camera stream. It is based on monocular 

feature-based visual odometry.  

1) Monocular feature-based visual odometry 

Visual odometry is the core process of our 

method. It was well explained in [1]. We implement SURF 

feature detector [18] as feature-based method. In fact, [7] 

showed that it outperforms SIFT  detector [30]in visual 

odometry case. 

In the other hand, we focus here on the scale factor 

acquisition. We use speed sensor as scale factor provider 

and we integrate speed information in our process. 

We do this  byassuming that instants 𝒕𝒊 and 𝒕𝒊+𝟏 are too 

close. If 𝑽𝒕𝒊  is the vehicule linear speed at 𝒕𝒊, then the scale 

factor 𝝆𝒊+𝟏 between 𝒕𝒊 and 𝒕𝒊+𝟏 is given by  (1). 

𝜌𝑖+1 = (𝑡𝑖+1 − 𝑡𝑖)𝑉𝑡𝑖  (1) 

As the visual odometry is the core process of the 

localization step, improving visual odometry means 

improving localization process.  

2) Correction 

As annouced previously, we propose in this article 

an original and new localization prcedure. Namely, we 

implement a two step correction in order to impove the 

localization performance. The first correction consists in 

correcting drift, directly into visual odometry process. The 

second correction step is graph based correction where we 

use Iterative Closest Point (ICP) process. In fact, ICP 

allows to minimize the error between estimation graph and 

ground truth graph. As far as we read, this is the first time 

that such a localization process is proposed in the 

litterature. 

 
Figure 3 : Learning Step Algorithm 

As we did during learning step where we 

introduced Learning Spatial Resolution (LSR), we define 
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here the Correction Spatial Resolution (CSR). Let 
𝟏

𝒃
 be the 

CSR. The vehicle trajectory is divided into segments 

having the same length, which is the CSR as depicted in 

(Fig. 4). Besides, we assume that 𝑏 ≥ 𝑎 This condition 

guarantees the fact that between two correction attempts we 

have at least one ground truth information. 

 

Figure 4 : Correction Spatial Resolution 

The estimated positions coming from visual 

odometry process are stored in an array like data structure, 

called Estimated Position List (EPL).When the robot 

travels a distance equal to b, the visual odometry starts to 

drift. So we have to undertake the first correction stage, 

which is directly applied into visual odometry process.   

1) Let 𝑴 be the EPL length. The last estimated position 

EPM is projected on the ground truth path, given by 

GTPL. It is the closest position saved in GTPL to 

EPLM. 

Its projection on the ground truth path is given by 

equation (2) and figure 5. 

 

𝐺𝑇𝑃𝐿𝑚𝑖𝑛 = 𝑎𝑟𝑔 min
𝐺𝑇𝑃𝐿𝑖∈𝐺𝑇𝑃𝐿

(∥ 𝐸𝑃𝐿𝑀 − 𝐺𝑇𝑃𝐿𝑖 ∥) (2) 

 

Figure 5 : Projection estimated position on ground truth 

2) Then, we look for the closest saved image to the last 

grabbed frame. In fact, we search for the closest 

referenced image to 𝑮𝑻𝑷𝑳𝒎𝒊𝒏. This can be made using 

the key-value data structure RID, as the closest image to 

𝑮𝑻𝑷𝑳𝒎𝒊𝒏 has the closest key. 

Let DKL be the RID keys list. The closest key to 

𝑮𝑻𝑷𝑳𝒎𝒊𝒏 is given by the following equation. 

𝐷𝐾𝐿𝑚𝑖𝑛 = 𝑎𝑟𝑔 min
𝐷𝐾𝐿𝑖∈𝐷𝐾𝐿

(∥ 𝐺𝑇𝑃𝐿𝑚𝑖𝑛 − 𝐷𝐾𝐿𝑖 ∥) (3) 

Thus, if 𝑹𝑰𝒎𝒊𝒏 is the closest reference image to 

𝑮𝑻𝑷𝑳𝒎𝒊𝒏, then 𝑅𝐼𝑚𝑖𝑛 = 𝑅𝐼𝐷𝐷𝐾𝐿𝑚𝑖𝑛 . As 𝑹𝑰𝒎𝒊𝒏 is the 

closest reference image to 𝑮𝑻𝑷𝑳𝒎𝒊𝒏, and as 𝑮𝑻𝑷𝑳𝒎𝒊𝒏is 

the closest ground truth position to 𝑬𝑷𝑳𝑴, then 𝑹𝑰𝒎𝒊𝒏 

is the closest to 𝑬𝑷𝑳𝑴. 

