
COMPUSOFT, An international journal of advanced computer technology, 3 (1), January-2014 (Volume-III, Issue-I)

461

A Survey of Indexing Techniques for Xml Database
Atul D. Raut

1
, Dr. M. Atique

2

1
Deptt. of I.T. J.D.I.E.T. Yavatmal

2
PGDCSE SGBAU Amaravati

Abstract: XML data is stored in the form of a text document. Hence different applicat ions can share the XML data.

It is platform independent i.e. it can be migrated to any operating system without any changes. Moreover it is self

describing and extensible as a result of which it has became an emerg ing standard for data exchange and storage

over the web. With such growing presence of XML in database technology there is a growing need to develop

efficient storage and indexing techniques for querying large repositories of XML documents. In this paper we

review some of the important indexing techniques for XML and compare these techniques on the basis of key

factors for storing and querying XML documents. The real work in indexing of XML started with the introduction of

inverted list to store XML data. Th is inverted list with d ifferent query algorithm could answer a variety of Xpath

queries but with some limitations. Inverted list was further improved by the concept of structure index which is a

compact summarization of tree representation of XML document. Very recently efficient indexing techniques were

implemented. These recent techniques made use of efficient data structures such as the B
+
 tree for storing and

querying the XML data. Experimental results of these techniques show a significant improvement in performance

over the inverted list technique.

Keywords: inverted list; structure index; xreal; xcdsearch; dewey id

I. INTRODUCTION

XML is an important development for database

applications since the relational model. It is self

describing and extensible as a result of which it has

became an emerging standard for data exchange and

storage. With such growing presence of XML in

database technology there is a growing need to

develop efficient storage and indexing techniques for

querying large repositories of XML documents.

Indexing techniques used for relational database

cannot be used directly for XML since XML data is

ordered where as the relational data is unordered.

Moreover XML contains structure in addition to data.

The presence of structure makes the task of indexing

much more difficult as compared to relational

database. The most important factor for any efficient

querying system is the time required to get result. This

response time depends upon the intermediate result

size, index size, the amount of I/O required,

compression/decompression time etc. The response

time can be significantly reduced with the support of

efficient indexing and storing technique for XML

data[1]. XML documents can be represented with the

help of an ordered labeled tree. W3C query languages

Xquery and XPath specify patterns of selection

predicates on multiple elements that have some

specified tree structured relationship [2] [3]. For

example the Xquery expression book [title = „XML‟ //

author [fn = „jane‟ AND ln = „doe‟] searches for the

author element having child or sub element as fn with

content jane and ln with content doe (parent-child

relationship) and all author should be descendants of

book element (ancestor – descendant relationship)

having child element title with content „XML‟Page

Layout

Thus it is clear that any XML query has two major

components the structure component and the

keyword (data informat ion) component. In earlier

techniques an XML query can be answered by

finding all occurrences of such twig pattern and then

stitching (joining) together these matches. Twig

pattern matching can be achieved by decomposing

the twig into a set of binary structural (parent child

and ancestor – descendant) relationship between pairs

of nodes [4] [5] [6]. For join ing the matches different

join algorithms were proposed and imp lemented.

These algorithms were I/O and CPU optimal but

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 3 (1), January-2014 (Volume-III, Issue-I)

462

generated large intermediate results, which

eventually increased the query response time. These

earlier techniques and the recent indexing techniques

are summarized below.

II. RELATED WORK

Till date several techniques have been implemented

for querying XML documents using different

indexing techniques by different researchers. These

early techniques can be broadly classified into

following types.

a. By traversing the tree or its compressed

representation.

b. By using IR style processing using inverted list.

c. By using IR style processing using inverted list

and structure index.

d. By using a Relational Database Management

System.

e. Techniques which utilizes efficient data

structures like B
+
 tree, hash table etc

A. Techniques using Inverted List

This technique makes use of the (Docid, Leftpos :

