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Abstract:  String Transformat ion can be formalized such as given an input string; the system generates the k most 

likely output strings corresponding to the input string. The essential and important step for string transformation is to 

generate candidates to which the given string s is likely to be transformed. The different approaches and various 

candidate generator methods for efficient string transformation are discussed in this paper. 
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I. INTRODUCTION 

     String Transformation can be generally considered as 

the natural language processing which includes 

pronunciation generation, spelling error correction, word  

transliteration, and word stemming, etc. String 

transformation is also used in query reformulat ion and 

query suggestion in web search. It can be employed in the 

mining of synonyms and database record matching in the 

area of Data Mining. 

A. String Transformation 

     As many of the below explained methods are online 

applications, the transformation must be conducted not 

only accurately but also efficiently.  

Spelling error Correction: Given the list of documents or 

queries, a spell checker implemented can find the potential 

candidates for a possibly misspelled word by performing a 

string search and comparison in its dictionary.  

Pre-processing/ Data-Cleaning: Similar information’s 

from d ifferent sources have always many difficult ies. For 

example, the address line mentioned as ―PO Box 14, East 

Street.‖ and ―P.O. Box 14, East St‖. Mistakes can be also 

introduced due to irregularities in the data-collection 

process, due to human errors, and some other causes. For 

all these reasons, it is essential for data cleaning to identify 

similar entities within a collection, or all similar pairs of 

entities around a number of collections. 

Query Suggestion: A very recent important application is 

to provide answers to query results in real-time, as users are 

typing their query (e.g., a  Google search box with a 

dropdown suggestion menu that updates as users type). 

Such interactive-search boxes are very helpfu l and have 

shown to be very important in  practice, because they limit  

the number of erro rs made by users and also reduce the 

number of query reformulat ions submitted in order to find 

the one that will yield satisfying results.  

Query Reformulation: Query reformulation in web search 

is aimed at dealing with the term mis match problem. For 

example, if the query is ―NYT‖ and the document only 

contains ―New York Times‖, then the query and document 

do not match well and the document will not be ranked 

high. Query reformulat ion attempts to transform ―NYT‖ to 

―New York Times‖ and thus make a better matching 

between the query and document. In the task, given a query 

(a string of words), one needs to generate all similar queries 

from the original query (strings of words).  

B. Candidate Generation  

     The essential and important step for string 

transformation is to generate candidates to which the given 

string S is likely to be transformed. Candidate generation 

can be used to find the most likely correct ions of a 

misspelled word from the dictionary. In this case, a string 

of characters is input and the operators represent insertion, 

deletion, and substitution of characters with or without 

surrounding characters . 

     The candidate generator uses a set of transformations to 

judge the similarity between two objects, so that only the 

most similar candidate mappings between the sources are 

generated. The main function of the candidate generator is 

to produce an initial set of quality candidate mappings. The 

candidate generator keeps a record of the set of 

transformations that were applied for each mapping, which  

is essential for learn ing the transformation weights, and 
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also calculates a set of similarity scores, necessary for 

learning the mapping ru les. When comparing objects, the 

alignment of the attributes is determined by the user.  

     The values for each attribute are compared individually. 

Comparing the attributes individually is important in 

reducing the confusion that can arise when comparing the 

objects as a whole. Words can overlap between the 

attribute values. Comparing the attributes individually  

saves computation and also decreases mapping error by 

reducing the number of candidate mappings considered. 

Given the two sets of objects, the candidate generator is 

responsible for generating the set of candidate mappings by 

comparing the attribute values of the objects. 

II.  RELATED WORKS  

     The work conducted so far on string transformation can 

be divided into two categories . Some work mainly  

considered the efficient generation of strings, assuming that 

the model is given. Other work tried to learn the model 

with different approaches, such as a generative model, a  

logistic regression model, and a discriminative model. 

A. Generative Models 

    Generative model is a full probabilistic model of all 

variables, which can be used, for example, to simulate (i.e. 

generate) values of any variable in the model.  

     Examples of generative models include: 

• Gaussian mixture model and other types of 

mixture model 

• Hidden Markov model 

• Probabilistic context-free grammar 

• Naive Bayes 

• Averaged one-dependence estimators 

• Latent Dirichlet allocation  

• Restricted Boltzmann machine 

If the observed data are truly sampled from the 

generative model, then fitting the parameters of the 

generative model to maximize the data likelihood is a 

common method. However, since most statistical models 

are only approximat ions to the true distribution, if the 

model's application is to infer about a subset of variables 

conditional on known values of others, then it can be 

argued that the approximation makes more assumptions 

than are necessary to solve the problem at hand. In such 

cases, it can be more accurate to model the conditional 

density functions directly using a discriminative model, 

although application specific details will ultimately dictate 

which approach is most suitable in any particular case.  

