
COMPUSOFT, An international journal of advanced computer technology, 9(10), October-2020 (Volume-IX, Issue- X)

3856

This work is licensed under Creative Commons Attribution 4.0 International License.

SOFTWARE TESTING BY USING THE BLACK-BOX METHOD AND

THE EQUIVALENCE PARTITION TECHNIQUE TO PREDICT THE

ACCURACY OF THE NEURAL NETWORK BASE

Zulkifli*
1
, Ford Lumban Gaol

2
, Harco Leslie Hendric Spits Warnars

3
, Benfano Soewito

4

1
Computer Science Department, BINUS Graduate Program – Doctor of Computer Science, Bina Nusantara

University Jakarta, Indonesia 11480
2,3,4

Computer Science Department, BINUS Graduate Program – Doctor of Computer Science, Bina Nusantara

University Jakarta, Indonesia 11480

*Correspondent Author Email: Zulkiflist31@gmail.com

Abstract: A neural network algorithm is an artificial nervous system or artificial neural network, it is a physical

cellular system that can acquire, store and use the knowledge gained from experience for activation using bipolar

sigmoid where the output value ranges from -1 to 1. Because there is a yet of a neural network algorithm model to

predict the level of accuracy in terms of software testing, the equivalent partitions black-box technique is used.

The black-box software testing method is a testing approach where the data comes from defined functional

requirements regardless of the final program structure, and the technique used is equivalent partitions. The design

of the accurate prediction of this research is by determining the college application as the software to be tested,

then testing it using the black-box method with the equivalence partitions technique. This test was chosen because

it will find software errors in several categories. From black-box testing, a dataset is obtained to measure the

accuracy of real output and predictive output. The last step is to calculate the error, RSME from the real output,

and the predicted output. Furthermore, the final results of the research on the neural network algorithm that is

applied to determine the prediction of the accuracy level of black-box software testing with the equivalent

partitioning technique is the average accuracy above 80%.

.

Keywords—Neural Network, Black-Box, Equivalence Partitions.

I. INTRODUCTION

Software testing is a program execution process

that has an objective of finding errors [1]. Software

testing should find unintended errors, and the test is

declared successful if it is successful in correcting

those errors. Black-box software testing defined as a

testing process that tries to find errors in several

categories, including malfunction, interface error,

data structure error, performance error, initialization

error, and termination [2]. From the background, the

researcher will make ―the design of the neural

network algorithm based accuracy prediction for

software testing black-box method with the

equivalence partitions technique.‖

II. METHOD

The following is a picture of the method in this

research, and the higher education application is the

software to be tested.

Available online at: https://ijact.in

Date of Submission

Date of Acceptance

16/08/2020

20/09/2020

Date of Publication 31/10/2020

Page numbers 3856-3859 (4 Pages)

ISSN:2320-0790

mailto:Zulkiflist31@gmail.com
https://ijact.in/index.php/ijact/issue/view/80

COMPUSOFT, An international journal of advanced computer technology, 9(10), October-2020 (Volume-IX, Issue- X)

3857

Fig. 1. The method of software testing black-box

method of equivalence partitions technique

The above figure illustrates the method used in this

research, with the following stages: the higher

education application is software that is being

software to be tested, and then the software will be

tested using the black-box method of equivalence

partitions technique. The results of software testing,

this dataset become training data, and part of it will

be examining data, then this dataset will be

predicted for accuracy with a neural

network algorithm by comparing reality target data

with predictive data from testing data, then finally

counting the output error value and RSME.

A.The Design of Software Testing Prediction Model

The design of the software testing prediction

model can be seen in Figure 2, namely:

Fig. 2. The design of the software testing prediction

model

Fig. 2 describes the design stages of the prediction

model for software testing. The first stage begins

with selection of software to be tested, namely the

higher education application. The black box method

is applied by initializing the standard grade of the

input and output partitions. The black box method is

applied by initializing the standard grade of the

input and output partitions. The test results obtained

a dataset; this dataset will be identified and

considered as training data and test data. The data

set will become a neural network algorithm. To

change this, what is done is to normalize the training

data set and depth values first, and then enter the

feed-forward stage to the training data. In next stage,

the evaluation of dataset takes place by comparing

reality target data and prediction data. In the last

step, there is a conversion of profundity value,

output error and RSME value.

