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Abstract:  This work introduces a link analysis procedure for discovering relationships in a protein database or a relational 

database generalizing simple correspondence analysis. It is based on extracting the links to the rela ted protein database and 

malfunctioned protein database. The datasets are trained in order to find out missing interactions and the sequences related 

to them. Further the analysis of links proceeds by performing a random walk defining a Markov chain. The e lements of 

interest are analysed through stochastic complementation which gives a reduced Markov chain. This reduced map is then 

analysed by projecting the elements of interest through Principal component analysis. Several Protein datasets are analysed 

using the proposed methodology, showing the usefulness of the technique for extracting relationships in relational databases 

or graphs. 
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I. INTRODUCTION 

The process of analysing links for a protein database is 

a novel way of finding which protein or the protein  

entry has contributed towards malfunctioning. The 

proteins are comprised of several amino acids. These 

amino acids dictate the ways of pairing and interaction  

among different proteins. The purpose of this work is to 

discover and analyse the links based on the similarity or 

dissimilarity. Trad itional methods of analysing links in 

data mining approaches usually assume a random 

sample of independent objects from a single relation  

which always results in the extraction of knowledge 

from data almost always leading to a double entry 

format containing the features for the sample of a 

population. All these research fields intend to find and 

exploit the links between objects which could be of 

various types and involved in different types of 

relationships. The focus of the technique has moved 

from over the analysis of features to the analysis of 

links existing between the instances in addition to the 

features. 

 

This paper proposes a technique allowing discovering 

the relationships existing between the elements of a 

protein database and a malfunctioned database. For this 

a two-step procedure is developed. First a much 

smaller, reduced Markov chain only containing the 

elements of interest is extracted using stochastic 

complementation [13]. Then the reduced chain is 

analysed by projecting into the Kernel v iew of the 

graph. The element of interest for the study has been 

restricted to study the sequences of protein and 

malfunctioned protein for the species Homo sapiens.  

 

The motivations for developing this two-step procedure 

are twofold. First, the computation would be 

cumbersome when dealing with the complete database. 

Second, in many cases the analyst is not interested in 

studying all the relationships between all the elements 

of the database, but only a subset of them. Therefore 

reducing the Markov chain by stochastic 

complementation allows to focus the analysis on the 

elements of interest and the relationships we are 

interested in. When dealing with a b ipartite graph  

stochastic complementation fo llowed by a basic 

diffusion graph [10] is exact ly equivalent to simple 

correspondence analysis. On the other hand, when 

dealing with a star schema this two-step procedure 

reduces to multiple correspondence analysis. 

 

The simple correspondence analysis aims to study the 

relationships between two random variables x1 and x2, 

having mutually  exclusive, categorical outcomes 

denoted as attributes. An experimenter makes a series 

of measurements of the features x1, x2  on a sample of vg  

individuals. In a relational database this corresponds to 

two tables, each table corresponding to one variable and  

containing the set of observed attributes of the variable.  
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This could be modelled as  a bipartite graph, where each 

node corresponds to an attribute and links are only  

defined between attributes of x1 and x2. The weight 

associated with each node corresponds to the attribute 

of x1 and x2. 

The corresponding graph is built by defining one node 

for each individual and for each attribute while a link 

between an individual and an attribute is defined when  

the individual possess this attribute. 

The experimental procedure aims to provide answers 

for the following questions 

1. How the graph mapping provided by PCA 

does compares with the map pro jection? 

2. Does the stochastic complementation provide 

realistic subgraph drawings? 

3. How does the diffusion map and stochastic 

complementation compare to the 

dimensionality reduction technique? 

4. Does the stochastic complementation 

accurately preserve the structural 

informat ion? 

The proposed methodology therefore extends the 

Correspondence analysis to the analysis of Protein 

databases. This paper has four main contributions: 

1. A two-step procedure for analysing Protein  

databases is proposed. 

2. Suggested procedure extends correspondence 

analysis. 

3. A link feature between the Protein and their 

malfunctioned databases based on their 

dissimilarity. 

4. Finally the link gets the associated malfunctioned 

protein structure and their related diseases for Homo 

sapiens. 

 

The database is considered as a graph where the nodes 

correspond to the elements contained in the tables and the 

links correspond to the relation between the tables [14]. The 

databases considered for the work is the Protein database 

and their corresponding malfunctioned databases. A link 

analysis between the protein and the malfunctioned 

databases are found through the means of stochastic 

complementation where only the proteins of interest are 

taken into account. Since the sequences are large varying 

from one protein entry to the other a reduced Markov chain 

is obtained which works with the sequence of interest. Each  

and every sequence has varied length and also varies from 

species to species. 

