
COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

524

A Survey on Various Candidate Generator Methods for

Efficient String Transformation
Mrs.P.Malarvizhi

1
, Mrs.S.Mohana

 2

1
PG Scholar, Dept. of CSE, M.I.E.T Engineering College

2
Associate Professor, Dept. of CSE, M.I.E.T Engineering College

Abstract: String Transformat ion can be formalized such as given an input string; the system generates the k most

likely output strings corresponding to the input string. The essential and important step for string transformation is to

generate candidates to which the given string s is likely to be transformed. The different approaches and various

candidate generator methods for efficient string transformation are discussed in this paper.

Keywords: candidate generation, string transformation, spelling error correction

I. INTRODUCTION

 String Transformation can be generally considered as

the natural language processing which includes

pronunciation generation, spelling error correction, word

transliteration, and word stemming, etc. String

transformation is also used in query reformulat ion and

query suggestion in web search. It can be employed in the

mining of synonyms and database record matching in the

area of Data Mining.

A. String Transformation

 As many of the below explained methods are online

applications, the transformation must be conducted not

only accurately but also efficiently.

Spelling error Correction: Given the list of documents or

queries, a spell checker implemented can find the potential

candidates for a possibly misspelled word by performing a

string search and comparison in its dictionary.

Pre-processing/ Data-Cleaning: Similar information’s

from d ifferent sources have always many difficult ies. For

example, the address line mentioned as ―PO Box 14, East

Street.‖ and ―P.O. Box 14, East St‖. Mistakes can be also

introduced due to irregularities in the data-collection

process, due to human errors, and some other causes. For

all these reasons, it is essential for data cleaning to identify

similar entities within a collection, or all similar pairs of

entities around a number of collections.

Query Suggestion: A very recent important application is

to provide answers to query results in real-time, as users are

typing their query (e.g., a Google search box with a

dropdown suggestion menu that updates as users type).

Such interactive-search boxes are very helpfu l and have

shown to be very important in practice, because they limit

the number of erro rs made by users and also reduce the

number of query reformulat ions submitted in order to find

the one that will yield satisfying results.

Query Reformulation: Query reformulation in web search

is aimed at dealing with the term mis match problem. For

example, if the query is ―NYT‖ and the document only

contains ―New York Times‖, then the query and document

do not match well and the document will not be ranked

high. Query reformulat ion attempts to transform ―NYT‖ to

―New York Times‖ and thus make a better matching

between the query and document. In the task, given a query

(a string of words), one needs to generate all similar queries

from the original query (strings of words).

B. Candidate Generation

 The essential and important step for string

transformation is to generate candidates to which the given

string S is likely to be transformed. Candidate generation

can be used to find the most likely correct ions of a

misspelled word from the dictionary. In this case, a string

of characters is input and the operators represent insertion,

deletion, and substitution of characters with or without

surrounding characters .

 The candidate generator uses a set of transformations to

judge the similarity between two objects, so that only the

most similar candidate mappings between the sources are

generated. The main function of the candidate generator is

to produce an initial set of quality candidate mappings. The

candidate generator keeps a record of the set of

transformations that were applied for each mapping, which

is essential for learn ing the transformation weights, and

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

525

also calculates a set of similarity scores, necessary for

learning the mapping ru les. When comparing objects, the

alignment of the attributes is determined by the user.

 The values for each attribute are compared individually.

Comparing the attributes individually is important in

reducing the confusion that can arise when comparing the

objects as a whole. Words can overlap between the

attribute values. Comparing the attributes individually

saves computation and also decreases mapping error by

reducing the number of candidate mappings considered.

Given the two sets of objects, the candidate generator is

responsible for generating the set of candidate mappings by

comparing the attribute values of the objects.

II. RELATED WORKS

 The work conducted so far on string transformation can

be divided into two categories . Some work mainly

considered the efficient generation of strings, assuming that

the model is given. Other work tried to learn the model

with different approaches, such as a generative model, a

logistic regression model, and a discriminative model.