Rightpos, levelnum) representation of XML elements

and string values where Docid is unique document

identifier, Leftpos and Rightpos can be obtained by

counting word numbers from the beginning of the

document till the start and end of the element

respectively. For string values Leftpos and Right pos

are same. Th is positional representation of XML

document can correctly identify the binary structural

relationship between the nodes of the tree. A tree

node n2 which is represented as (D2, s2:e2, l2) is

descendant of a tree node n1 represented as

(D1,s1:e1,l1) iff D2=D1, s1<s2 and e2<e1. Similarly

the node n2 will be child of n1 iff D2=D1, s1<s2,

e2<e1 and l2=l1+1. Similarly the parent ch ild

relationship can also be identified exact ly. Based on

this representation of XML elements and string

values Al – Khalifa et. al. [4] implemented the tree-

merge and stack-tree algorithm for b inary structural

matching and then joining these matches . These

algorithms are I/O and CPU optimal but produce

large intermediate results. Similarly N Bruno et.al.

[5] implemented the path stack and the twig stack

algorithm. These algorithm do not produce large

intermediate result but they need to examine every

node in the input list to check whether or not it is part

of an answer to the query(Path or twig) pattern i.e . it

increases the search space and hence the response

time.

B. Techniques using Structure Index and Inverted

List

Raghav Kaushik et.al. [6] introduced the concept of

structure index. St ructure index is a compact

summarization of the tree representation of XML

document. It maintains only unique paths by

eliminating all redundant paths in the tree. This

structure index provides index ids for the index nodes

which is used to augment the inverted list. The

inverted list which makes use of the index id takes

the form <Docid,start,end,level,indexid> for element

node and <Docid,start,level,indexid> for text nodes.

Here, docid refers to a unique document identifier

and level is the depth of the node in the tree. The start

and end numbers need to satisfy the following

properties:

1. For each element node n, n.start < n.end.

2. If (element) node n1 is an ancestor of element node

n2, then n1.start < n2.start < n2.end < n1.end.

3. If (element) node n1 is an ancestor of text node n2,

then n1.start < n2.start < n1.end.

4. If element nodes n1 and n2 are siblings and

ord(n1) < ord(n2), then n1.end < n2.start.A similar

property holds when one or both of n1 and n2 are text

nodes.

Using these index ids the search space can be reduced

significantly. This is because only those inverted list

entries that are part of the final result take part in the

join process; other entries are skipped by just

comparing its index ids. But still the search space is

large since at least index id for every inverted list

entry is to be checked.

C. Using Relational Database Management System

An XML document can be queried by the techniques

already present in RDBMS. For example the different

join algorithms like merge; hash, index nested loop

join algorithm etc can be used. An XML document is

decomposed in to relation consisting of four columns

(Headid, schemapath, leafvalue, idlist) where headid

is the id of the node from where the path starts,

schemapath is the list of nodes on the sub path, leaf

value is the text for an element or attribute represented

in the form of string. Leaf value is present only if the

path reaches the leaf. Otherwise a null is stored for the

leaf value. On this relation two types of indexes are

constructed the root path index and the data path

index. The root path index can answer any root to leaf

query efficiently where as the data path index can

answer the queries with // axes. This technique

requires that an XML document be first decomposed

into a relation and an XML path query be translated

into SQL query. If the elements are deeply nested then

it will populate the table with large number of null

values. i.e. it increase the index size [7][8].

COMPUSOFT, An international journal of advanced computer technology, 3 (1), January-2014 (Volume-III, Issue-I)

463

1. Path and Content Index

This method makes use of Dewey id as ids for nodes

and creates a separate structure index and value

index. The id o f a particu lar node contains the id of

its parent as its prefix and some local id. Thus if the

id of the parent is 1.2 then ids of its child ren will be

1.2.1, 1.2.2, 1.2.3 ……….1.2.n. Th is makes it easier

to determine the structural relationship such as the

parent child and ancestor-descendant relationship

between the nodes. For example the parent of the

node 1.2.1 will be the node 1.2. In the similar fashion

ancestor-descendant relationship between the two

nodes can also be determined. Moreover the

generation of a node can be determined by counting

the number of sub ids in the id of a node in question.

