
COMPUSOFT, An international journal of advanced computer technology, 9(8), August-2020 (Volume-IX, Issue-VIII)

3798

This work is licensed under Creative Commons Attribution 4.0 International License.

NEURAL NETWORK VISUAL ODOMETRY BASED

FRAMEWORK FOR UAV LOCALIZATION IN GPS DENIED

ENVIRONMENT

1
Mohamed Ali SEDRINE,

2
Wided SOUIDENE MSEDDI,

3
Rabah ATTIA

Tunisia Polytechnic School, SERCOM Lab, Tunisia Polytechnic School, Carthage University, La Marsa, Tunisia & L2TI,

Paris 13 University, Paris, France
1
sedrinedali@gmail.com,

2
wided.souidene@ept.u-carthage.tn,

3
rabah.attia@enit.rnu.tn

Abstract: This paper presents a vision-based localization framework based on visual odometry.Visual odometry is a classic

approach to incrementally estimate robot motion even in GPS denied environment, by tracking features in successive images. As

it is subject to drift, this paper proposes to call a convolutional neural netwok and visual memory to improve process accuracy.

In fact, our framework is made of two main steps. First, the robot builds its visual memory by annotating places with their

ground truth positions. Dedicated data structures are made to store referenced images and their positions. Then, during

navigation step, we use loop closure corrected visual odometry. A siamese convolutional neural network allows us to detect

already visited positions. It takes as input current image and an already stored one. If the place is recognized, the drift is then

quantified using the stored position. Drift correction is conducted by an original two levels correction process. The first level is

directly applied to the estimation by substracting the error. The second level is applied to the graph itself using iterative closest

point method, to match the estimated trajectory graph to the ground truth one.

Experiments showed that the proposed localization method has a centimetric accuracy.

Keywords:visual odometry, localization, loop-closure, deep learning, convolutional neural network

I. INTRODUCTION

Now a days autonomous vehicles are developed

for various applications such as agriculture, transportation

and security. In order to improve their performances and

accuracy, communities focused their attention on

autonomous vehicles. Despite these efforts, mobile robots

location and orientation estimation is still a main issue.

However, available commercial products depend on GPS to

perform this task. Such sensors suffer from lack of

precision, unavailability and can be jammed. In fact,

commercial GPS systems generate errors of the order of

meters and can’t be reliable in critic tasks. GPS with better

percision are expensive. Besides, positionning systems and

satellites are goverments and states property which is a

strategic matter.

Regarding these constraints, other alternatives could be

adopted like vision based approaches. The main advantage

of visual sensors is that they are inexpensive and available.

Existing works adopt a wide variety camera based

approaches. Monocular, stereo or omnidirectional cameras

were used. Besides, visual odometry and visual

Simultaneous Localization and Mapping (SLAM) are most

common algorithms. While SLAM aims to build robot

surroundings model and localize it locally, visual odometry

calculates robot egomotion by incrementing relative

rotations and translations estimations. These estimations

are made by extracting features from incoming frames and

matching them. This process leads to incremental drift

growth. To decrease the drift, some methods consist in

fusing visual odometry with other sensors like Inertial

Measurment Units (IMUs) or gyros using filters. Other

Available online at: https://ijact.in

Date of Submission

Date of Acceptance

29/06/2020

27/08/2020

Date of Publication 10/09/2020

Page numbers 3798-3809 (12 Pages)

ISSN:2320-0790

https://ijact.in/index.php/ijact/issue/view/80

COMPUSOFT, An international journal of advanced computer technology, 9(8), August-2020 (Volume-IX, Issue-VIII)

3799

approaches exploit loop closure detection method to

estimate error and reduce it.

Namely, such techniques use loop closure as a constraint to

improve future estimations. This constraint could be

applied to the process itself or to generated graph. Loop

closure detection could also be seen as place recognition. It

is based on learning a database of georeferenced images

then the unmanned vehicle has to match between current

incoming frame and this database. Some works used visual

Bag-of-Words to build the reference database, others used

Deep Learning approaches.

In this paper, we propose a framework which aims to

perform visual odometry correction based on loop closure

detection. The loop closure detection is made using a pre-

trained CNN, presented in a previous paper [19]. Then

visual place recognition will be performed in order to

estimate drift and correct it. Our idea is to perform two-

level correction : graph-level and process-level.

II. RELATED WORKS

Visual Odometry methods were developed for

decades and were applied for many purposes like

augmented reality and autonomous vehicles. Recently,

many works paid attention to this technique. [1] and [2]

could be considered as important works as they explain

different implementations and applications of visual

odometry. A more recent work [3] detailed the evolution of

visual odometry.

In fact, visual odometry is a method that estimates the

vehicle pose using video stream input. It measures image

features transformation between successive frames. Such

technique is cost-efficient and versatile. Many methods

have been developed depending on sensors types

(monocular [4], stereo [5] and omnidirectional [6]) and on

extracted features from frames (feature-based approaches

as in [7] and apparance-based approaches as in [8]).

However, visual odometry suffers from increasing drift.

These errors have many reasons. First of all, imaging

conditions such as light, blur, textures lead to a low

estimation accuracy, due to the lack of informations in the

image and unaccurate pixel displacement measurement.

Add to that, the calibration errors are accumulated at each

iteration. Another limitation of visual odometry process, is

its unability to estimate scale, particularly for monocular

variant like it is noted in [9]. All these drawbacks and

limitations led researchers to look for solutions to reduce

the drift.