III. EXPERIMENT RESULT

The following are the stages of applying the

black-box method of equivalence partitions

techniques and neural network algorithms[12],

here are the results of this research, namely:

a. Initialization of the Standard Grade Partition of

Input and Output

Fig. 3: Equivalence partitions for Exam mark input

Fig. 4: Equivalence partitions for grade outputs

b. Dataset Testing with the black-box method

of equivalence partitions technique

In software testing, the documentation of the

black-box method will be carried out. At the

grade values that are found to be errors and in

each form will be divided into five error models,

including errors in function, data structure,

interface, initialization, and performance. As for

the score grade, the error value found in each

form, namely:

Second Form of the Fifth Testing

Test Case Value Input

(Error)

Score

Error

Input (Exam Mark Performance) 0

Total Error (as Calculated) 10

Partiton Tested (Of Exam Mark) 10 ≤ C/W < 30

Expected Output D

Based on the second form of the fifth testing, the

input value calculation = 10, the output value is

obtained (Total Error = 0, and the Partition Grade is

D).

Second Form

Test Case Value Input

(Error)

Score

Error

Function 0

Structure 0

Interface 0

Initialization 0

Performance 10

Total Error (as Calculated) 10

Partiton Tested (Of Exam Mark) 10 ≤ C/W < 30

Expected Output D

From the second form, the calculation of the input

value (0 + 0 + 0 + 0 + 10), the output value is

obtained (Total Error = 10, and the Grade Partition

is D).

Exam Mark

 ≤ 10
11 ≤ Exam
Mark ≤ 75

Exam
Mark > 75

B
50

≤C/W

<
75

FM

<9

D

10≤C/

W<30

C
30

≤C/W

<50

A
C/W ≥

75

COMPUSOFT, An international journal of advanced computer technology, 9(10), October-2020 (Volume-IX, Issue- X)

3858

Table 1: A dataset of software testing results by

using black-box method equivalence partitions

technique

a=no, b=form, c= testing, d= tester, e= total error, f= equivalence
partitions, g= defect.

Table 1 shows that the dataset produced from

software testing with the black-box method of

equivalence partitions technique, for the correct test

status label it means that the tester test results have

the same results as the defect test results, while the

incorrect meaning of the tester test results is not the

same as the defect results.

c. Profundity normalization, Dataset Training

Values

In normalization of the profundity values on

the dataset training is carried out, for the process

of converting the testing data into range data to

0.1 and 0.9 because the activation function used

is the sigmoid function, where the function value

never reaches 0 or 1[11], namely:

𝑋′ =
0.8 ∗ (𝑋𝑎)

𝑏 ∗ 𝑎
+ 0.1

Table 2: Dataset of Normalization Results

a b c d e f
Testing

Status

2 1 0,12 0,1 0,1 0,1 InCorrect

2 2 0,12 0,1 0,1 0,1 InCorrect

2 3 0,12 0,1 0,1 0,1 InCorrect

2 4 0,12 0,1 0,1 0,1 InCorrect

2 5 0,12 0,12 0,3 0,12 Correct

25 1 0,1 0,1 0,1 0,1 Correct

25 2 0,1 0,1 0,1 0,1 Correct

25 3 0,1 0,1 0,1 0,1 Correct

25 4 0,1 0,1 0,1 0,1 Correct

25 5 0,1 0,1 0,1 0,1 Correct

a=no, b=form, c= testing, d= tester, e= total error, f= equivalence
partitions, g= defect.

Table 3: Dataset of neural network algorithm based

accuracy prediction of software testing by using

Black-Box method and Equivalence partitions

technique, RMSE value = 0.00142438 in 481

iterations

a=no, b=defect, c= target, d= defect, e= output

Based on the graph of Dataset 4 Hidden Layer

Prediction Results, at Epoch = 900, Learning rate =

0.1, and the number of testing data = 20 data (20%

of the 100 total training data) can be seen in the

figure below:

Fig. 5. Graph of Dataset 4 Hidden Layer Prediction

Results, at Epoch = 900, Learning rate = 0.1, and

the number of testing data = 20 data (20% of the 100

total training data)

d. The result of Accuracy Prediction Level based

on the Neural Network Algorithm of Software

Testing with the Black-Box Method and

Equivalence Partitions Technique

Software testing by using the black-box

method of the equivalence partitions technique

based on the neural network algorithm has an

accuracy of 95% out of 100%, and this is very

accurate.

