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Abstract:  In this paper, we study the statistical properties of Exponential Extension Model and then we also check 
the validity of proposed model for different real data sets through different techniques. We are using two main 
techniques which are easy to understand and implement, and are based on intuitive and graphical techniques such as 
Q-Q-plot test, Kolmogorov–Smirnov (K-S) test which plot the graph of empirical distribution function and fitted 
distribution function. These plots are used to investigate whether an assumed model adequately fits a set of data and
we present power comparison between p-values of these data sets obtaining by K-S test for model validation to obtain 
feasible real data sets which are most suitable for parameter estimation of exponential extension model.
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I. INTRODUCTION

Exponential models play a central role in analyses of 
lifetime or survival data, in part because of their convenient 
statistical theory, their important 'lack of memory' property 
and their constant hazard rates. In circumstances where the 
one-parameter family of exponential distributions is not 
sufficiently broad, a number of wider families such as the 
gamma, Weibull and lognormal models are in common 
use[1]. Adding parameters to a well-established family of 
models is a time honored device for obtaining more 
flexible new families of models.

In recent times, Haghighi and Sadeghi[2], Nadarajah and 
Haghighi[3] introduced Exponential Extension model by 
adding a parameter to exponential model. The two 
parameter Exponential Extension model represent the 
shape and scale parameter. It is observed that this family 
always has a decreasing probability function like an 
exponential model but it allows for increasing, decreasing 
and constant hazard rates like a Weibull model or an 
Exponentiated Exponential model [4, 5 and 6]. The 
Exponential Extension model has an explicit expression of 

reliability function and failure rate hazard function.

II. THE STATISTICAL PROPERTIES OF 

EXPONENTIAL EXTENSION MODEL

The two-parameter Exponential Extension model has one 
shape and one scale parameter [7]. The random variable x
follows exponential extension model with the shape and 
scale parameters as  > 0 and  > 0 respectively, if it has 
the following cumulative distribution function (cdf),

   F(x; , ) 1 exp 1 1 x ;

where,  x 0, 0, 0.

   

  

  

 
(2.1)

The probability density function (pdf) can be written as

     1f (x; , ) 1 x exp 1 1 x ;

where,   x 0, 0, 0.

   

  

     

 
(2.2)

and it will be denoted by X~EE(, ). The R functions 
dexpo.ext( ) and pexpo.ext( ) given in [8] can be used for the 
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computation of pdf and cdf, reapectively. Some of the 
typical EE density functions for different values of  and for 
 = 1 are depicted in Figure 1. 

Fig  1.   The PDF of EE model for  =1 and different 
values of .

The reliability/survival function is

  
   R(x; , ) exp 1 1 x ;

where,   x 0, 0, 0.

  

  

  

 
(2.3)

The associated R function sexpo.ext( ) given in [8], 
computes the reliability function.

The hazard function is 

  1h(x; , ) 1 x ;

where,   x 0, 0, 0.

 

  

   
 

(2.4)

Fig  2.   The Hazard function of EE model for  =1 and 
different values of  .

The hazard rate function in equation (2.4) exhibits the 
following shapes:

1. if   < 1 then h(x) is monotonically decreasing 
with h(0)=. and h(x) 0 as x.

2. if   > 1 then h(x) is monotonically increasing 
with h(0)=. and h(x) 0 as x.

3. if   = 1 then h(x) =..,  x.

Some of the typical Exponential Extension model hazard 
functions for different values of  and for  = 1 are 
depicted in Figure 2. The associated R function hexpo.ext( )
given in [8].

The quantile function is 

   1
q

1
x  1 log 1 q 1 ;  0 q 1.     




(2.5)

The computation of quantiles, the R function qexpo.ext( ),
given in  [8] .

The median is 

   11
Median(x) 1 log 0.5 1  




(2.6)

Let U be the uniform (0,1) random variable and F(.) a cdf 

for which F
-1

(.) exists. Then F
-1

(u) is a draw from 
distribution F(.) .

Therefore, the random deviate can be generated from 
EE(,) by

   11
x 1 log 1 u 1 ; 0 u 1.


     


(2.7)

where u has the uniform distribution i.e. U(0, 1) 
distribution. The R function rexpo.ext( ), given in  [8] , 
generates the random deviate from EE(,).