[2] explains drift propagation and presents some ways to

reduce the errors. One way is to use pose optimization. It

consists in using known successive transformations as

constraints. Loop closure is a constraint that allows to

estimate the drift when a place is revisited. Papers [10] and

[11] use different approaches to detect loop closure, and

different ways to estimate and to correct the drift.

Another way to reduce the errors is to use filtering

methods, in order to merge sensors datas, like in [12] and

[13].

In our proposed method, we use loop closure constraint to

reduce drift .We can classify loop closure detection

methods in two categories. Appearance-based approaches

like [10], [11], [14] and [15]. The second category is more

recent and based on Convolution Neural Networks (CNN),

like [16] and [17].

In [10], the correction is based on estimating the drift

between the pose currently estimated by the visual

odometry algorithm and the pose given when the place was

previously visited. The main idea of [11] is to measure

transformation between first and last frame. If it is equal to

identity then there is loop closure. If not, the correction is

made by back propagating error. In [17], a deep CNN is

used (MobileNetV2) to extract incoming frame features.

These features are coupled to SURF [18] features to gain

invariance. A distance between CNN features is then

calculated to select loop closure detection candidates. Then,

using SURF features and hash function, these candidates

are then filtered to generate final loop closure detection.

In our previous work [19], we compared different

architectures in performing loop-closure detection. It shows

that Siamese ResNet has a good accuracy, up to 94%.

In this paper we were inspired by [20] and [21]in

the implemention of a visual memory. Yet, our method

uses visual odometry as position estimation technique.

Besides, our key frame selection criterion is based on the

traveled distance. In fact, authors in [20] introduce a vision

based navigation and guidance system. It uses the scenes

appearances as descriptor and stores them. The system

needs a learning stage that acquires a set of key frames to

build visual reference path. The set of key frames is then

used during a localization stage when the vehicle is in

autonomous mode. In the other hand, [21] presents a vision

navigation system based on three stages which are memory

building, localization and servoing. It uses also a set of key

frames to build a visual route. Athors used Harris corner

detector [22] as a criterion to guide key frame selection.

The memorized visual route is explored to localize the

robot.

Finally, [23] presents a hybrid visual odometry method for

Micro Aerial Vehicles (MAVs). Besides, it implements

mapping task. In fact, the framework is made of two

parallel threads, one for estimating the camera motion, and

a second one for mapping, like in [24]. The camera motion

is estimated through sparse model-based image alignment

which seeks to find the transformation that minimizes the

photometric error. It tracks patches brightness and gradient

information.

Through this work, we seek to introduce an original and

novel framework implementing monocular feature-based

visual odometry, combined with CNN to achieve loop-

closure detection. Our approach is structured in two stages,

the first one for learning and the second one for

localization. We don’t focus on control step in this work.

The next section is dedicated to detail our method.

COMPUSOFT, An international journal of advanced computer technology, 9(8), August-2020 (Volume-IX, Issue-VIII)

3800

III. PROPOSED APPROACH

A. Overview

Our approach is focused on feature-based

monocular visual odometry which is improved using

external sensors and constrained by loop closure detection.

It is based on two main steps.

The first one is Learning Step, where the autonomous

vehicle builds its visual memory. This memory is made of

key frames and positions. It is needed to improve the

second step which is the Localization Step.

The second step core is visual odometry (Fig.1). The visual

odometry, here, has two main objectives : it estimates

robot’s 2D positions and altitude information from

altimeter and turns2D position estimation into 3D position

estimation. As monocular visual odometry is unable to

guess the scale, i.e traveled distance between two

successive images [1], we extract velocity information

from speed sensor to ensure traveled distance estimation.

This information allows to know the traveled distance

between two captures. Besides, in order to reduce visual

odometry drift, a loop closure detection module is called.

This one is based on a CNN (Siamese ResNet), it has been

presented in our previous paper [19]. In fact, during

localization step, the loop closure detection system

compares incoming frame with key frames stored in the

already built visual memory. The comparison is supervised

by the estimated position to decrease processing time. Once

a matching is detected by the system, we apply a two stage

correction. A drift correction is applied into visual

odometry core, and the Localization estimation graph is

then optimized using Iterative Closest Point (ICP) method.

Through this work, we propose not only to tackle visual

odometry correction methods but also an original

localization method for mobile robots in general and for

UAVs in particular. The novelty in this work is the use of

CNN in loop closure detection besides the two level

correction. In the other hand, unlike [20] and [21], we make

use of visual odometry as core process of localization step.

Next subsections are dedicated to highlight each step of our

proposed approach.

B. Loop Closure Detection Based On CNN

As presented in [19], we selected state-of-the-art

CNNs which are AlexNet [25], GoogLeNet [26] and

ResNet [27]. We chose these networks because they are

ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) winners. Loop closure detection can be seen as

binary classification. Such task could be performed by

Siamese networks [28] and Multi-channel networks [29].

That’s why we implemented for each network a Siamese

and a Multi-channel version. Then we obtain six CNNs for

which we compared the respective performances.

Figure 1 : Localization step architecture

In order to compare these six networks, we trained them

using customized dataset made of 9000 image pairs,

splitted into positive and negative pairs equally. Each

network was trained for 30 epochs using 80% of the total

dataset, i.e 7800 pairs.

The validation showed that Siamese ResNet outperforms

other implemented CNNs in performing loop-closure

detection task, as it is highlighted in Table I.