A. Generative Models

 Generative model is a full probabilistic model of all

variables, which can be used, for example, to simulate (i.e.

generate) values of any variable in the model.

 Examples of generative models include:

• Gaussian mixture model and other types of

mixture model

• Hidden Markov model

• Probabilistic context-free grammar

• Naive Bayes

• Averaged one-dependence estimators

• Latent Dirichlet allocation

• Restricted Boltzmann machine

If the observed data are truly sampled from the

generative model, then fitting the parameters of the

generative model to maximize the data likelihood is a

common method. However, since most statistical models

are only approximat ions to the true distribution, if the

model's application is to infer about a subset of variables

conditional on known values of others, then it can be

argued that the approximation makes more assumptions

than are necessary to solve the problem at hand. In such

cases, it can be more accurate to model the conditional

density functions directly using a discriminative model,

although application specific details will ultimately dictate

which approach is most suitable in any particular case.

B. Discriminative Models

 Discriminative model provides a model only for the

target variable(s) conditional on the observed variables

which allow only sampling of the target variab les

conditional on the observed quantities. Despite the fact that

discriminative models do not need to model the distribution

of the observed variables, they cannot generally express

more complex relationships between the observed and

target variables.

 A discriminat ive model requires a training set in which

each instance (pair of strings) is annotated with a positive

or negative label. Even though some existing resources

(e.g., inflection table and query log) are available for

positive instances, such resources rarely contain negative

instances. Therefore, we must generate negative instances

that are effective for discriminative training. Various

models are used under the discriminative approach.

i) Logistic Regression Model:

 Logistic regression measures the relationship between a

categorical dependent variable and one or more

independent variables, which are continuous, by using

probability scores as the predicted values of the dependent

variable. Frequently logistic regression is used to refer

specifically to the problem in which the dependent variable

is binary (either 1 or 0).

 Okazaki’s [10] method incorporated rules into an L1-

regularized logistic regression model and utilized the model

for string transformation. Okazaki’s model is a

discriminative model. Their model is defined as a logistic

regression model (classification model) P(t/ s), where s and

t denote input string and output string respectively, which

utilizes all the rules that can convert s to t and it is assumed

only one rule can be applied each time.

ii) Log Linear Model

 A key advantage of log-linear models is their flexib ility.

They allow a very rich set of features to be used in a model,

arguably much richer representations than the simple

estimation techniques.

 The goal of log-linear analysis is to determine which

model components are necessary to retain in order to best

account for the data. Model components are the number of

main effects and interactions in the model. For example, if

examined the relationship between three variables —

variable A, variab le B, and variable C—there are seven

model components in the saturated model. The three main

effects (A, B, C), the three two-way interactions (AB, AC,

BC), and the one three-way interaction (ABC) g ives the

seven model components. The log-linear models can be

thought of to be on a continuum with the two extremes

being the simplest model and the saturated model. The

simplest model is the model where all the expected

frequencies are equal. This is true when the variables are

not related.

 Dreyer's [3] method proposed a log linear model for

string transformation, with features representing latent

alignments between the input and output strings. Finite-

state transducers are employed to generate the candidates.

 Wang [1] also proposed a log linear method but in a

probabilistic approach. Wang's learning method is based on

COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

526

maximum likelihood estimation. Thus, the model is trained

toward the objective of generating strings with the largest

likelihood given input strings. The generation algorithm

efficiently performs the top k candidate’s generation using

top k pruning. It is guaranteed to find the best k candidates

without enumerating all the possibilities.

C. n-Gram Based Models

 An n-gram is a contiguous sequence of n items from a

given sequence of text or speech. The items can be

phonemes, syllables, letters, words or base pairs according

to the application. The n-grams typically are collected from

a text or speech corpus. An n-gram of size 1 is referred to

as a "unigram"; size 2 is a "bigram" (or, less commonly, a

"digram"); size 3 is a "trigram". Larger sizes are sometimes

referred to by the value of n, e.g., "four-gram", "five-

gram", and so on.