III. COMPUTATION OF MAXIMUM LIKELIHOOD 

ESTIMATION

To obtain maximum likelihood estimators of the 
parameters (, λ), let   x1, . . . , xn  be the observation of a 
sample from a distribution with cumulative distribution 
function (2.1), and let  x(1) , ... , x(n)  be the corresponding 
order statistics. The likelihood function of the parameter 
L(, λ) based on the first k- order statistics is given by
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 

 

n

i
i 1

n

i
i 1

L( , ) n log n log ( 1) log 1 x

               n 1 x






          

   

(3.1)

Therefore, to obtain the MLE’s of  and  [9], we can 
maximize (3.1) directly with respect to  and  or we can 
solve the following two non-linear equations using 
Newton-Raphson method. We have,

    n

i i
i 1

log L n
log 1 x 1 1 x




     


 

 
(3.2)

and,

   

 

n
i

i 1 i

n 1
i i

i 1

xlog L n
1

1 x

              x 1 x








   

 

  


  

 
(3.3)

IV. DATA ANALYSIS

In this section we present five real data sets for illustration 
of the proposed methodology. These are

Data Set 1: The following data set includes the time 
intervals (in days) of the successive earthquakes in the last 
century in Iran and this data are taken by International 
Institute of Earthquake Engineering and Seismology. [2].

284, 246, 139, 2280, 95, 308, 355, 607, 11, 563, 553

Data Set 2: The following data represent the number of 
million revolution before failing for each of the 23 ball 
bearings in the life test [9].

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 
51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 
93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40 

Data Set 3: Aarset MV. How to identify bathtub hazard 
rate. IEEE Trans Reliability 1987;R-36(1):106 -108. ( 
Failure time of 50 items)[10].

0.1, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 6.0, 7.0, 11.0, 
12.0, 18.0, 18.0, 18.0, 18.0, 18.0, 21.0, 32.0, 36.0, 
40.0, 45.0, 45.0, 47.0, 50.0, 55.0, 60.0, 63.0, 63.0, 
67.0, 67.0, 67.0, 67.0, 72.0, 75.0, 79.0, 82.0, 82.0, 
83.0, 84.0, 84.0, 84.0, 85.0, 85.0, 85.0, 85.0, 85.0, 
86.0, 86.0

Data Set 4: The data represent 46 repair times (in hours) 
for an airborne communication transceiver Chhikara and 
Folks [11]. The data are as follows: 

0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 
0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 
2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 
5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 22.0, 24.5

Data Set 5: This data set is from McCool (1974) giving the 
fatigue life in hours of ten bearing of a certain type[12]. 
These data are as follows:

152.7, 172.0, 172.5, 173.3, 193.0, 204.7, 216.5, 234.9, 
262.6, 422.6

A. Maximun Likelihood (ML) Estimation 

For obtaining the MLE (maximum likelihood estimation) 
and standard error, we have started the iterative procedure 
by maximizing the log-likelihood function given in (3.1) 
directly with an initial guess for  =1.0 and =0.5, far away 
from the solution[13]. We have used optim( ) function in R 
with option Newton-Raphson method[14, 15]. The iterative 
process stopped only after various no. of iterations depend 
on used data set[16]. The Table 1 shows the ML estimates, 
standard error(SE)  with number of Iterations and Log-
Likelihood value of the parameters alpha and lambda.

V. MODEL VALIDATION

Most statistical methods assume an underlying model in the 
derivation of their results. However, when we presume that
the data follow a specific model, we are making an 
assumption. If such a model does not hold, then the 
conclusions from such analysis may be invalid. Although 
hazard plotting and the other graphical methods can guide 
the choice of the parametric distribution, one cannot of 
course be sure that the proper model has been selected. 
Hence model validation is still necessary to check whether 
we have achieved the goal of choosing the right model[17]. 
In this paper we outline some of the methods used to check 
model appropriateness.

A. Kolmogorov–Smirnov Test

The Kolmogorov–Smirnov test (K–S test) is a 
nonparametric test for the equality of continuous and that 
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can be used to compare a sample with a reference 
probability model. The Kolmogorov–Smirnov statistic 
quantifies a distance between the empirical distribution 
function of the sample and the cumulative distribution 
function of the reference distribution[18]. 

 The Empirical Distribution Function(EDF)

An estimate of F(x) = P[ X ≤ x] is the proportion of sample 
points that fall in the interval [-, x]. This estimate is called 
the empirical distribution function(EDF). The EDF of an 
observed sample xl, x2,. . . , xn is defined by 

1:n

n i:n i 1:n

n:n

0 for x X

i
F (x) for X x X ; i 1, . . ., n 1

n
1 for x X





    




where xl:n, x2:n,  . . . , xn:n is the ordered sample.

The Kolmogorov–Smirnov (K-S) test is a nonparametric
goodness-of-fit test and is used to determine whether an 
underlying probability distribution (Fn(x)) differs from a 
hypothesized distribution (F0(x)).

 Kolmogorov-Smirnov (K-S) distance

The K-S distance between two distribution functions is 
defined as

n n 0 i
1 i n

D F (x) F (x )max

 
  , and 

n 0 i n
1 i n

D F (x ) F (x)max

 
  ,

where F0(xi) is the cumulative distribution function 
evaluated at xi and Fn(x) is the EDF. To perform the two-
sided goodness of fit test H0 : F(x) = F0(x) for all x, where 
F is a completely specified continuous distribution function 
against the alternative H1 : F (x) = F0(x), for some x,  the 
K-S statistic is 

 n n n
1 i n

D D , Dmax  

 


The distribution of the K-S statistic does not depend on F0

as long as F0 is continuous.