In order to use the Siamese ResNet in our proposed

framework, we have to acquire images. These images

constitute the robot’s visual memory and serve as

reference. That’s why a learning step has to be undertaken.

C. Learning Step

First, we make the assumption that the camera

frame is rigidly linked to the UAV frame. The camera

optical axis has the same direction as the robot longitudinal

axis. We suppose that the CNN used here is already trained

as presented in [19].

Table I: TESTING RESULTS

Network Accuracy TPR TNR

6-Chan AlexNet 87.7% 63.09% 96.2%

6-Chan GoogLeNet 82.38% 65.86% 96.65%

6-Chan ResNet 93.55% 84.64% 97.65%

Siamese AlexNet 93% 91.49% 94.53%

Siamese GoogLeNet 83.61% 88.83% 78.67%

Siamese ResNet 94.83% 96.42% 92.27%

Let the UAV follows a loop like path. This kind of

trajectory includes the properties of both closed and opened

loop trajectories.

COMPUSOFT, An international journal of advanced computer technology, 9(8), August-2020 (Volume-IX, Issue-VIII)

3801

While [20] and [21] used a matching difference threshold,

we build visual memory using a fixed travel distance. In

fact, the path is divided into equidistant points. Let a be the

spatial distance separating points (Fig.2). Then,
1

𝑎
 is the

Learning Spatial Resolution (LSR).

Figure 2 : Learning Spatial Resolution

During learning step we build two data structures to create

the visual memory :

• Referenced Images Dictionary (RID) : it is

dedicated to store images with their ground truth positions.

In fact, we use a key-value data structure, where the key is

the ground truth position and the value is the saved

image.The first frame 𝑰𝒓𝒆𝒇 is grabbed and referenced with

its position. It is useful for initialization and alignment.

Besides, it is used to automatically disable learning mode if

needed. Then, each time the vehicle travels a distance equal

to a, the grabbed frame is pushed into (RID) with its

ground truth position.

• Ground Truth Position List (GTPL) : it is

dedicated to store ground truth positions only. It is an

array-like data structure where we store only the ground

truth position for each grabbed frame during learning step.

The algorithm depicted in figure 3 implements the

Learning stage. As these functions are not the object of our

study, we assume that getFrame(), getPosition() and

getEndLearningEvent() are predefined functions. They

grab incoming frame, read current ground truth position

and return end of learning event respectively. We suppose

also that the camera and position sensor are synchronized.

D. Localization Step

The localization step is launched once the learning

step is ended. The main goal of this step is to localize the

vehicule using its camera stream. It is based on monocular

feature-based visual odometry.

1) Monocular feature-based visual odometry

Visual odometry is the core process of our

method. It was well explained in [1]. We implement SURF

feature detector [18] as feature-based method. In fact, [7]

showed that it outperforms SIFT detector [30]in visual

odometry case.

In the other hand, we focus here on the scale factor

acquisition. We use speed sensor as scale factor provider

and we integrate speed information in our process.

We do this byassuming that instants 𝒕𝒊 and 𝒕𝒊+𝟏 are too

close. If 𝑽𝒕𝒊 is the vehicule linear speed at 𝒕𝒊, then the scale

factor 𝝆𝒊+𝟏 between 𝒕𝒊 and 𝒕𝒊+𝟏 is given by (1).

𝜌𝑖+1 = (𝑡𝑖+1 − 𝑡𝑖)𝑉𝑡𝑖 (1)

As the visual odometry is the core process of the

localization step, improving visual odometry means

improving localization process.

2) Correction

As annouced previously, we propose in this article

an original and new localization prcedure. Namely, we

implement a two step correction in order to impove the

localization performance. The first correction consists in

correcting drift, directly into visual odometry process. The

second correction step is graph based correction where we

use Iterative Closest Point (ICP) process. In fact, ICP

allows to minimize the error between estimation graph and

ground truth graph. As far as we read, this is the first time

that such a localization process is proposed in the

litterature.

Figure 3 : Learning Step Algorithm

As we did during learning step where we

introduced Learning Spatial Resolution (LSR), we define

COMPUSOFT, An international journal of advanced computer technology, 9(8), August-2020 (Volume-IX, Issue-VIII)

3802

here the Correction Spatial Resolution (CSR). Let
𝟏

𝒃
 be the

CSR. The vehicle trajectory is divided into segments

having the same length, which is the CSR as depicted in

(Fig. 4). Besides, we assume that 𝑏 ≥ 𝑎 This condition

guarantees the fact that between two correction attempts we

have at least one ground truth information.

Figure 4 : Correction Spatial Resolution

The estimated positions coming from visual

odometry process are stored in an array like data structure,

called Estimated Position List (EPL).When the robot

travels a distance equal to b, the visual odometry starts to

drift. So we have to undertake the first correction stage,

which is directly applied into visual odometry process.

1) Let 𝑴 be the EPL length. The last estimated position

EPM is projected on the ground truth path, given by

GTPL. It is the closest position saved in GTPL to

EPLM.

Its projection on the ground truth path is given by

equation (2) and figure 5.

𝐺𝑇𝑃𝐿𝑚𝑖𝑛 = 𝑎𝑟𝑔 min
𝐺𝑇𝑃𝐿𝑖∈𝐺𝑇𝑃𝐿

(∥ 𝐸𝑃𝐿𝑀 − 𝐺𝑇𝑃𝐿𝑖 ∥) (2)

Figure 5 : Projection estimated position on ground truth

2) Then, we look for the closest saved image to the last

grabbed frame. In fact, we search for the closest

referenced image to 𝑮𝑻𝑷𝑳𝒎𝒊𝒏. This can be made using

the key-value data structure RID, as the closest image to

𝑮𝑻𝑷𝑳𝒎𝒊𝒏 has the closest key.