For example the node 1.1.2.1 is at fourth level (or at

depth of four) from the root node. Path and content

index employs a hash table which contains an entry

for every element tag. For every distinct entry in the

hash table there is a B
+
 tree to store the Dewey id.

The leaf node of a B
+
 tree contains a set of related

nodes. The node contains the Dewey id to identify

the structural relat ionship and a pointer which points

to the nodes contents. Thus the contents of arbitrary

node can be accessed directly. Since the Dewey id for

a node contains the id of its parent as its prefix the id

of the node becomes very long as the depth of the

tree increases. Hence it requires longer processing

time to determine the binary structural relat ionship

[9].

2. Structural Summary Index

The technique specified in [10] creates a compact

structural summary index for XML data. In contrast

to the Inverted list, structural summary index

classifies identifiers of data nodes with same label

path into a group. To support queries containing the //

axis (i.e. ancestor – descendant or partially specified

queries) efficiently the index stores steps of label

path as a key in reverse order. For example the path

bib.book.title is stored as title.book.bib. Any query

beginning with // can be processed efficiently by

prefix matching and this operation of prefix matching

can be performed in a single index lookup on a B
+

tree. For example the queries like //title can be

answered efficiently in single index lookup by using

the structural summary index. For queries with non

initial // the structural summary index requires longer

time.

3. Compact Redundancy Free XML Storage

Most of the earlier techniques for Indexing of XML

made use of tree representation of XML document

which led to increase in space requirement. The

technique specified in[11] proposes a combination of

hierarchical and relational structure to store XML

data. Thus it uses a non tree based structure. The

RFX (Redundancy Free XML) storage is a

multilayered arch itecture where the elements and

data are stored as separate layers which facilitates

fast navigation and retrieval of data.

It stores the XML document in three layers the

topology layer, the tag layer, and the data layer. The

XML files are first analyzed for their relationships in

the database i.e. containment, intra or inter document

relationship and then the XML files are stored

conforming to the structural norms of the RFX

system.

4. Structural Query Optimization in Native XML

Database

The technique specified in [12] proposes a novel

labeling scheme consisting of <self-level:parent> to

support different binary structural relat ionship that

exist in an ordered labeled tree representation of

XML documents.

This technique makes use of the decomposition-

matching merg ing approach to decompose the twig

into a set of path queries. It utilizes the hybrid query

optimization technique INLAB(combination of

INdexing and LABeling technique)which consist of

create INLAB encoding and TwigINLAB algorithms.

The index structure of INLAB s finds efficiently all

elements that belong to the same parent o r ancestor.

The proposed labeling scheme quickly determines the

parent-child, ancestor-descendant, sibling and

ordered query relationship between elements in the

native XML database. This technique reduces the

number of inspections performed on irrelevant results

during the merg ing process and hence improves the

response time.

5. Tbitmap(Tag bitmap) technique for Indexing of

XML Document

The technique specified in [13] utilizes bitmap

(sequence of bits of zeroes and ones) for

representation of tags of XML elements. The

bitmaps are assigned in such a way that it uniquely

identifies an XML element and also correctly

identifies the parent-child and ancestor-descendant

relationship between the elements. A sample XML

document using the Tbitmap is shown below in

Figure 1:

COMPUSOFT, An international journal of advanced computer technology, 3 (1), January-2014 (Volume-III, Issue-I)

464

Fig. 1: A Sample XML Document with Tbitmaps

An XML document is preprocessed by performing

following tasks:

1. A code book is created which assigns unique bit

map to every structure element. It is created by

performing bitwise OR operation to get the

signature of all of its children.

2. A containing code is assigned to every element.

This containing code is obtained by performing a

depth first search on the XML document.

3. Two indexes namely the tag index and the value

index are created on the XML document. The tag

index identifies the structure. It is built using the

B
+
 tree. The containing code for a node is used

as search key in the tag index. The value index

contains the containing code and a pointer to the

nodes contents. The tag index and the value

index are shown in Figure 2.

If the number of nodes increases then the number of

bits in the bitmap for structure node becomes very

large. Processing of such bitmaps to determine the

structural relationship takes longer time and hence

results in longer response time.