We note 𝐼𝑀  the last grabbed frame, which coordinates 

are 𝐸𝑃𝐿𝑀 . 

3) This step can be seen as a local loop closure detection. 

In fact, the CNN is called to compare 𝐼𝑀  with 𝑹𝑰𝒎𝒊𝒏. 

The CNN returns the similarity between 𝑹𝑰𝒎𝒊𝒏 and 𝐼𝑀 . 

If the similarity is above a threshold, we can refer to 

𝐺𝑇𝑃𝐿𝑚𝑖𝑛  as reference location and assume that 

𝐺𝑇𝑃𝐿𝑚𝑖𝑛  is the correct location. So this allow us to 

quantify and estimate the drift (translation drift) in 

𝐸𝑃𝐿𝑀 . If the similarity is under the threshold, then we 

start a new iteration. 

The detection threshold is defined by the user and kept 

constant during all the process. In our case, we chose 

the threshold defined during the CNN training. 

The drift quantification is inspired by [10]. The error 𝜔 

is given by the equation (4). 

𝜔 = 𝐺𝑇𝑃𝐿𝑚𝑖𝑛 − 𝐸𝑃𝐿𝑀  (4) 

4) Once the drift is estimated, it is used to correct visual 

odometry process. Here we propose to compensate the 

error directly in the visual odometry. 

Visual odometry, at each iteration, concatenates relative 

translation and rotation to give absolute ones [1]. This 

can be explained by the following equations.  

𝑇𝑖 = 𝑇𝑖−1 + 𝜌𝑖 ⋅ 𝑅𝑖−1 ⋅ 𝑇(𝑖−1)→𝑖  (5) 

𝑅𝑖 = 𝑅(𝑖−1)→𝑖 ⋅ 𝑅𝑖−1 (6) 

With 𝑇𝑖  is the absolute translation at the 𝑖𝑡ℎ  iteration 

and 𝑇(𝑖−1)→𝑖  the relative estimated translation between 

frames (𝑖 − 1) and 𝑖. 

Similarly, 𝑅𝑖  is the absolute rotation after grabbing the 

frame 𝑖 and 𝑅(𝑖−1)→𝑖  is the estimated rotation between 

frames (𝑖 − 1) and 𝑖. 

Besides, 𝜌𝑖  is the relative displacement between (𝑖 − 1) 
and 𝑖, and it is given equation (1). 

As it is mentioned in the literature, the accumulated 

translation 𝑇𝑖  contains the current estimated position. In 

fact, 𝑇𝑖  components are equal to 𝐸𝑃𝐿𝑀  ones. Using 

error estimation 𝜔 (equation (4)), our goal is to drop the 

error to 0. We apply this equation to correct visual 

odometry translation error.  

𝑇𝑖𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑇𝑖 + 𝜔 (7) 

The previously desrcibed procedure allows to locally 

cancel the error. In fact, theorically, if 𝐷 is the trajectory 

length, then we should have 
𝐷

𝑏
 points where the error is 
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close to 0 (Figure 6). Between these points, the odometry 

estimation error is random and trends to increase. 

This shows that transaltion correction is unsufficient. 

That’s why a second step has to be undertaken. The goal of 

this second step is to cancel the drift between correction 

points. Our idea is to optimize the segments between two 

correction points. 

The second correction stage is applied on graph, i.e 

applied on the corrected visual odometry output. We want 

to locally minimize the deviation between the estimated 

trajectory and the ground truth points clouds. 

 

Figure 6 : Correction first step : process oriented correction 

In our case, the ICP alogrithm takes a sub-array of GTPL 

and a sub-array of EPL. Although, the inputs must have the 

same size. However, GTPL has a constant size, but EPL 

size is growing every frame. Then, the main challenge in 

this step is to synchronize sub-arrays sizes. We have to find 

the starting and ending indexes allowing to extract 

convenient sub-arrays from EPL and GTPL. 

Let 𝑙𝑐𝑖 be the last correction index. So the sub-array 

extracted from EPL, called 𝑠𝑢𝑏𝐸𝑃𝐿 is defined as follows :  

𝑠𝑢𝑏𝐸𝑃𝐿 = {𝐸𝑃𝐿𝑖 ; 𝑙𝑐𝑖 ≤ 𝑖 < 𝑀} (8) 

Where 𝑴 is EPL size. 

So 𝑠𝑢𝑏𝐸𝑃𝐿 starting index is 𝑙𝑐𝑖 and ending index is 𝑀 − 1. 

Besides, its size is 𝑀 − 𝑙𝑐𝑖. 