 An n-gram model [2] is a type of probabilistic language

model for predicting the next item in such a sequence in the

form of a (n - 1) o rder Markov model. The n-gram models

are now widely used in probability, communication theory,

computational linguistics (for instance, statistical natural

language processing), computational biology (for instance,

biological sequence analysis), and data compression. The

two core advantages of n-gram models (and algorithms that

use them) are relative simplicity and the ability to scale up

by simply increasing n value. When used for language

modeling, independence assumptions are made so that each

word depends only on the last n-1 words. This assumption

is important because it massively simplifies the problem of

learning the language model from data. In addition,

because of the open nature of language, it is common to

group words unknown to the language model together.

D. Pruning

 Pruning is a technique in machine learning that reduces

the size of decision trees by removing sections of the tree

that provide little power to classify instances. The dual goal

of pruning is reduced complexity of the final classifier as

well as better predictive accuracy by the reduction of over

fitting and removal of sections of a classifier that may be

based on noisy or erroneous data. One of the questions that

arise in a decision tree algorithm is the optimal size of the

final tree. A tree that is too large risks over fitting the

training data and poorly generalizing to new samples. A

small tree might not capture important structural

informat ion about the sample space. However, it is hard to

tell when a tree algorithm should stop because it is

impossible to tell if the addition of a single extra node will

dramat ically decrease error. This problem is known as the

horizon effect. A common strategy is to grow the tree until

each node contains a small number of instances then use

pruning to remove nodes that do not provide additional

informat ion.

 Pruning should reduce the size o f a learn ing tree without

reducing predictive accuracy as measured by a test set or

using cross-validation. There are many techniques for tree

pruning that differ in the measurement that is used to

optimize performance. Pruning can occur in a top down or

bottom up fashion. A top down pruning will traverse nodes

and trim sub-trees starting at the root, while a bottom up

pruning will start at the leaf nodes.

 Wang [1] uses a top k pruning algorithm to generate the

optimal top k candidates.

E. Dictionary Trie Matching

 Using the dictionary trie, the misspelled word or string

is corrected. Sometimes a dictionary is utilized in string

transformation in which the output strings must exist in the

dictionary, such as spelling error correction, database

record matching, and synonym mining. Specifically, the

dictionary is indexed in a trie, such that each string in the

dictionary corresponds to the path from the root node to a

leaf node. When a path (substring) is expanded in candidate

generation, it is matched against the trie, and checked for

whether the expansions from it are legitimate paths or not.

If not, the expansions are discarded and avoided generating

unlikely candidates. In other words, candidate generation is

guided by the traversal of the trie. Finally, the identified

word pairs are aggregated across sessions and discarded the

pairs with low frequencies which improves the accuracy

and consumes less running time.

Figure 1: An Example for Trie

 These are some of the methods and techniques used for

the candidate generation. These methods are compared in

the below table. The baseline methods such as generative

model proposed by Brill and Moore [3] referred to as

generative and the logistic regression model (classificat ion

model) proposed by Okazaki [10] referred to as logistic.

Log linear model p roposed by Wang [1] referred to as log

linear.

III. COMPARISON OF VARIOUS MODELS AND

METHODS FOR CANDIDATE GENERATION

 The various models and methods along with the

techniques are compared to know their advantages and

disadvantages. The comparison is shown in the table given

below.

COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

527

Table 1: Comparison of various Candidate Generator Methods

Sr.

No
Methods Techniques Used Advantages Dis-advantages

I Generative Model

1
Brill & Moore’s

method

Improved error model

within noisy channel

framework

- Includes contextual

substitution rules

- Allows all ed it

operations

Very simple model for

only single word

2
Duan and Hsu’s

method

Transform based

transformation model

using trie

- A* search algorithm

configured to deal with

partial queries

- Capable of capturing

users spelling behavior

Does not penalize the

untransformed part of the

input query

II Discriminative Models

3
Logistic Model

Okazaki’s method

L1-regularized logistic

regression model

Substring substitution

rules used as features

High execution time and

a large training data to be

applied one by one.