Let DKL be the RID keys list. The closest key to

𝑮𝑻𝑷𝑳𝒎𝒊𝒏 is given by the following equation.

𝐷𝐾𝐿𝑚𝑖𝑛 = 𝑎𝑟𝑔 min
𝐷𝐾𝐿𝑖∈𝐷𝐾𝐿

(∥ 𝐺𝑇𝑃𝐿𝑚𝑖𝑛 − 𝐷𝐾𝐿𝑖 ∥) (3)

Thus, if 𝑹𝑰𝒎𝒊𝒏 is the closest reference image to

𝑮𝑻𝑷𝑳𝒎𝒊𝒏, then 𝑅𝐼𝑚𝑖𝑛 = 𝑅𝐼𝐷𝐷𝐾𝐿𝑚𝑖𝑛 . As 𝑹𝑰𝒎𝒊𝒏 is the

closest reference image to 𝑮𝑻𝑷𝑳𝒎𝒊𝒏, and as 𝑮𝑻𝑷𝑳𝒎𝒊𝒏is

the closest ground truth position to 𝑬𝑷𝑳𝑴, then 𝑹𝑰𝒎𝒊𝒏

is the closest to 𝑬𝑷𝑳𝑴.

We note 𝐼𝑀 the last grabbed frame, which coordinates

are 𝐸𝑃𝐿𝑀 .

3) This step can be seen as a local loop closure detection.

In fact, the CNN is called to compare 𝐼𝑀 with 𝑹𝑰𝒎𝒊𝒏.

The CNN returns the similarity between 𝑹𝑰𝒎𝒊𝒏 and 𝐼𝑀 .

If the similarity is above a threshold, we can refer to

𝐺𝑇𝑃𝐿𝑚𝑖𝑛 as reference location and assume that

𝐺𝑇𝑃𝐿𝑚𝑖𝑛 is the correct location. So this allow us to

quantify and estimate the drift (translation drift) in

𝐸𝑃𝐿𝑀 . If the similarity is under the threshold, then we

start a new iteration.

The detection threshold is defined by the user and kept

constant during all the process. In our case, we chose

the threshold defined during the CNN training.

The drift quantification is inspired by [10]. The error 𝜔

is given by the equation (4).

𝜔 = 𝐺𝑇𝑃𝐿𝑚𝑖𝑛 − 𝐸𝑃𝐿𝑀 (4)

4) Once the drift is estimated, it is used to correct visual

odometry process. Here we propose to compensate the

error directly in the visual odometry.

Visual odometry, at each iteration, concatenates relative

translation and rotation to give absolute ones [1]. This

can be explained by the following equations.

𝑇𝑖 = 𝑇𝑖−1 + 𝜌𝑖 ⋅ 𝑅𝑖−1 ⋅ 𝑇(𝑖−1)→𝑖 (5)

𝑅𝑖 = 𝑅(𝑖−1)→𝑖 ⋅ 𝑅𝑖−1 (6)

With 𝑇𝑖 is the absolute translation at the 𝑖𝑡ℎ iteration

and 𝑇(𝑖−1)→𝑖 the relative estimated translation between

frames (𝑖 − 1) and 𝑖.

Similarly, 𝑅𝑖 is the absolute rotation after grabbing the

frame 𝑖 and 𝑅(𝑖−1)→𝑖 is the estimated rotation between

frames (𝑖 − 1) and 𝑖.

Besides, 𝜌𝑖 is the relative displacement between (𝑖 − 1)
and 𝑖, and it is given equation (1).

As it is mentioned in the literature, the accumulated

translation 𝑇𝑖 contains the current estimated position. In

fact, 𝑇𝑖 components are equal to 𝐸𝑃𝐿𝑀 ones. Using

error estimation 𝜔 (equation (4)), our goal is to drop the

error to 0. We apply this equation to correct visual

odometry translation error.

𝑇𝑖𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑇𝑖 + 𝜔 (7)

The previously desrcibed procedure allows to locally

cancel the error. In fact, theorically, if 𝐷 is the trajectory

length, then we should have
𝐷

𝑏
 points where the error is

COMPUSOFT, An international journal of advanced computer technology, 9(8), August-2020 (Volume-IX, Issue-VIII)

3803

close to 0 (Figure 6). Between these points, the odometry

estimation error is random and trends to increase.

This shows that transaltion correction is unsufficient.

That’s why a second step has to be undertaken. The goal of

this second step is to cancel the drift between correction

points. Our idea is to optimize the segments between two

correction points.

The second correction stage is applied on graph, i.e

applied on the corrected visual odometry output. We want

to locally minimize the deviation between the estimated

trajectory and the ground truth points clouds.

Figure 6 : Correction first step : process oriented correction

In our case, the ICP alogrithm takes a sub-array of GTPL

and a sub-array of EPL. Although, the inputs must have the

same size. However, GTPL has a constant size, but EPL

size is growing every frame. Then, the main challenge in

this step is to synchronize sub-arrays sizes. We have to find

the starting and ending indexes allowing to extract

convenient sub-arrays from EPL and GTPL.