Now we have to extract a sub-array from GTPL, let us call 

it 𝑠𝑢𝑏𝐺𝑇𝑃𝐿. However, 𝑠𝑢𝑏𝐺𝑇𝑃𝐿 has to verify two 

constraints :   

    • The ending index has to not exceed 𝑁 − 1, 

where 𝑁 is GTPL size.  

    • Its size has to be equal to 𝑠𝑢𝑏𝐸𝑃𝐿 size, i.e 

(𝑀 − 𝑙𝑐𝑖).  

The starting index is the index of the ground truth position 

that corrected 𝐸𝑃𝐿𝑙𝑐𝑖 . Let 𝑙𝑚𝑖 be 𝑠𝑢𝑏𝐺𝑇𝑃𝐿 starting index. 

Thus, we have to adopt a circular indexation system. In 

fact, if the ending index exceeds 𝑁 − 1, we have to start 

again from 0. So, having the starting index of 𝑠𝑢𝑏𝐺𝑇𝑃𝐿 

which is 𝑙𝑚𝑖, theorically the ending index is 𝑙𝑚𝑖+ (𝑀 −
𝑙𝑐𝑖). But, in order to ensure circle-like indexation, we have 

two cases. 

First case is where 𝒍𝒎𝒊+ (𝑴− 𝒍𝒄𝒊) < 𝑵. Then, the 

𝑠𝑢𝑏𝐺𝑇𝑃𝐿 is defined as follows  

𝑠𝑢𝑏𝐺𝑇𝑃𝐿 = {𝐺𝑇𝑃𝐿𝑖 ; 𝑙𝑚𝑖 ≤ 𝑖 < 𝑙𝑚𝑖 + (𝑀 − 𝑙𝑐𝑖)} (9) 

 

Figure 7 : Extracting subGTPL : first case 

Second case is where 𝒍𝒎𝒊+ (𝑴− 𝒍𝒄𝒊) ≥ 𝑵. Then, 

the 𝑠𝑢𝑏𝐺𝑇𝑃𝐿 is defined as follows:  

   

𝑠𝑢𝑏𝐺𝑇𝑃𝐿 = {𝐺𝑇𝑃𝐿_𝑖; 𝑙𝑚𝑖 ≤ 𝑖 < 𝑁} ∪ {𝐺𝑇𝑃𝐿_𝑖; 0 ≤ 𝑖 <
(𝑀 − 𝑙𝑐𝑖)− (𝑁 − 𝑙𝑚𝑖)} (10) 

We can see from equations (9) and 

Error! Reference source not found. that we verifiy the 

ending index constraint. It doesn’t exceed N-1. Besides, 

equations (9) and Error! Reference source not found. 

ensure that 𝑠𝑢𝑏𝐺𝑇𝑃𝐿 has the same size of 𝑠𝑢𝑏𝐸𝑃𝐿, which 

is (𝑀 − 𝑙𝑐𝑖). 

From equation (9) :  

length is      𝑙𝑚𝑖 + (𝑀 − 𝑙𝑐𝑖)− 𝑙𝑚𝑖 = 𝑀 − 𝑙𝑐𝑖. 

From equation Error! Reference source not found. :  

length is   (𝑁 − 𝑙𝑚𝑖) + (𝑀 − 𝑙𝑐𝑖)− (𝑁 − 𝑙𝑚𝑖) = 𝑀 − 𝑙𝑐𝑖. 

This is the proof that in all cases ICP inputs have 

the same sizes. By applying ICP on two subsets of GTPL 

and corrected EPL, we undertook the second correction 

stage. Thus, the error between two subsequent translation 

corrections is minimized. Then, thanks to this second 

correction step, the drift won’t increase. Estimated 

trajectory tries to clamp to the ground truth (Fig. 9). 
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Figure 8 : Extracting sub GTPL : second case 

In this section, we detailed our proposed approach. In 

summary, first, a visual memory is built. It is made of two 

data structures. One is dedicated to store all acquired 

ground truth positions and the second stores key frames 

referenced by their true positions. Then comes the 

localization/navigation step. It can be seen as a corrected 

monocular visual odometry process. The correction is 

called when the trained CNN detects a matching between 

current grabbed and a stored key frame. Besides, it is made 

of two stages. The first correction stage is a translation that 

brings back the error to zero. It is applied on visual 

odometry translation estimation. The second correction 

consists in ICP algorithm which applied a posteriori 

between two successive translations. It allows to minimize 

the error between the ground truth graph and estimated 

trajectory graph. Figure 18 shows the whole framework 

flowchart. 

 

In the next section, we will discuss this approach 

performances through experiments. 