Fig. 2: A tag index tree

6. Hint and Run

Iona Stania et.al [14] proposed and implemented an

innovative idea of using Hint to guide the query path.

By using Hint value o f a particular query node the

search space can be reduced effectively . A h int

h(l,c,t) at a node l returns a positive value if the

element tag t is present in the sub tree rooted at node

c. Node l is the parent of node c. Thus a negative

value of hint indicates that the sub tree rooted at c can

be skipped from traversing since it will not contain

the element t. The efficiency of hints depends on two

factors. The first one is the position or location of the

node at which the hint value is calculated. The

second factor is the number of elements for which the

hint value is calculated. If the hint value is calculated

at every possible location it will decrease the number

of nodes to be traversed. Similarly if the hint value is

calculated for every node at every possible location

then it will access only the nodes which are present

on the query path. In h(l,c,t) l,c,t are ids of nodes

which are all integers and the hint value is also an

integer. If it is assumed that integer requires two

bytes then a hint at a particular node for a particu lar

tag requires eight bytes of storage. The concept of

hint can be used as standalone technique or as an

augment to the existing query algorithm. A hint value

is calculated only for element tag. It is not calculated

for attribute or contents of an element. Thus such a

hint value will not be useful for queries which are

selective i.e. the queries which involves predicates .

7. XReal (Technique for XML Keyword Search)

This may be the first ever known technique which

performs the keyword search on XML documents

efficiently based on Information Retrieval style. It

effectively handles the three issues in XML keyword

search:

1). Effectively identifies the type of target nodes

that a query keyword intends to search for. Such a

node is termed as search for node.

2). Effectively infers the type of condition nodes

that a keyword query intends to search for. Such

condition nodes are termed as search via nodes.

3). Effectively ranks each query result in

consideration of the above two issues.

This technique provides novel formulae to identify

the search for nodes and search via nodes of a query

node and presents a XML TF*IDF ranking strategy

to rank the indiv idual matches of all possible search

intentions. This technique outperforms all the earlier

known keyword search techniques which utilize the

SLCA (smallest lowest common ancestor) for

COMPUSOFT, An international journal of advanced computer technology, 3 (1), January-2014 (Volume-III, Issue-I)

465

keyword searching and ranking the search results

[15].

8. XCDSearch(XML Context Driven Search Engine)

The technique specified in [16] answers XML

keyword based queries as well as loosely structured

queries using a stack based sort merge algorithm.

Keyword based search query is user friendly since it

does not require the knowledge of any query

language or the structure of the underlying data.

Loosely structured query is a query in which the user

knows only the labels of elements containing the

keywords but does not require the user to be aware of

the exact structure of the underlying data.

Previous keyword search techniques focused on

building relationship between data elements based

solely on their labels and proximity to one another

while overlooking the context of the element which

many t imes led to erroneous results. This technique

treats the parent and all its children as a set i.e. a

single unified entity and then uses a stack based sort-

merge algorithm to perform a context driven search

to determine the relationship between different

unified entit ies

All the above technique can be compared on the basis

of various factors such as intermediate results size,

index size, response time, I/O required, flexib ility etc

listed in the following Table 1.

Table: Comparative study of existing indexing techniques

 Performance factors

Sr.No Indexing

 Techniques

Intermediate

Result size

Index Size I/O

required

Response

Time

Flexib ility

1
Tree Merge Large Large Large More High

2 Stack Tree Large Large Less Moderate High

3 Path Stack Less Large Less Less High

4 Twig Stack Less Large Less Less High

5

Inverted list

Using structure

index

Very Less Large Less Less High

6

SSI Very Less Small Less Very Less Efficiency reduces

when a query

contains non

initial //

7
T bitmap Very Less Small Less Less Not suitable for

Deeply nested tree

8
Pc Index Very Less Moderate Less Less Not suitable for

Deeply nested tree

9 Hint & Run Very Less Large Less Less Less

III. CONCLUSION

In this paper we have reviewed several indexing and

querying techniques for XML. From this in depth

review we conclude that the response time for XML

query depends upon several factors such as indexing

/storing technique, intermediate result size, index

size, amount of I/O required etc. The most important

factor being the indexing technique used to store and

query XML data. Efficient and innovative data

structure can be to create powerful index structures.

