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Abstract: By an approximation with a wavelet base we have in practise not only an error if the function y is not in V;.
There we have a second error because we do not use all bases functions. If the wavelet has a compact support we have no
error by using only a part of all basis function. If we need an approximation on a compact interval I (which we can do even
if y is not quadratic integrable on R, because in that case it must only be quadratic integrable on 1) leads to worse
approximations if we calculate an orthogonal projection from 1,y in Vj. We can get much better approximations, if we apply
a least square approximation with points in I. Here we will see, that this approximation can be much better than a orthogonal
projection formy or 1,y in V;. With the Shannon wavelet, which has no compact support, we saw in many simulations, that
a least square approximation can lead to much better results than with well known wavelets with compact support. So in that
article we do an error estimation for the Shannon wavelet, if we use not all bases coefficients.
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I. INTRODUCTION

In the wavelet theory a scaling function ¢ is used, which
has properties that are defined in the MSA (multi scale
analysis). Through the MSA we know, that we can
construct an orthonormal basis of a closed subspace Vj,
where V; belongs to a sequence of subspaces with the

following property:
.cVicVoc Vi c.c LZ(R),

{dx(D}z Is an orthonormal basis of Vj with ¢u(t) =
22 42t - k).

We use the following approximation function:

kmax
Yi)= D ¢, 4 ®

k:kmm

Kmax and kmin depend on the approximation interval | =
[tOit&ﬁd]

For easier notation we assume Kmax = - Kmin-

For kpmax < oo we get the following error estimation:
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zck¢j,k

IK|<Kmax

ch¢j,k -
k

[l]| is the L*(R) norm.

= 1{ Z|Ck |2
k>

Here we get the following basis coefficients:

(12 C=(Yabju) = [ V(1) (L)t

In the case, that y is not quadratic integrable on R and we
need an approximation on the Interval I, we can calculate
an orthogonal projection of 1, y on V; and we get the
following basis coefficients:

(1b) Cy = <1| y!¢j,k> = J.y(t)'¢j,k(t)dt

That leads in general to a worse approximation, if j is not
very big (see [7]).

Now we use the Shannon wavelet and assume for
I = [-a,a], a> 0and kg := kymax — [2a] where [x] is the

smallest integer n with n > x. ¢ = <1I y,¢j'k>.AdditionaI
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we assume, that kmax > [2a] . Then we get the following
error estimation:

= Z|Ck|2 >

[k1>Kmax

- ch¢j,k

[kl<Kmax

Here ¢ is the Riemann ¢ function and ¢ depends on a and y.

Proof:

j OROMGEE j|y(t)-¢,—,k(t)|dt

lee| =

< 2a-max |y(8)-45,c )] < 22 max |y(0) max |¢, <)

Now we consider the last factor:

ko 1
5(2)—Zk—2
k=1

e =2 e ey |

Because of k >2.a

20t —k

&

has on | = [-a, a] it's maximumat the pointt = a.

So we get
21’2 1
Pix () .
|’k | k-2'a
and
jl2
|Ck|§2 c 1.
T k-2la
Now we get:

ch¢j,k -
K

-2la
- [Zj a], then we get the proposition:

If we set ko = Koy
= K

21/2¢

ch¢1k

|K[<Kmax

1
2

k=ko+1

zck¢j,k
k

j /2
|5|n(7r(2t k))| 2} max| 1

if a is an integer or generally ko

el [20t—k|
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In the following example we will see, that if we calculate
the coefficients ¢y by the minimization of

) Q) ="y t) -yt
i=0

we can get much better results as if we calculate the
coefficients over (1a) or (1b). In the example we use
equidistant points t (that means tj+; - tj = At). The method
we call the (discrete) least square method

Generally we know that

Hy—ij 2qy = “y_ylj 0

if min y—g| = Hy‘ yiRH
gev;

and

. o
?e'vnj||y—9||su>“‘y Yy

So here yJ is the best appro><|rnat|on (in reference to the L2
norm) of y on R and yJ is it's best approximation on I.

Il. EXAMPLES

In allexamples we set j = 1. The approximation interval 1 is
[-1, 1]. We now show three examples, one with a L*(R)
function, one with a function in V; and in the last example,
we approximate a function, which is not in L*(R) but in
L%(1). Here we project 1413y in Vy.