  

II. ANALYZING RELATIONS THROUGH 

STOCHASTIC COMPLEMENTATION 

The database for the work is converted into a graph. This 

graph is assumed that it does not contain any self - loops. If 

the graph is not connected then there is no relationship at 

all between the different components and the analysis has 

to be performed separately on each of them. Part itioning a 

graph into connected components is from its adjacency 

matrix. Based on the adjacency matrix the Laplacian matrix 

is defined. From this graph a natural random walk through 

the graph is performed by the way of associating a state to 

each node.  

 

 

2.1 Markov Chain:  

The database for the work is the original protein database 

and malfunctioned database. First the self- interacting 

proteins are removed and then they are converted into a 

graph. The nodes of the graph indicate the names of the 

proteins. 

 

 
 

Fig :1 Conversion of database into graph based on the interaction set. 
 

The graph has a set of states S= {S1, S2, S3 …Sr}.The 

process starts in one of these states and moves successively 

from one state to another. Each node is called a step. If the 

chain is currently in state Si, then it moves to state Sj at the 

next step with a probability denoted by pij. This probability 

does not depend upon which states the chain was in before 

the current.  

The probabilit ies pij are called transition probabilities . The 

process can remain in the state it is in and this occurs with 

probability pii. An initial probability distribution defined on 

S, specifies the starting state. A markov chain  starts in a 

state chosen by the probability distribution on the set of 

states known as probability vector.  

The first thing that needs to be done in the construction of a 

reduced Markov chain is that partitioning the graph into 

connected components from its adjacency matrix.  

 

2.1.1 Adjacency Matrix: The adjacency matrix provides 

a means of representing which node of a graph is adjacent 

to which other vertices. In this work the adjacency matrix is 

built based on the interaction set. If   the specified protein  

does not have an adjacent node (i.e. Interaction) it is 

considered to have its value as 0 else as 1. 

 

 AES AP2B1 APC ARHGEF7 

AES 0 0 0 0 

AP2B1 0 0 1 0 

APC 0 1 0 0 

ARHGEF7 0 0 0 0 

 
Table: 1 Adjacency matrix. 
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 2.1.2 Laplacian matrix: Lap lacian Matrix is a matrix 

representation of a graph which can be used to calculate the 

number of spanning trees for a given graph .Given a simple 

graphs with “n” vertices its Laplacian matrix  

L:=(lij)
nxn

 is defined as 

L=D-A 

Where “D” is the degree of the matrix and “A” is the 

adjacency matrix. The random walk normalized Lap lacian  

is defined as  

T: =D
-1

 A. 

D
-1

 is the diagonal Matrix and “T” is the transition 

matrix of a standard random walk of the given graph. 

 
 AES AP2B1 APC ARHGEF7 

AES 1 -1 -1 -1 

AP2B1 -1 1 -1 -1 

APC -1 -1 4 0 

ARHGEF7 0 0 0 1 

                             Table: 2 Laplacian Matrix 

 

The Lap lacian matrix [1],[4] that is obtained is partitioned 

so that we arrive at two new states S1 and S2. That is during 

any random walk on the original chain only the states 

belonging to S1 are recorded i.e. according to this work 

only the proteins which have proper interactions and which 

in turn has proper adjacency is maintained. The other 

proteins are recorded in state S2.  

 

Thus we arrive at a new graph which is reduced but still 

further reduction is required to attain an irreducible graph. 

From the graph that is obtained a natural random walk of 

the chain is performed by the way of associating a state to 

each node. Each element represents a state of the Markov 

chain describing the sequence of states that was visited. A 

random variable s(t) contains the current state of the 

Markov chain at time step t: if the random walker is in state 

i at time t, then     s(t) =i. 

 

The random walk is defined by following single-step 

transition probabilit ies  of jumping from any state i to an 

adjacent state j=s(t+1). The transition probabilit ies only 

depend on the current state and not on the past ones. Since 

the graph is completely  connected, the Markov chain is 

irreducible, that is every state can be reached from any 

other state. This graph provides the state probability 

distribution  

X(t)=[x1 (t),x2 (t),…xn (t)] at time T being the matrix 

transpose . The probability distribution at each state at time 

t when starting from state I at time t=0.  