B. Discriminative Models 

     Discriminative model provides a model only for the 

target variable(s) conditional on the observed variables 

which allow only sampling of the target variab les 

conditional on the observed quantities. Despite the fact that 

discriminative models do not need to model the distribution 

of the observed variables, they cannot generally express 

more complex relationships between the observed and 

target variables.  

     A discriminat ive model requires a training set in which  

each instance (pair of strings) is annotated with a positive 

or negative label. Even though some existing resources 

(e.g., inflection table and query log) are available for 

positive instances, such resources rarely contain negative 

instances. Therefore, we must generate negative instances 

that are effective for discriminative training. Various 

models are used under the discriminative approach. 

i) Logistic Regression Model:  

     Logistic regression measures the relationship between a 

categorical dependent variable and one or more 

independent variables, which are continuous, by using 

probability scores as the predicted values of the dependent 

variable. Frequently logistic regression is used to refer 

specifically to the problem in which the dependent variable 

is binary (either 1 or 0).  

     Okazaki’s [10] method incorporated rules into an L1-

regularized logistic regression model and utilized the model 

for string transformation. Okazaki’s model is a 

discriminative model. Their model is defined as a logistic 

regression model (classification model) P(t/ s), where s and 

t denote input string and output string respectively, which  

utilizes all the rules that can convert s to t and it is assumed 

only one rule can be applied each time.  

ii) Log Linear Model 

     A key advantage of log-linear models is their flexib ility. 

They allow a very rich set of features to be used in a model, 

arguably much richer representations than the simple 

estimation techniques.  

     The goal of log-linear analysis is to determine which  

model components are necessary to retain in order to best 

account for the data. Model components are the number of 

main effects and interactions in the model. For example, if 

examined the relationship between three variables —

variable A, variab le B, and variable C—there are seven 

model components in the saturated model. The three main  

effects (A, B, C), the three two-way interactions (AB, AC, 

BC), and the one three-way interaction (ABC) g ives the 

seven model components. The log-linear models can be 

thought of to be on a continuum with the two extremes 

being the simplest model and the saturated model. The 

simplest model is the model where all the expected 

frequencies are equal. This is true when the variables are 

not related. 

     Dreyer's [3] method proposed a log linear model for 

string transformation, with features representing latent 

alignments between the input and output strings. Finite-

state transducers are employed to generate the candidates.  

     Wang [1] also proposed a log linear method but in a 

probabilistic approach. Wang's learning method is based on 
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maximum likelihood estimation. Thus, the model is trained 

toward the objective of generating strings with the largest 

likelihood given input strings. The generation algorithm 

efficiently performs the top k candidate’s generation using 

top k pruning. It is guaranteed to find the best k candidates 

without enumerating all the possibilities. 

C. n-Gram Based Models 

     An n-gram is a contiguous sequence of n items from a 

given sequence of text or speech. The items can be 

phonemes, syllables, letters, words or base pairs according 

to the application. The n-grams typically are collected from 

a text or speech corpus. An n-gram of size 1 is referred to 

as a "unigram"; size 2 is a "bigram" (or, less commonly, a 

"digram"); size 3 is a "trigram". Larger sizes  are sometimes 

referred to by the value of n, e.g., "four-gram", "five-

gram", and so on. 

     An n-gram model [2] is a type of probabilistic language 

model for predicting the next item in such a sequence in the 

form of a (n - 1) o rder Markov model. The n-gram models 

are now widely used in probability, communication theory, 

computational linguistics (for instance, statistical natural 

language processing), computational biology (for instance, 

biological sequence analysis), and data compression. The 

two core advantages of n-gram models (and algorithms that 

use them) are relative simplicity and the ability to scale up 

by simply increasing n value. When used for language 

modeling, independence assumptions are made so that each 

word depends only on the last n-1 words. This assumption 

is important because it massively simplifies the problem of 

learning the language model from data. In addition, 

because of the open nature of language, it is common to 

group words unknown to the language model together. 