In all examples we compare the orthogonal projection from
y with the least square estimation (see (3)) with to =-1.

1)yisin L2(R):

2
We use the function Y(t) =e™" and setkpa = 15.
a) Orthogonal projection on V;:

Here is the graph of y (dashed) and y;:

10 05 00 05 10

Figure 1.
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The graph ofy -y; : b) Least square approximation like in (3) described. We set
At =1/20.
Here is the graph of y (dashed) and y;:
5 /106
110 05 05 10
571106
Figure 2. (10 05 00 05 10
Foryand y; on [-3,3]: Figure 5.

The graph ofy -y; :

11110110

AWANT \NAWA

0 0! \/ 05 1o
554011
1 11010
15 (11010
3 1 2 3 201000
10
Figure 3. 20
Figure 6.
Fory -yjon [-3,3]:
Here we see that the approximation on the interval [-1, 1]
can even be used for an extrapolation:
5.010 Fory and y; on [-3,3] (extrapolation):
1
3 2 1 1 2 3
5 016
Figure 4. 3 1 2 3
02

Now we see the approximation function calculated through

Figure 7.
the least square method (3). 1aure

Fory -y;jon [-3,3] (extrapolation):
342



COMPUSOFT, Aninternational journal of advanced computer fechnology, 2 (11), November-2013 (Volume-IT, Tssue-XT)

035

030

025

020

015

010

005

Figure 8.

Here we see a table of the coefficients calculated like in
(1a) named ¢,"“® and the coefficients calculated over the
least square approach named c.

L2(R LR B
k o ® Ck (e ® - )/ o)
15 9.98646110" 0.0549149 54988.4

14 [11.123460110"° 0.162391 144 544.

13 1.27115010'° 0.156844 123386.

12 [11.44692110'° 0.0958456 66242.3

011 1.65714010'° 10.11707 70647.

010 [11.9094510"° 10.143967 75396.

09 2.21380110%° 10.00448466 2026.77

8 [12.49637 110" 0.309462 123 966.

07 6.39081110'° 10.0238892 3739.06

6 0.0000837542 10.227517 2717.49

s 0.00136911 10.0770245 57.2587

4 0.0129464 0.00674154 0.479275

03 0.0745338 0.0744649 0.000924883
02 0.260124 0.26013 0.0000222773
o1 0.550701 0.550695 0.0000111669
0 0.707101 0.707107 8.876171110"°
1 0.550701 0.550695 0.0000111669
2 0.260124 0.26013 0.0000222773
3 0.0745338 0.0744648 0.000926093
4 0.0129464 0.00663831 0.487248

5 0.00136911 [10.0799417 59.3894

6 0.0000837542 10.247064 2950.86

7 6.39081 110" 10.0756419 11837.

8 [12.4963710"° 0.193832 77646.3

9 2.21380110%° 10.254212 114832.

10 [11.90945 110" 10.282422 147907.

11 1.6571410110'° 0.125028 75447.2

12 [11.44692110"° 0.124006 85704.4

13 1.271150110'° 10.0955985 75207.3

14 [11.12346110"° 0.0000702266 63.5093

15 9.98646110" 0.287446 287835.

We get similar results with a smaller At = 1/100:

k o ® Ci (e P - e )/ &)
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Here we see the errors ||y— Y

approximation methods:

c - R

9.98646 110"

[11.12346110%°

1.27115010'¢

[11.446921110%°

1.65714010'°¢

01.90945010°

2.21381110'°

[2.49637010"°

.39081110'¢
.0000837542
.00136911
.0129464
.0745338
.260124
.550701

.707101
.550701
.260124
.0745338
.01294¢64
.00136911
.0000837542

.39081 J10°

O OO O OO OO OO OOOoOOoo

[12.49637010°

2.21381010°

[01.90945010°

1.6571410'°

[11.446920110°

1.27115010"°

[11.123460]10°

9.98646 110"

8.92392x10°®

0.0555138
0.00279287
0.0908575
[10.0753896
[10.182931
[10.274183
0.0337608
0.354246
[10.0793108
[10.250574
[10.0757508
0.00727581
.0744744
.26013
.550695
.707107
.550695
.26013
.0744823
.0086523
[10.0482002
[10.115958
0.0431607
0.0832123
[10.226748
[10.00943628
0.154941
0.186859
0.0550771
[10.132146
0.138983

0
0
0
0
0
0
0
0

L2([-14])

least square ¢, with At=1/20:

9.00771x10*

least square ¢, with At=1/100:

6.4122x10!