Let 𝑙𝑐𝑖 be the last correction index. So the sub-array

extracted from EPL, called 𝑠𝑢𝑏𝐸𝑃𝐿 is defined as follows :

𝑠𝑢𝑏𝐸𝑃𝐿 = {𝐸𝑃𝐿𝑖 ; 𝑙𝑐𝑖 ≤ 𝑖 < 𝑀} (8)

Where 𝑴 is EPL size.

So 𝑠𝑢𝑏𝐸𝑃𝐿 starting index is 𝑙𝑐𝑖 and ending index is 𝑀 − 1.

Besides, its size is 𝑀 − 𝑙𝑐𝑖.

Now we have to extract a sub-array from GTPL, let us call

it 𝑠𝑢𝑏𝐺𝑇𝑃𝐿. However, 𝑠𝑢𝑏𝐺𝑇𝑃𝐿 has to verify two

constraints :

 • The ending index has to not exceed 𝑁 − 1,

where 𝑁 is GTPL size.

 • Its size has to be equal to 𝑠𝑢𝑏𝐸𝑃𝐿 size, i.e

(𝑀 − 𝑙𝑐𝑖).

The starting index is the index of the ground truth position

that corrected 𝐸𝑃𝐿𝑙𝑐𝑖 . Let 𝑙𝑚𝑖 be 𝑠𝑢𝑏𝐺𝑇𝑃𝐿 starting index.

Thus, we have to adopt a circular indexation system. In

fact, if the ending index exceeds 𝑁 − 1, we have to start

again from 0. So, having the starting index of 𝑠𝑢𝑏𝐺𝑇𝑃𝐿

which is 𝑙𝑚𝑖, theorically the ending index is 𝑙𝑚𝑖 + (𝑀 −
𝑙𝑐𝑖). But, in order to ensure circle-like indexation, we have

two cases.

First case is where 𝒍𝒎𝒊 + (𝑴− 𝒍𝒄𝒊) < 𝑵. Then, the

𝑠𝑢𝑏𝐺𝑇𝑃𝐿 is defined as follows

𝑠𝑢𝑏𝐺𝑇𝑃𝐿 = {𝐺𝑇𝑃𝐿𝑖 ; 𝑙𝑚𝑖 ≤ 𝑖 < 𝑙𝑚𝑖 + (𝑀 − 𝑙𝑐𝑖)} (9)

Figure 7 : Extracting subGTPL : first case

Second case is where 𝒍𝒎𝒊 + (𝑴− 𝒍𝒄𝒊) ≥ 𝑵. Then,

the 𝑠𝑢𝑏𝐺𝑇𝑃𝐿 is defined as follows:

𝑠𝑢𝑏𝐺𝑇𝑃𝐿 = {𝐺𝑇𝑃𝐿_𝑖; 𝑙𝑚𝑖 ≤ 𝑖 < 𝑁} ∪ {𝐺𝑇𝑃𝐿_𝑖; 0 ≤ 𝑖 <
(𝑀 − 𝑙𝑐𝑖) − (𝑁 − 𝑙𝑚𝑖)} (10)

We can see from equations (9) and

Error! Reference source not found. that we verifiy the

ending index constraint. It doesn’t exceed N-1. Besides,

equations (9) and Error! Reference source not found.

ensure that 𝑠𝑢𝑏𝐺𝑇𝑃𝐿 has the same size of 𝑠𝑢𝑏𝐸𝑃𝐿, which

is (𝑀 − 𝑙𝑐𝑖).

From equation (9) :

length is 𝑙𝑚𝑖 + (𝑀 − 𝑙𝑐𝑖) − 𝑙𝑚𝑖 = 𝑀 − 𝑙𝑐𝑖.

From equation Error! Reference source not found. :

length is (𝑁 − 𝑙𝑚𝑖) + (𝑀 − 𝑙𝑐𝑖) − (𝑁 − 𝑙𝑚𝑖) = 𝑀 − 𝑙𝑐𝑖.

This is the proof that in all cases ICP inputs have

the same sizes. By applying ICP on two subsets of GTPL

and corrected EPL, we undertook the second correction

stage. Thus, the error between two subsequent translation

corrections is minimized. Then, thanks to this second

correction step, the drift won’t increase. Estimated

trajectory tries to clamp to the ground truth (Fig. 9).

COMPUSOFT, An international journal of advanced computer technology, 9(8), August-2020 (Volume-IX, Issue-VIII)

3804

Figure 8 : Extracting sub GTPL : second case

In this section, we detailed our proposed approach. In

summary, first, a visual memory is built. It is made of two

data structures. One is dedicated to store all acquired

ground truth positions and the second stores key frames

referenced by their true positions. Then comes the

localization/navigation step. It can be seen as a corrected

monocular visual odometry process. The correction is

called when the trained CNN detects a matching between

current grabbed and a stored key frame. Besides, it is made

of two stages. The first correction stage is a translation that

brings back the error to zero. It is applied on visual

odometry translation estimation. The second correction

consists in ICP algorithm which applied a posteriori

between two successive translations. It allows to minimize

the error between the ground truth graph and estimated

trajectory graph. Figure 18 shows the whole framework

flowchart.

In the next section, we will discuss this approach

performances through experiments.

Figure 9 : Correction after applying ICP

IV. EXPERIMENTS

In this section, our framework experimental tests

are presented. First, the tests platform will be presented.

Then, we are going to highlight some results and test

performances.

A. Hardware and software environment

configuration

The tests are performed on a motherboard having

an intel i3, 2.3GHz quadcore processor and 12 GB RAM.