To study the goodness-of-fit of the Exponential Extension 
model, we compute the Kolmogorov-Smirnov statistic 
between the empirical distribution function and the fitted 
distribution function when the parameters are obtained by 
method of maximum likelihood. We shall use the
ks.expo.ext( ) function in R given in [8] to perform the test. 
Now, we plot the empirical distribution function and the 

fitted distribution function using proposed data sets in 
Figure 3-7 and the result of K-S test is shown in table 2.

Table2.  D and its Corresponding p-value using KS-test

Data Set D - value P - value

1 0.1862 0.77620

2 0.2885 0.04348

3 0.1915 0.05108

4 0.1309 0.40930

5 0.4853 0.01084

Fig 3.  The graph for empirical distribution function 
and fitted distribution function for data set-1.

Fig 4.  The graph for empirical distribution function 
and fitted distribution function for data set-2.
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Fig 5.  The graph for empirical distribution function 
and fitted distribution function for data set-3.

Fig 6.  The graph for empirical distribution function 
and fitted distribution function for data set-4.

Fig 7.  The graph for empirical distribution function 
and fitted distribution function for data set-5.

Since, the high p-value clearly indicates that this data set 
can be used to analyze EE model, and in this analysis data 
set-1 and data set-4 having high p-value. Therefore from 
above result and Figure 3-7, it is clear that the estimated EE 
model provides excellent good fit to the given data set-1 
and data set-4.

B. The Q-Q Plots Test

The Q-Q plot test is used to investigate whether an assumed 
model adequately fits a set of data. It helps the analyst to 
assess how well a given theoretical distribution fits the data.

Let xl, x2,. . . , xn be a sample from a given population with 
cdf F(x). Let  xl:n, x2:n,  . . . , xn:n, be the corresponding order 
statistics and pl:n, p2:n, . . . , pn:n be the plotting positions. 
Define the plotting positions by [19, 20], 

1:n
i 0.5

p
n


 ;  i =1, 2, . . ., n.

Finally, let F̂(x) be an estimate of F(x) based on x = (xl, x2,. 

. . , xn). Thus, 1
1:nF̂ (p ) is the estimated quantile 

corresponding to the ith order statistic, xi : n Similarly, 

i:nF̂(x ) is the estimated probability corresponding to xi : n. 

again,

Let F̂(x) be an estimate of F(x) based on xl, x2,. . . , xn. The 

scatter plot of the points 

1
1:nF̂ (p )   versus   xi : n   ,   i = 1 , 2, . . . ,n , 

is called a Q-Q plot. Thus, the Q-Q plots show the 
estimated versus the observed quantiles. If the model fits 
the data well, the pattern of points on the Q-Q plot will 
exhibit a 45-degree straight line. Note that all the points of 
a Q-Q plot are inside the square

 1 1
1:n n:n 1:n n:n

ˆ ˆF (p ) , F (p ) x , x     .

Now, we shall use the R function qq.expo.ext( ) given in [8] 
to perform the proposed test. We draw Quantile-
Quantile(Q-Q) plot using MLEs as estimate for used 
different data set in given Figure 8-12.



COMPUSOFT, An international journal of advanced computer technology, 1 (2), Dec-2012 (Volume-I, Issue-II)

23

Fig 8.   Quantile-Quantile(Q-Q) plot using MLEs as 
estimate for data set-1.

Fig 9.   Quantile-Quantile(Q-Q) plot using MLEs as 
estimate for data set-2.

Fig 10.   Quantile-Quantile(Q-Q) plot using MLEs as 
estimate for data set-3.

Fig 11.   Quantile-Quantile(Q-Q) plot using MLEs as 
estimate for data set-4.

Fig 12.   Quantile-Quantile(Q-Q) plot using MLEs as 
estimate for data set-5.

Thus, as can be seen from the straight line pattern in Figure 
8-12, the EE model fits the data very well for data set-1 and 
data set-4.

VI. CONCLUSION

An attempt has been made to incorporate Exponential 
Extension model for software reliability data. We have 
presented the statistical tools for empirical modeling of the 
data in general. These tools are developed in R language 
and environment for model analysis, model validation and 
estimation of parameters using method of maximum 
likelihood. To check the validity of the model, we have 
plotted a graph of empirical distribution function and fitted 
distribution function using KS-test for different data set and 
also we have to present power comparison between p-
values of these data sets obtaining by K-S test for receiving 
feasible real data sets which are excellent good fit for 
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analysis of Exponential Extension model. We have also 
discussed the Quantile-Quantile (Q-Q) plots for model 
validation. Thus, from both used techniques of model 
validation for EE model on different data set, the 
Exponential Extension model fits the data very well only 
for data set-1 and data set-4.
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