55588.1
2486.95
71475.6
52102.6
110391.
143592.
15249.2
141905.
12411.1
2992.78
56.3283
0.438006
0.000797106
.0000222771
.0000111669

.87617010'°
.0000111669
.000022277
.000690303
0.331684
36.2054
1385.51

6752.56
33334.3
102426.
4940.88
93498.1
129144.
43327.5
117623.
139171.

O O O o OO

for the different

And here the errors for a bigger interval (extrapolation)

||y—y,-

ckL«R¥

L?([-1.5,1.5]) :

0.0000107337

least square ¢ with At=1/20:
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0.0000248848 y(t) and yj(t) on [-3,3]:
least square ¢, with At=1/100:

0.0000196081

2)yisinVy:

.5
Here we use a part of the orthonormal basis of V1to /\ /\ A /\
VARVE ‘

construct a function in V1:

05

25
Y = D okt with c=(-1)(K+1).
k=-25 Figure 11.

a) Orthogonal projection on V: Fory -yjon [-3,3]:

0.0003
We setkma = 15 (S0 yj = y). -
/\ 0.0001

Here is the graph ofy (dashed) and y;: 5 ; 1/\ /\ ;

0.0002
10 0.0003
Figure 12.
05
b) Least square approximation like in (3) described Kpax =
\ / 10 and 4t = 1/20:
10 05 05 10
Here is the graph of y (dashed) and y;:
05
10
Figure 9.
05
The graph ofy - Yi - 10 05 05 /10
05
0.00008
0.00006
000004 Figure 13.
0.00002
10 15 10
The graph ofy -y; :
Figure 10.

344
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Figure 14.

mYRvAVAL

Fory and y; on [-3,3] (extrapolation):

Figure 15.

N
1 \k/k \ /3

Fory -yjon [-3,3] (extrapolation):

010

005

1
[10.05

[10.10
10.15
10.20

1025

Figure 16.

k o ®

Ck (e ® - )l ¢

010.
9.
8.
7.
re.
5.
04.
03.

2.

|
[t

O -JoU s W P O

0.

0.00990099
[0.0121951
0.0153846

0.02
0.027027

0.0384615
0.0588235
0.1

0.2
0.5
1.
0.5

0.2
0.1
0.0588235
[10.0384615
0.027027
0.02
0.0153846
0.0121951
0.00990099

Fora comparison we set knax = 15and At = 1/100:

015.
014.
13.
112.
011,
010.

O Jo b WN P O

)
=

12.
13.
14.
15.
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CkL%R)

[10.00442478
0.00507614
[10.00588235
0.00689655
0.00819672
0.00990099
[10.0121951
0.0153846
[10.02
0.027027
[10.0384615
0.0588235
0.1

0.2
[10.5
1.
0.5

0.2

0.1
0.0588235
0.0384615
0.027027
[10.02
0.0153846
0.0121951
0.00990099
[10.00819672
0.00689655
[10.00588235
0.00507614
[10.00442478

4.16328 419.491
5.46063 448.772
0.84032 53.6208
[10.911112 44.5556
[10.0585332 3.16573
0.0363541 1.94521
0.0678428 0.153328
[10.0998917 0.00108337
0.2 7.19026 110
0.5 1.75861 110
1. 9.0701 010
0.5 1.52477 0100
0.2 8.76749 110
[10.0998525 0.00147549
0.0746509 0.269064
0.184991 5.80977
0.805369 28.7987
0.396838 20.8419
[10.6829 45,3885
0.626755 52.3939
1.40537 140.943
2,
Ck (e ® - e/ o)
0.171272 39.7075
10.0487982 10.6132
0.497604 85.5926
0.247044 34.8214
0.117465 15.3307
0.621908 61.8127
10.0267993 1.19754
10.196127 13.7482
10.205125 9.25624
10.177672 7.57388
10.1073 1.78981
0.0531263 0.096853
[10.10006 0.000604441
0.2 6.26350110"°
0.5 8.38828 110!
1. 4.66002010
0.5 8.86247 110!
0.2 6.92697 11010
10.100071 0.000711496
0.0515767 0.123196
[10.135855 2.53223
[10.308153 12.4017
110.318697 14.9348
10.0523028 4.39968
[10.204147 15.74
10.0272149 3.74871
10.137145 15.7316
0.0496725 6.20252
0.218437 38.1342
10.209121 42.1968
0.0107344 3.42598
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2010120
Here we see the errors Hy =Yl , for the different
Mz q-12p 15 10 10
approximation methods:
10100