Besides, the flying vector is simulated using V-REP

Simulation Software. It has a distributed architecture based

on network client-server concept. This simulator could

virtualize and handle many types of robots, sensors and

environments.

In our case, we use a quadrotor having a forward looking

camera, an altimeter and a speed sensor. The camera used

in this simulation has 512x512 resolution and 10fps

framerate.

In the other hand, as we mentioned it in [19], our CNN was

trained on Google Colaboratory platform, using Intel Xeon

2.20GHz processor, 12 GB RAM and NVidia Tesla K80

GPU. Its training dataset contains images taken from VREP

and from Bonn University’s Visual Place Recognition

dataset
1
.

In order to experiment our approach, and ensure its

robustness, we generated different scenarios which we are

going to present in the next section.

B. Experimentation Scenarios

We tested our method in different conditions. We

chose four of them. Two scenarios have a closed loop

trajectory. Besides, one of the chosen scenarios is in urban-

like environment, and the other ones are in an indoor,

office-like environment. Table II details these scenarios

specs.
Table II: SCENARIOS PROPERTIES

Scenario 1 2 3 4

Trajectory shape Loop 8-like S-like Straight line

Closed Loop Yes Yes No No

Length (m) 24 42.5 22 115

Indoor/Outdoor Indoor Indoor Indoor Outdoor

UAV speed (m/s) .5 .5 .5 1

1

𝐶𝑆𝑅
= 𝑎(m) .5 .5 .5 1

1

𝐿𝑆𝑅
= 𝑏(m) 2 2 2 4

During learning step we build navigation memory by

creating wo data structures GTPL and RID. One way of

evaluating our algorithm performances is to quantify its

memory footprint which is presented in the next section.

C. Memory footprints

As detailed in Section 3.3, we append incoming

datas to two different data structures. As they are growing

incrementally, we have to ensure the growth limit and

quantify its the memory.

First, GTPL is an array-like data structure. As a position is

an array of three floats (x, y and z), GPTL is an array of

arrays of floats. Then, RID is a map made of keys, which

are positions (array of floats), and values, which are

512x512 RGB images.

The following table shows the size of GTPL and RID for

each scenario after the end of learning loop.

Table III: GTPL AND RID SIZES

1 http://www.ipb.uni-bonn.de/data/visual-place-recognition-datasets

COMPUSOFT, An international journal of advanced computer technology, 9(8), August-2020 (Volume-IX, Issue-VIII)

3805

Scenario 1 2 3 4

GTPL size in KB 5.367 8.813 3.227 2.477

RID size in KB 4.852 5.914 2.906 9.500

All the data amounts presented in table III are under 10KB,

which is relatively low. If we consider the average memory

footprint per meter, we find that it is around 0.35 KB/m for

scenarios 1, 2 and 3 with 0.5 m/s speed, and 0.105 KB/m

for the scene 4, having 1 m/s speed. Figures 10 to 13 show

the memory footprint evolution for each datastructure of

each scene. We mention that these evolutions can be

approximated by linear functions

This demonstrates that not only our approach consumes

low memory but also the memory footprint growth is linear

to the path length. This allows us to estimate the global

needed memory space.

In the next section, we are going to discuss our framework

localization accuracy.

Figure 10 : Scene 1 memory footprint

Figure 11: Scene 2 memory footprint

D. Errors Estimation

1) Estimated trajectories

Table IV presents ground-truth, estimated

trajectory without ICP and estimated trajectory with ICP.

Top view (2D) figures enhance the fact that the one level

correction (blue graphs) is based on translation only. In

fact, the error is growing and the drift is increasing

progressively. Then, the translation corrects the drift and

brings the estimated trajectory to the ground truth one. This

gives to blue trajectories a discontinous and ticky aspect.

However, the two level correction graphs (red graphs) are

smoother and clamp to ground truth paths (green graphs).

This shows that the ICP improves the estimation. Globally,

two levels corrected trajectories fit more to ground truth,

are smoother and seem to be more reliable.

Figure 12 : Scene 3 memory footprint

Figure 13 : Scene 4 memory footprint

In the other hand, 3D view images show that there is

altitude changes which were purposly introduced. In fact, it

serves to evaluate altitude estimation given by the

altimeter. It allows also to know if the altitude changes

interfere with 2D position estimation. First, in constant

altitude sectors, 2D estimation keeps the same behaviour as

during altitude changes. This means that altitude variations

don’t affect vision oriented localization and correction. In

the other hand, altitude estimation based on the altimeter is

reliable as it is close to the ground truth.

COMPUSOFT, An international journal of advanced computer technology, 9(8), August-2020 (Volume-IX, Issue-VIII)

3806

Finally, Scene 4 figures shows noisy estimations. This is

due to the noise of visual odometry process. It is coming

from a longer course, and the relatively difference in

textures.

2) Drifts

In this section, we are going to evaluate drifts and

errors. This quantifies how reliable our framework is.

Figures 14, 15, 16 and 17 have two continous line graphs

each. Red are for two level corrections and blue are for one

level correction. Averages are given by dashed lines.

First, for all these figures, ICP corrected estimations have

smaller drifts than one level corrected estimations. Then,

errors are bounded in figures 14, 15 and 16. Errors never

exceeded
1

𝐿𝑆𝑅
= 𝑏. Besides, the translation correction is

visible when the blue curve (correction without ICP) drops

down instantaneously. This happens when distance 𝑏 is

traveled. Then, the CNN is called, the place is recognized,

the error is estimated and the translation is applied.