 
Figure 9 : Correction after applying ICP 

IV. EXPERIMENTS 

In this section, our framework experimental tests 

are presented. First, the tests platform will be presented. 

Then, we are going to highlight some results and test 

performances. 

A. Hardware and software  environment 

configuration 

The tests are performed on a motherboard having 

an intel i3, 2.3GHz quadcore processor and 12 GB RAM. 

Besides, the flying vector is simulated using V-REP 

Simulation Software. It has a distributed architecture based 

on network client-server concept. This simulator could 

virtualize and handle many types of robots, sensors and 

environments. 

In our case, we use a quadrotor having a forward looking 

camera, an altimeter and a speed sensor. The camera used 

in this simulation has 512x512 resolution and 10fps 

framerate. 

In the other hand, as we mentioned it in [19], our CNN was 

trained on Google Colaboratory platform, using Intel Xeon 

2.20GHz processor, 12 GB RAM and NVidia Tesla K80 

GPU. Its training dataset contains images taken from VREP 

and from Bonn University’s Visual Place Recognition 

dataset
1
. 

In order to experiment our approach, and ensure its 

robustness, we generated different scenarios which we are 

going to present in the next section. 

B. Experimentation Scenarios 

We tested our method in different conditions. We 

chose four of them. Two scenarios have a closed loop 

trajectory. Besides, one of the chosen scenarios is in urban-

like environment, and the other ones are in an indoor, 

office-like environment. Table II details these scenarios 

specs. 
Table  II: SCENARIOS PROPERTIES 

Scenario  1   2   3   4  

Trajectory shape  Loop   8-like   S-like   Straight line 

Closed Loop  Yes   Yes   No   No 

Length (m)   24   42.5   22   115 

Indoor/Outdoor  Indoor   Indoor   Indoor   Outdoor 

UAV speed (m/s)   .5   .5   .5   1  

1

𝐶𝑆𝑅
= 𝑎(m)  .5   .5   .5   1  

1

𝐿𝑆𝑅
= 𝑏(m)  2   2   2   4  

 

During learning step we build navigation memory by 

creating wo data structures GTPL and RID. One way of 

evaluating our algorithm performances is to quantify its 

memory footprint which is presented in the next section. 

C. Memory footprints 

As detailed in Section 3.3, we append incoming 

datas to two different data structures. As they are growing 

incrementally, we have to ensure the growth limit and 

quantify its the memory. 

First, GTPL is an array-like data structure. As a position is 

an array of three floats (x, y and z), GPTL is an array of 

arrays of floats. Then, RID is a map made of keys, which 

are positions (array of floats), and values, which are 

512x512 RGB images. 

The following table shows the size of GTPL and RID for 

each scenario after the end of learning loop. 

Table  III: GTPL AND RID SIZES 

                                                           
1 http://www.ipb.uni-bonn.de/data/visual-place-recognition-datasets 
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Scenario  1   2   3   4  

GTPL size in KB  5.367   8.813  3.227   2.477 

RID size in KB  4.852   5.914  2.906   9.500 

 

All the data amounts presented in table III are under 10KB, 

which is relatively low. If we consider the average memory 

footprint per meter, we find that it is around 0.35 KB/m for 

scenarios 1, 2 and 3 with 0.5 m/s speed, and 0.105 KB/m 

for the scene 4, having 1 m/s speed.  Figures 10 to 13 show 

the memory footprint evolution for each datastructure of 

each scene. We mention that these evolutions can be 

approximated by linear functions 

This demonstrates that not only our approach consumes 

low memory but also the memory footprint growth is linear 

to the path length. This allows us to estimate the global 

needed memory space. 

In the next section, we are going to discuss our framework 

localization accuracy.  

 
Figure 10 : Scene 1 memory footprint 

 
Figure 11: Scene 2 memory footprint 

 

D. Errors Estimation 

1) Estimated trajectories 

Table IV presents ground-truth, estimated 

trajectory without ICP and estimated trajectory with ICP. 

Top view (2D)  figures enhance the fact that the one level 

correction (blue graphs) is based on translation only. In 

fact, the error is growing and the drift is increasing 

progressively. Then, the translation corrects the drift and 

brings the estimated trajectory to the ground truth one. This 

gives to blue trajectories a discontinous and ticky aspect. 

However, the two level correction graphs (red graphs) are 

smoother and clamp to ground truth paths (green graphs). 

This shows that the ICP improves the estimation. Globally, 

two levels corrected trajectories fit more to ground truth, 

are smoother and seem to be more reliable. 