This index structure coupled with efficient query

algorithm can answer highly flexib le XML queries

with very less response time

COMPUSOFT, An international journal of advanced computer technology, 3 (1), January-2014 (Volume-III, Issue-I)

466

IV. REFERENCES

[1]. Wolfgan Meir,” Exist: An Open Source Native XML
Database,” http:// exist.sourceforge.net/2008.

[2]. “W3c consortium XML path language(Xpath) 2.0,”

http//www.w3.org/tr/xpath20/2007.

[3]. “W3c consortium Xquery1.0 : An XML query

language,” http//www.w3.org/tr/xquery/2007.
[4]. S. Al. Khalifa, H. V. Jagdish, N Koudas, J. M. Patel,

D Srivastava and Y Wu,” Structural Joins: A

Primitive for Efficient XML Query Pattern

Matching,” In Proc. of the 18th International

Conference on Data Engineering (ICDE), San Jose,
CA, pp. 141-152, February 26-March 1, 2002

[5]. N. Bruno, N. Koudas, and D. Srivastava, “Holistic

Twig Joins: Optimal XML Pattern Matching”, In

Proc. Of 21st ACM SIGMOD Int’l Conference on

Management of Data (SIGMOD‟02), pp. 310–321,
2002.

[6]. Raghav Kaushik, Rajasekar Krishnamurthy, Jeffery

F. Naughton, Raghu Ramkrishnan,” On the

Integration of Structure Index and Inverted List,” In
Proc. of the 204 ACM SIGMOD international

conference on Management of data, Paris, France,

pp.779-790, June 13-18 2004

[7]. Zhuyan Chan et. Al,” Index Structures for Matching
XML Twigs using Relational Query Processor,” In

Proceeding of Data engineering workshop ICDEW

,5-8 April 2005.

[8]. Igor Totarinov, Stratis D Vigals, Kevin Beyer et.al.,”
Storing and Querying Ordered XML using a

Relational Database System,” In Proc. Of ACM

SIGMOD Int’l Conference on Management of Data,

Madison Wisconsin USA, pp. 204-215, 2002.

[9]. Li Ying, MaJun Sun Yun, ”Applying Dewey

Encoding to Construct XML Index for Path and

Keyword Query,” In Proc. Of First International

Workshop on Database Technology and application

09,pp553-556, 25-26 April 2009.

[10]. Xiaojie Yuan XinWang, Chenying Wang,” Efficient

Xpath Evaluation Using Structural Summary Index,”

In proceedings of International Conference on

Computer Science and Software Engg, 2008.

[11]. Radha Senthilkumar, Priyaa Varshinee and A.

Kannan(2009, June). Designing and Querying a

Compact Redundancy Free XML Storage. The Open

Information System Journal. 3, pp. 98-107.

[12]. Su-Cheng Haw and Chien-Sing Lee(2007). Structural

Query Optimization in Native XML Database: A

Hybrid Approach. Journal of Applied Sciences.

7(20), pp. 2934-2946.

[13]. Yin Fu Huang and Shin-Hang Wang,” An efficient

XML Processing based on combining T bitmap and

Index Techniques,” IEEE Symposium on Computers

and Communication ISCC 2008, Marrakech,

Morocco, July 6-9 2008.

[14]. Iona Stanoi, Christan A. Lang, Sriram

Padmanbham,” Hint and Run: Accelerating Xpath

Queries,” In Proceedings of the 9 th International

Database Engineering and Application Symposium
IDEAS ,2005.

[15]. Zhifeng Bao, Jiaheng Lu, Tok Wang Ling(2010,

August). Towards an Effective XML Keyword

Search. IEEE Transaction on Knowledge and Data
Engineering. 22(8), pp. 1077-1092.

[16]. Kamal Taha, Ramez Elmasri(2010, December).

XCDsearch: An XML Context Driven Search

Engine. IEEE Transaction on Knowledge and Data
Engineering. 22(12), pp. 1781-1796.