4
Log Linear

Model

i) Dreyer’s

method

ii) Wang’s

method

Fin ite-state transducers

Employed with

overlapping features over

latent alignment

sequences.

Offline application

5

- Top k pruning

- Dictionary trie

matching method

- Rule index with A-C

Tree.

- Pruning algorithm

generate the optimal top

k candidates

Better pruning technique

may improve more

efficiency and accuracy

6 CRF-QR Model
Conditional Random

Field- Query Refinement

Query refinement tasks

in a unified framework

which is mutually

dependent and addressed

at the same time

Prediction min imizes the

performance and

accuracy

7
n-Gram based

Model

Space-Constrained

Gram-Based Indexing

Inverted-list compression

techniques with a word -

aligned integer coding

scheme.

Low performance when

compared to trie based

pruning method

COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

528

IV. CONCLUS ION

 In this paper, different candidate generator models and

methods are learnt and compared. Every model has its own

pros and cons. Yet a discriminative model can work better

than a generative model because it is trained for enhancing

accuracy. Thus various models and methods along with the

techniques are compared to know their advantages and

disadvantages.

V. REFERENCES

[1] Ziqi Wang, Gu Xu, Hang Li, and Ming Zhang, "A
Probabilistic Approach to String Transformation", IEEE

transactions on knowledge and data engineering, VOL:PP

NO:99, 2013.

[2] Behm .A, S. Ji, C. Li, and J. Lu, ― Space-constrained gram-

based indexing for efficient approximate string search,‖

ICDE ’09. IEEE Computer Society, pp. 604–615, 2009.

[3] Brill E. and R. C. Moore, ―An improved error model for
noisy channel spelling correction,‖ ACL ’00. Morristown,

NJ, USA: Association for Computational Linguistics, pp.

286–293, 2000.

[4] Chen Q, M. Li, and M. Zhou, ―Improving query spelling

correction using web search results,‖ EMNLP ’07, pp. 181–
189, 2007.

[5] Dreyer .M, J. R. Smith, and J. Eisner, ―Latent-variable

modeling of string transductions with finite-state methods,‖

EMNLP ’08, Association for Computational Linguistics, pp.
1080–1089, 2008.

[6] Duan.H and B.-J. P. Hsu, ―Online spelling correction for

query completion,‖ WWW’11. ACM, pp. 117–126, 2011.

[7] Guo .J, G. Xu, H. Li, and X. Cheng, ―A unified and

discriminative model for query refinement,‖ SIGIR ’08.
ACM, pp. 379–386, 2008.

[8] Hadjieleftheriou.M and C. Li, ―Efficient approximate search

on string collections,‖ Proc. VLDB Endow., vol. 2, pp.

1660–1661, August 2009.

[9] McCallum A., K. Bellare, and F. Pereira, ―A conditional

random field for discriminatively-trained finite-state string

edit distance,‖ in Proceedings of the 21st Conference on

Uncertainty in Artifical Intelligence, ser. UAI ’05, pp. 388–

395, 2005.

[10] Okazaki .N, Y. Tsuruoka, S. Ananiadou, and J. Tsujii, ―A

discriminative candidate generator for string

transformations‖ EMNLP ’08, Association for

Computational Linguistics, pp. 447–456, 2008.

[11] Tejada .S, C. A. Knoblock, and S. Minton, ―Learning domain

independent string transformation weights for high accuracy

object identification,‖ KDD ’02. ACM, pp. 350–359, 2008.

[12] Yang Y., J. Yu, and M. Kitsuregawa, ―Fast algorithms for
top-k approximate string matching,‖ in Proceedings of the

Twenty-Fourth AAAI Conference on Artificial Intelligence,

ser. AAAI ’10, pp.1467–1473.