 
Figure 12 : Scene 3 memory footprint 

 
Figure 13 : Scene 4 memory footprint 

In the other hand, 3D view images show that there is 

altitude changes which were purposly introduced. In fact, it 

serves to evaluate altitude estimation given by the 

altimeter. It allows also to know if the altitude changes 

interfere with 2D position estimation. First, in constant 

altitude sectors, 2D estimation keeps the same behaviour as 

during altitude changes. This means that altitude variations 

don’t affect vision oriented localization and correction. In 

the other hand, altitude estimation based on the altimeter is 

reliable as it is close to the ground truth. 
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Finally, Scene 4 figures shows noisy estimations. This is 

due to the noise of visual odometry process. It is coming 

from a longer course, and the relatively difference in 

textures. 

2) Drifts 

In this section, we are going to evaluate drifts and 

errors. This quantifies how reliable our framework is. 

Figures 14, 15, 16 and 17 have two continous line graphs 

each. Red are for two level corrections and blue are for one 

level correction. Averages are given by dashed lines. 

First, for all these figures, ICP corrected estimations have 

smaller drifts than one level corrected estimations. Then, 

errors are bounded in figures 14, 15 and 16. Errors never 

exceeded 
1

𝐿𝑆𝑅
= 𝑏. Besides, the translation correction is 

visible when the blue curve (correction without ICP) drops 

down instantaneously. This happens when distance 𝑏 is 

traveled. Then, the CNN is called, the place is recognized, 

the error is estimated and the translation is applied. 

In the other hand, between two successive corrections, ICP 

corrected trajectories error still approximately constant 

while one step correction gives highly increasing error. 

Generally, in our experiments, two level corrected 

estimations have errors that still below one level corrected 

ones, except some local points. 

Quantitavely, table V gives errors averages for 

each scene. The lateral average error for the ICP corrected 

trajectories never exceeds 1.5% of the total trajectory 

length. Finally, applying ICP helps to gain some 

centimeters of accuracy. Sure its a small gain quatitavely 

but ICP gives smoother trajectory estimation and more 

similar to ground truth. 

 
Table  V : ERRORS AVERAGE 

Scenario  1   2   3   4  

Error average with 

ICP (m) 

 0.118   0.198   0.208   1.63 

Error average 

without ICP (m) 

 0.220   0.268   0.268   1.67 

 

3) Discussions and  Contributions 

The experiments showed that the proposed 

method allows to accurately localize a mobile vector. This 

task is mainly based on monocular camera. A first step 

consists in building visual memory. As it is demonstrated 

by the experiments, it is not memory consuming and can be 

used in large scale environment. The second step is the 

localization. It is made of a translation to reduce local error, 

and ICP to optimize the estimated trajectory. Tests 

highlighted the fact that the error is low and that ICP allows 

to improve accuracy 

Our work can be seen as a multidisciplinary paper. In fact, 

it tackles visual odometry correction methods and proposes 

a novel localization method for UAVs. 

This can be seen in :   

• Using visual odometry during localization step, unlike 

[20] and [21] 

• Using traveled distance as key frame selection 

criterion  

• Using CNN in loop closure detection and visual 

odometry correction  

• Applying two stages correction, process based 

correction and graph based correction  

• Exploiting speed sensor as scale factor provider  

V. CONCLUSION 

In this paper we proposed an original vision based 

method to localize mobile robots. This framework can be 

summed up in building visual memory which serves as 

reference during localization process. This one is based on 

monocular visual odometry. In order to correct visual 

odometry drift, we call a customized CNN to compare 

incoming images with the already built visual memory. 

Then, two level correction is applied. First, the quantified 

drift is compensated in visual odometry by introducing a 

translation. Second, the trajectory graph is optimized by 

using ICP. 

Experiments gave satisfying results. Memory requirements 

are low, two level corrected estimation aspect is similar to 

ground truth and estimation error is small. 

Future works will be devoted first to improve the 

estimation. Besides, we will tackle navigation and control 

tasks. In fact, we will focus on trajectory planning and 

visual control. This can be improved by working on 

obstacles detection and avoidance. 
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Table IV : 2D A 3D ESTIMATED AND GROUND-TRUTH TRAAJECTORIES VIEWS 

Scene 

name 

Top View (2D) 3D View 

Scene 1 

 

 

Scene 2 

 
 

Scene 3 
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Figure 14 : Scenario 1 drift evaluation 

 

Figure 15 : Scenario 2 drift evaluation 

 

Figure 16 : Scenario 3 drift evaluation 

 

Figure 17 : Scenario 4 drift evaluation 

 

 
 

 
Figure 18 : Framework Flow Chart 
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