 

Since the Markov chain represents a random walk on graph 

G, the transition matrix is simply P=D
-1

A.If the adjacency 

matrix A is symmetric , the Markov chain is reversible and 

the steady state vector,π, is simply proportional to the 

degree of each state d. All the Eigen values of the transition 

matrix are real. 

 

 
Fig. 2: Reduced graph 

 

2.2 Computing a reduced Markov chain by stochastic 

complementation 

 

A reduced Markov chain can be computed from the 

original chain. First, the set of states is partitioned into two 

subsets, S1- corresponding to the nodes of interest to be 

analysed and S2- Corresponding to the remaining nodes to 

be hidden. The number of states in S1 and S2 are denoted by 

n1 and n2. The number of states in S1 and S2 specified as 

n2>>n1. Thus the transition matrix is repartit ioned into  

 

P=                   S1            S2 

 S1 P11 P12 

 S2 P21 P22 

 

The main idea is to censor the useless elements by masking 

them during the random walk. During any random walk on 

the original chain only the states belonging to the S1 are 

recorded. In the perspective of the work taken into study 

the Proteins of proper interactions alone are taken into the 

state S1 and the remaining proteins which contribute 

towards malfunction are to be hidden which is kept in the 

second state S2. The resulting Markov chain  that is 

obtained is the stochastic complement of the original chain. 

Thus, performing a stochastic complementation allows 

focusing on the elements representing the features of 

interest. The reduced chain inherits all the characteristics 

from the original chain; it simply censors the 

malfunctioned proteins. After obtaining the stochastic chain 

the chain is again partitioned as  

 

Pc=P11+P12 (I-P22)
-1

 P21 

 
 AES AP2B1 APC ARHGEF7 

AES 0.0 0.0 0.0 0.0 

AP2B1 0.0 0.0 1.0 0.0 

APC 0.0 0.25 0.0 0.0 

ARHGEF7 0.0 0.0 0.0 0.0 

Table:  3 Transition matrix 
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It is observed that the matrix is stochastic, that is the sum of 

elements of each row is equal to 1. This corresponds to  a 

valid transition matrix. If the in itial chain is periodic, the 

reduced becomes aperiodic by stochastic complementation. 

 

III. ANALYZING THE REDUCED MARKOV CHAIN  

 

Once a reduced Markov chain containing only the nodes of 

interest has been obtained a low dimensional space of the 

graph is achieved which shows the proximity between the 

nodes. 

3.1 Simple Correspondence Analysis: The simple 

correspondence analysis[6]  aims to study the 

relationships between two proteins which are taken in a 

random manner namely x1 and x2. The features are 

measured based on the sequence pattern of the proteins in 

comparison with the interaction set sequence. The 

frequencies of the links are recorded. This is modelled as 

a bipartite graph, where each node corresponds to an 

attribute and links are only defined between attributes of 

one protein and the other protein. 

The strength of the links is once again evaluated based 

on the Eigen values and the Eigen vectors. 

 
0.1524 -0.1244 0.1549 0.1098 

0.1524 -0.1244 0.1549 0.1098 

0.0772 0.1577 0.024 0.2796 

0.1524 -0.1167 0.0588 0.1098 

Table: 4 Eigen vector 
 

3.2 Principal Component Analysis: This presents a 

way of identifying patterns in data and expressing the data 

in such a way to highlight their similarities and 

differences. The dimensions could be reduced [11]. 

For a protein database the sequence for every protein is 

different and finding the difference and similarity for 

every properly interacted data set and malfunctioned set 

plays a major ro le. In order to reduce the dimensions on 

the interaction set the mean of the sequence is subtracted 

from the data dimension. All the x values have x’ 

subtracted and all the y values have y’ subtracted from 

them. This produces the data set whose mean is zero. The 

Eigen vectors and Eigen values are calculated for the 

covariance matrix that is obtained. The Eigen vector with 

the highest Eigen value is the principal component of the 

data set [1],[8]. 

 

After the Eigen vectors are found from the covariance 

matrix, the next step is to order them by Eigen value from 

highest to lowest. This gives the components in order of 

significance once the components that are chosen, the 

transpose of a vector is taken and it is multiplied with the 

left of the original data set which is transposed. 