In the other hand, between two successive corrections, ICP

corrected trajectories error still approximately constant

while one step correction gives highly increasing error.

Generally, in our experiments, two level corrected

estimations have errors that still below one level corrected

ones, except some local points.

Quantitavely, table V gives errors averages for

each scene. The lateral average error for the ICP corrected

trajectories never exceeds 1.5% of the total trajectory

length. Finally, applying ICP helps to gain some

centimeters of accuracy. Sure its a small gain quatitavely

but ICP gives smoother trajectory estimation and more

similar to ground truth.

Table V : ERRORS AVERAGE

Scenario 1 2 3 4

Error average with

ICP (m)

 0.118 0.198 0.208 1.63

Error average

without ICP (m)

 0.220 0.268 0.268 1.67

3) Discussions and Contributions

The experiments showed that the proposed

method allows to accurately localize a mobile vector. This

task is mainly based on monocular camera. A first step

consists in building visual memory. As it is demonstrated

by the experiments, it is not memory consuming and can be

used in large scale environment. The second step is the

localization. It is made of a translation to reduce local error,

and ICP to optimize the estimated trajectory. Tests

highlighted the fact that the error is low and that ICP allows

to improve accuracy

Our work can be seen as a multidisciplinary paper. In fact,

it tackles visual odometry correction methods and proposes

a novel localization method for UAVs.

This can be seen in :

• Using visual odometry during localization step, unlike

[20] and [21]

• Using traveled distance as key frame selection

criterion

• Using CNN in loop closure detection and visual

odometry correction

• Applying two stages correction, process based

correction and graph based correction

• Exploiting speed sensor as scale factor provider

V. CONCLUSION

In this paper we proposed an original vision based

method to localize mobile robots. This framework can be

summed up in building visual memory which serves as

reference during localization process. This one is based on

monocular visual odometry. In order to correct visual

odometry drift, we call a customized CNN to compare

incoming images with the already built visual memory.

Then, two level correction is applied. First, the quantified

drift is compensated in visual odometry by introducing a

translation. Second, the trajectory graph is optimized by

using ICP.

Experiments gave satisfying results. Memory requirements

are low, two level corrected estimation aspect is similar to

ground truth and estimation error is small.

Future works will be devoted first to improve the

estimation. Besides, we will tackle navigation and control

tasks. In fact, we will focus on trajectory planning and

visual control. This can be improved by working on

obstacles detection and avoidance.

COMPUSOFT, An international journal of advanced computer technology, 9(8), August-2020 (Volume-IX, Issue-VIII)

3807

Table IV : 2D A 3D ESTIMATED AND GROUND-TRUTH TRAAJECTORIES VIEWS

Scene

name

Top View (2D) 3D View

Scene 1

Scene 2

Scene 3

COMPUSOFT, An international journal of advanced computer technology, 9(8), August-2020 (Volume-IX, Issue-VIII)

3808

Figure 14 : Scenario 1 drift evaluation

Figure 15 : Scenario 2 drift evaluation

Figure 16 : Scenario 3 drift evaluation

Figure 17 : Scenario 4 drift evaluation

Figure 18 : Framework Flow Chart

COMPUSOFT, An international journal of advanced computer technology, 9(8), August-2020 (Volume-IX, Issue-VIII)

3809

VI. REFERENCES

[1]Scaramuzza, D. and Fraundorfer, F. 2011. ”Visual Odometry [Tutorial],” in

IEEE Robotics & Automation Magazine, vol. 18, no. 4, pp. 80-92.

[2]Fraundorfer, F. and Scaramuzza, D. 2012.“Visual odometry: Part ii -

matching, robustness, and applications,” in IEEE Robotics & Automation

Magazine - IEEE Robotics & Automation Magazine, vol. 19, pp. 78–90.

[3]Poddar, Shashi et al. (2018). “Evolution of Visual Odometry Techniques.”

[Online]. Available: https://arxiv.org/ftp/arxiv/papers/1804/1804.11142.pdf.

[Accessed April 2020]

[4]Jiang, Y.; Xiong, G.; Chen, H. and Lee, D.-J.2014.“Incorporating a

Wheeled Vehicle Model in a New Monocular Visual Odometry Algorithm for

Dynamic Outdoor Environments.”, in Sensors, 14, pp. 16159-16180.

[5] Siddiqui,J. R. and Khatibi, S. 2014.“Robust visual odometry estimation of

road vehicle from dominant surfaces for large-scale mapping”, in IET

Intelligent Transport Systems 9.

[6]Scaramuzza, D. and Siegwart, R.2008.“Monocular Omnidirectional Visual

Odometry for Outdoor Ground Vehicles.”,in: Gasteratos A., Vincze M.,

Tsotsos J.K. (eds) Computer Vision Systems. ICVS. Lecture Notes in

Computer Science, vol 5008. Springer, Berlin, Heidelberg.

[7]Houssem Eddine Benseddik, Oualid Djekoune, and Mahmoud Belhocine.

2014. “SIFT and SURF Performance Evaluation for Mobile Robot-Monocular

Visual Odometry,” in Journal of Image and Graphics, Vol. 2, No. 1, pp. 70-

76.

[8] Yu, Y., Pradalier, C., and Zong, G. 2011. “Appearance-based monocular

visual odometry for ground vehicles”, in IEEE/ASME International

Conference on Advanced Intelligent Mechatronics (AIM), pp. 862-867.