LA A A
S JRVRYAAVAAN

least square ¢ with At=1/20 kypax = 10: L0 0

15 (11010

5

1.80875x10°°
Figure 17.
least square ¢k with At=1/100 Kyax = 15:

8.20892x10?

Fory -y;jon [-3,3] (extrapolation):

025
And here the errors for a bigger interval (extrapolation)
—V. . 020
”y Yi L2([-1515])
015
o - R 010
0.00013277 006
least square ¢, with At=1/20 Kax = 10:
3 2 1 1 2 3

0.000050488 Figure 18.
least square ¢k with At=1/100 Kyax = 15:

0.0000257716

3)yisin A%([-1,1]):

Here we use the non LXR) function y(t) = e™.
For kax =15 and At = 1/100:

a) At first we calculate the orthogonal projection of 1, 2y

The graph of y - y; : on V; (like in (1b) described):

Here is the graph of y (dashed) and y;:

346
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10 05 05 10

Figure 19.

The graph ofy -y; :

10 05

05 10
01

02

Figure 20.

b) Least square approximation like in (3) described with
Kmax = 15and At = 1/20:

Here is the graph of y (dashed) and y;:

05
10 05 05 10

347

Figure 21.

The graph ofy -y; :

10109

AWAN

IR

101009

211019

3 1109

Figure 22.

Fory and y; on [-3,3] (extrapolation):

0
\
\ 5
\
10
\
5
3 2 1 1 2 3
Figure 23.

Fory -y;on [-3,3] (extrapolation):
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Figure 24.
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Here we see the errors ||y— Yj

approximation methods:

el R

o LR

[10.045956
0.0505131
[10.0560689
0.062991
[10.0718511
0.0835905
[10.0998736
0.123941
[10.163037
0.237215
[10.428941
2.34877
.6603
.6616
.34176
.574112
.536393
.168756
0.240166
[10.0124894
0.0488908
[10.0473013
0.0440978
[10.0409305
0.0380603
[10.0355111
0.0332544
[10.0312522
0.0294685
[10.0278719
0.0264356

ol eNeN Sl

0.219725

Ck (e P - e )/ &)
0.636832 14.8574
3.9634 77.4629
0.40329 8.19276
11.79733 29.5331
0.709774 10.8784
(11.46529 18.5293
2.04353 21.4612
11.32979 11.7292
15.97515 35.649
1.31779 4.55524
6.26748 15.6115
5.09408 1.16883
3.16799 0.134501
1.92212 0.156783
1.16582 0.131127
0.707107 0.231653
0.428882 0.200433
0.26013 0.541458
0.157235 0.345307
0.0470357 4.76604
10.492759 11.0788
11.32103 26.928
70.00904417  1.20509
0.563427 14.7655
10.99555 27.1572
1.25702 36.3981
0.215155 5.46998
10.117797 2.76924
0.369592 11.5419
10.961601 33.5008
1.18362 43.7738

L2([-14])

least square ¢y with At=1/20:

1.01568x107°

for the different

348

least square ¢ with At=1/100:

4.90045x10°1°

And here the errors for a bigger interval (extrapolation)
lvy-vy;

L2([-1.51.5]) :

c - ®:

0.353685

least square ¢ with At=1/20:
0.00032093

least square ¢, with At=1/100:

0.000178703

In all examples the least square method (which is a
numerical approach to get the "best" solution on the
approximation interval 1) leads to very good results. Even
to better results as with the best L? approximation on R.

I1l.  CONCLUSION

In all examples the least square method (which is a
numerical approach to get the "best" solution on the
approximation interval 1) leads to very good results. Even
to better results as with the best L approximation on R.
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