Total

Hidden

Layer

Epochs
Learning

rate

Confusion

Matrix

(Accuracy)

AUC

4 900 0,1 82.00%
0.840 +/-

0.071

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 10 12 14 16 18 20

Defect
Realitas

Defect
Prediksi

a b c d e F g
Testing

Status

1 1 1 1 1 10 1 Correct

2 1 2 1 2 20 1 Correct

3 1 3 1 3 30 1 Correct

4 1 4 1 4 40 1 Correct

198 40 3 1 0 0 0 InCorrect

199 40 4 1 0 0 0 InCorrect

198 40 3 1 0 0 0 InCorrect

199 40 4 1 0 0 0 InCorrect

a

Reality Prediction

Error
b c d e

2 0 InCorrect 0,006872 InCorrect -0,00687 0,993128

2 0 InCorrect 0,014721 InCorrect -0,01472 0,985279

2 0 InCorrect 0,013219 InCorrect -0,01322 0,986781

2 0 InCorrect 0,012621 InCorrect -0,01262 0,987379

2 1 Correct 0,994963 Correct 0,005037 0,994963

2 0 InCorrect 0,006872 InCorrect -0,00687 0,993128

25 1 Correct 0,99241 Correct 0,00759 0,99241

25 1 Correct 0,99647 Correct 0,00353 0,99647

25 1 Correct 0,996065 Correct 0,003935 0,996065

25 1 Correct 0,995877 Correct 0,004123 0,995877

25 1 Correct 0,995469 Correct 0,004531 0,99547

COMPUSOFT, An international journal of advanced computer technology, 9(10), October-2020 (Volume-IX, Issue- X)

3859

4 900 0,1 95.00%
0.954 +/-

0.071

5 900 0,1 81.00%
0.814 +/-

0.071

IV. CONCLUSION

Based on the results of this research, it will be

concluded as follows:

Making a prediction model of the level of accuracy

by using the neural network algorithm is used for

software testing using the black-box method. It is

comparable to the partition technique method and can

be applied to determine the prediction of the accuracy

level of black-box software testing with the

equivalence partition technique with very fine

accuracy because the prediction shows the average

value. The average above 80%, namely: 82% (4

hidden layers, epoch = 900, learning rate = 0.1), 95%

(4 hidden layers, epoch = 1000, learning rate = 0.1),

and 81% (5 hidden layer, epoch = 1000, learning rate

= 0.1), and the most accurate neural network training

design model is with 4 hidden layers, epoch = 1000,

learning rate = 0.1) with an accuracy rate of 95%.

Refrences

[1] Albert Endres, Cs. (2003). Hanbook software

and System Engineering, Empirical

Observations, Laws and Theories.

[2] B. B. Agarwal, C. (2010). Software

Engineering & Testing. Boston.

[3] Beizer, B. (1990). Software Testing

Techniques, Published by Van Nostrand

Reinhold, New York.

[4] Myers, G. (1979). The Art of Software Testing,

Wiley; 2nd edition (June 21, 2004).

[5] Berard, C. (1994). Issues in the Testing of

Object-Oriented Software.

[6] Fournier, Cs. (2009). Essential Software

Testing: A Use-Case Approach.

[7] Mark Last, Cs. (2002). Effective Black-Box

Testing with Genetic Algorithms.

[8] Hetzel, W. C. (1988). The Complete Guide to

Software Testing, 2nd ed.

[9] Jacek. M. Zuranda. (1992). Introduction to

artificial neural systems.

[10] Albert Endres, Cs. (2003). Hanbook software

and System Engineering, Empirical

Observations, Laws and Theories.

[11] Simon, H. (1999:p20). Neural networks – A

comprehensive Foundation.

[12] Patrick J, C. (2000). Black-Box Test Reduction

Using Input-Output Analysis. ACM.