[9] Zhou, D., Dai, Y., and Li, H. 2016. “Reliable scale estimation and

correction for monocular Visual Odometry.”, in IEEE Intelligent Vehicles

Symposium (IV), pp. 490-495.

[10]Caramazana, L.; Arroyo ,R. and Bergasa, L. M. 2016.“Visual odometry

correction based on loop closure detection”, inOpen Conference on Future

Trends in Robotics, pp. 97-104.

[11]Daneshmand, M.; Avots, E. and Anbarjafari, G. 2018.“Proportional error

back-propagation (peb): Real-time automatic loop closure correction for

maintaining global consistency in 3d reconstruction with minimal

computational cost,”in Measurement Science Review 18, pp. 86–93.

[12]Sirtkaya, S.; Seymen, B. and Alatan, A. A. 2013.“Loosely coupled

Kalman filtering for fusion of Visual Odometry and inertial navigation”, in

Proceedings of the 16th International Conference on Information Fusion, pp.

219-226.

[13]Li, M. and Mourikis, A. I. 2012.“Vision-aided inertial navigation for

resource-constrained systems”, in IEEE/RSJ International Conference on

Intelligent Robots and Systems, pp. 1057-1063.

[14] Filliat, D. 2007.“A visual bag of words method for interactive qualitative

localization and mapping,” in Proceedings ofIEEE International Conference

on Robotics and Automation, Roma, pp. 3921-3926.

[15]Garcia-Fidalgo, E. and Ortiz, A. 2018.“iBoW-LCD: An Appearance-

Based Loop-Closure Detection Approach Using Incremental Bags of Binary

Words,” in IEEE Robotics and Automation Letters, vol.3, n 4, pp. 3051-3057.

[16] Ma, J.; Qian, K.; Ma, X. and Zhao, W. 2018. “Reliable Loop Closure

Detection Using 2-channel Convolutional Neural Networks for Visual

SLAM,” in37th Chinese Control Conference (CCC), pp. 5347-5352.

[17] An, S.; Che, G.; Zhou, F.; Liu, X.; Ma, X. andChen,Y. 2019. “Fast and

incremental loop closure detection using proximity graphs”.[Online].

Available: https://arxiv.org/pdf/1911.10752v1.pdf. [Accessed April 2020]

[18]Bay, H.; Ess, A.; Tuytelaars, T. and Van Gool, L. 2008. “Speeded-Up

Robust Features (SURF),” inComputer Vision and Image Understing, pp.

346–359.

[19]Sedrine, M. A.; Souidène Mseddi, W.; Abdellatif, T. and Attia, R. 2019.

“Loop Closure Detection for Monocular Visual Odometry: Deep-Learning

Approaches Comparison.” in 15th International Conference on Signal-Image

Technology & Internet-Based Systems (SITIS) (2019): 483-490.

[20]Sabatini, R.; Bartel, C.; Kaharkar,A. and Shaid, T. 2012. “Design and

integration of vision based sensors for unmanned aerial vehicles navigation

and guidance,” in Optical Sensing and Detection II

[21] Courbon, J.; Mezouar, Y.; Guenard, N. ; and Martinet, P. 2010.

“Vision‐based navigation of unmanned aerial vehicles,” in Control

Engineering Practice, pp. 789–799.

[22]Harris, C. and Stephens, M. 1988.“A combined corner and edge detector,”

in Proceedings 4th Alvey Vision Conference, pp. 147–151.

[23]Forster,C.; Pizzoli,M.; and Scaramuzza,D. 2014. “SVO: Fast semi-direct

monocular visual odometry,” in IEEE International Conference on Robotics

and Automation, pp. 15-22.

[24]Klein, G. and Murray, D. 2007.“Parallel Tracking and Mapping for Small

AR Workspaces,” in6th IEEE and ACM International Symposium on Mixed

and Augmented Reality, pp. 225-234.

[25]Krizhevsky, A.; Sutskever, I. and Hinton, G. E. 2012. “ImageNet

classification with deep convolutional neural networks”, in Proceedings of the

25th International Conference on Neural Information Processing Systems -

Volume 1, pp. 1097–1105.

[26]Szegedy, C.; Liu,W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.;

Erhan, D.; Vanhoucke, V. and Rabinovich, A. 2015. “Going deeper with

convolutions”, in IEEE Conference on Computer Vision and Pattern

Recognition, pp. 1-9.

[27]Szegedy, C.; Ioffe, S.; Vanhoucke, V. and Alemi, A. A. 2017. “Inception-

v4, inception-ResNet and the impact of residual connections on learning.”,in

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,

pp. 4278–4284.

[28]Bromley, J.; Bentz, J. W.; Bottou, L.; Guyon, I.; LeCun, Y.; Moore,Y. et

al. 1993. “Signature verification using a siamese time delay neural network”,

in International Journal for Pattern Recognition and Artificial Inteligence.,

vol. 7, no. 4, pp. 669-687.

[29]Zagoruyko, S. and Komodakis, N. 2015.“Learning to compare image

patches via convolutional neural networks,” in IEEE Conference on Computer

Vision and Pattern Recognition, pp. 4353-4361.

[30]Lowe, D.2004. “Distinctive image features from scale-invariant

keypoints”, in International Journal of Computer Vision 60, pp. 91–110.

https://arxiv.org/ftp/arxiv/papers/1804/1804.11142.pdf
https://arxiv.org/pdf/1911.10752v1.pdf