 

 
State1 

AES 

AP2B1 

APC 

ARHGEF7 

COG5 

CREBBP 

DUSP1 

EPAS1 

HSP90AA1 

MAPK14 

MKNK2 

NFYA 

NFYC 
PAK1 

RAC1 

Table: 6 Partitioned matrix 

 

3.3 Kernel View of the Map: A variant of the basic 

diffusion model is introduced. It has been assumed that 

initial adjacency matrix is symmetric. This extension 

presents several advantages in comparison with the original 

basic diffusion map. 

 

1. The kernel version of the diffusion [9] is 

applicable to d irected graphs while the orig inal model 

is restricted to undirected graphs. 

2. The extended model induces a valid kernel on the 

graph. 

3. The resulting matrix is symmetric positive. The 

spectral decomposition can thus be  computed on a 

symmetric positive definite  

4. The resulting matrix represents the Euclidean 

space. 

 

 AES AP2B1 APC ARHGEF7 

AES 0 0 0 0 

AP2B1 0 0 1 0 

APC 0 0.2 0 0 

ARHGEF7  0 0 0 0 
Table : 5 Repartitioned Matrix 

 

This kernel technique will be referred to as the diffusion 

map or the KDM PCA. The matrix KDM is the natural 

kernel associated to the squared diffusion map distances. It 

is observed that the matrix is symmetric positive semi 

definite and contains inner products in a Euclidean space. 

This Euclidean space brings out the real interaction sets 

which have the proper sequence of the proteins and the 

other protein that does not contribute to the proper 

functioning are eliminated.  

 

Performing principal component analysis aims to change 

the coordinate system by adding new axes in the direction 

of maximal variances. This method suffices to compute the 

first Eigen values of KDM and to consider that these Eigen 

vectors are multip lied by the square root of the 

corresponding Eigen values. These values are the 
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coordinates of the nodes in the principal component space 

spanned by the Eigen vectors. 

It can be shown that the initial g raph is undirected; this 

PCA based on the kernel matrix KDM is similar to the 

diffusion map. The resulting Kernel matrix can be centered 

by HKDMH with H=I-(eeT/n), where e is a column vector 

all of whose elements are “1”,H is called the centering 

matrix . 

  
AES 

AP2B1 

APC 

ARHGEF7 

COG5 

CREBBP 

DUSP1 

EPAS1 

HSP90AA1 

MAPK14 

MKNK2 

NFYA 

Table: 7 Final states 

 

Based on the final states a diffused graph is obtained which 

gives us the projection of proteins which contribute 

towards the proper functioning of the protein sets [2],[3].  

 

The transformation from the original graph to the final 

graph gives us an idea of dimensionality reduction when 

working large and sparse data sets. The idea behind the 

reduction is that results could be easily drawn where the 

proteins which have true interactions alone are taken into 

consideration whereas the rest of the interactions results in 

malfunction. It could be easily deduced from the fact that 

based upon the dissimilarity we can find out the 

malfunctioned protein sets. 

 
Fig. 3: Final graph 

 

IV. DISCUSSION OF THE RESULTS  

The two step procedure provides an embedding in a low 

dimensional subspace from which useful information can 

be extracted. The results shows that highly related proteins 

are close to each other based on their links (sequence) 

based on their interaction. The stochastic complementation 

reasonably preserves proximity informat ion when 

combined with the PCA. For the diffusion map this is 

normal, since both the stochastic complementation and the 

diffusion map distance are based on the Markov chain. On  

the contrary stochastic complementation should not be 

combined with a Lap lacian Eigen map because the 

resulting mapping would not be accurate. 

 

V. CONCLUSION  

This work introduced the discovering and min ing of links 

for protein databases allowing analysing the relationships. 

The database is viewed as a graph, where the nodes 

correspond to the elements contained in the tables and the 

links between the interaction sets corresponds to the links 

in the tables. This work proposes to use stochastic 

complementation for extracting a subgraph containing the 

elements of interest from the orig inal graph.. A lso this 

work introduces a kernel-based extension of the basic 

diffusion map for displaying and analysing the reduced 

subgraph.  

 

The stochastic complementation reduces the original graph 

and allows focusing the analysis on the proteins of interest, 

without having to define a state of the Markov chain for 

each protein of the database. A limitation of this work is 

that when trying to work with MYSQL it provides a 

limitat ion with the number of data sets to be considered for 

the work. The t ime taken for converting the table to a graph 

happens in O(n)2 t ime which also is a limitation when 

working with large data sets. A recommendation for this 

work could be obtained through Big Data Analytics with 

the mining concepts. 
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