D. Pruning  

     Pruning is a technique in machine learning that reduces 

the size of decision trees by removing sections of the tree 

that provide little  power to classify instances. The dual goal 

of pruning is reduced complexity of the final classifier as 

well as better predictive accuracy by the reduction of over 

fitting and removal of sections of a classifier that may be 

based on noisy or erroneous data. One of the questions that 

arise in a decision tree algorithm is the optimal size of the 

final tree. A tree that is  too large risks over fitting the 

training data and poorly generalizing to new samples. A 

small tree might not capture important structural 

informat ion about the sample space. However, it is hard to 

tell when a tree algorithm should stop because it is 

impossible to tell if the addition of a single extra node will 

dramat ically decrease error. This problem is known as the 

horizon effect. A common strategy is to grow the tree until 

each node contains a small number of instances then use 

pruning to remove nodes that do not provide additional 

informat ion. 

     Pruning should reduce the size o f a learn ing tree without 

reducing predictive accuracy as measured by a test set or 

using cross-validation. There are many techniques for tree 

pruning that differ in the measurement that is used to 

optimize performance. Pruning can occur in a top down or 

bottom up fashion. A top down pruning will traverse nodes 

and trim sub-trees starting at the root, while a bottom up 

pruning will start at the leaf nodes.  

      Wang [1] uses a top k pruning algorithm to generate the 

optimal top k candidates.  

E. Dictionary Trie Matching 

     Using the dictionary trie, the misspelled word or string 

is corrected. Sometimes a dictionary is utilized in string 

transformation in which the output strings must exist in the 

dictionary, such as spelling error correction, database 

record matching, and synonym mining. Specifically, the 

dictionary is indexed in a trie, such that each string in the 

dictionary corresponds to the path from the root node to a 

leaf node. When a path (substring) is expanded in candidate 

generation, it is matched against the trie, and checked for 

whether the expansions from it are legitimate paths or not. 

If not, the expansions are discarded and avoided generating 

unlikely candidates. In other words, candidate generation is 

guided by the traversal of the trie. Finally, the identified  

word pairs are aggregated across sessions and discarded the 

pairs with low frequencies which improves the accuracy 

and consumes less running time. 

 

Figure 1:  An Example for Trie  

     These are some of the methods and techniques used for 

the candidate generation. These methods are compared in  

the below table. The baseline methods such as generative 

model proposed by Brill and Moore [3] referred to as 

generative and the logistic regression model (classificat ion 

model) proposed by Okazaki [10] referred to as logistic. 

Log linear model p roposed by Wang [1] referred to as log 

linear. 

 

III. COMPARISON OF VARIOUS MODELS AND 

METHODS FOR CANDIDATE GENERATION 

     The various models and methods along with the 

techniques are compared to know their advantages and 

disadvantages. The comparison is shown in the table given 

below. 
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Table 1: Comparison of various Candidate Generator Methods 

Sr. 

No 
Methods  Techniques Used Advantages Dis-advantages 

I Generative Model  

1 
Brill & Moore’s 

method 

Improved error model 

within noisy channel 

framework  

- Includes contextual 

substitution rules 

- Allows all ed it 

operations 

Very simple model for 

only single word  

2 
Duan and Hsu’s 

method 

Transform based 

transformation model 

using trie 

- A* search algorithm 

configured to deal with 

partial queries  

- Capable of capturing 

users spelling behavior 

Does not penalize the 

untransformed part of the 

input query 

II Discriminative Models 

3 
Logistic Model  

Okazaki’s method 

L1-regularized logistic 

regression model 

Substring substitution 

rules used as features 

High execution time and 

a large training data to be 

applied one by one. 

4 
Log Linear 

Model 

i) Dreyer’s 

method 

 

ii) Wang’s 

method 

 

 

Fin ite-state transducers 

 

Employed with 

overlapping features over 

latent alignment 

sequences. 

Offline application 

5 

- Top k pruning 

- Dictionary trie 

matching method 

- Rule index with A-C 

Tree. 

- Pruning algorithm 

generate the optimal top 

k candidates 

Better pruning technique 

may improve more 

efficiency and accuracy 

6 CRF-QR Model 
Conditional Random 

Field- Query Refinement 

Query refinement tasks 

in a unified framework 

which is mutually 

dependent and addressed 

at the same time 

Prediction min imizes the 

performance and 

accuracy 

7 
n-Gram based 

Model 

Space-Constrained 

Gram-Based Indexing 

Inverted-list compression 

techniques with a word -

aligned integer coding 

scheme. 

Low performance when 

compared to trie based 

pruning method 
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IV. CONCLUS ION 

     In this paper, different candidate generator models and 

methods are learnt and compared. Every model has its own 

pros and cons. Yet a discriminative model can work better 

than a generative model because it is trained for enhancing 

accuracy. Thus various models and methods along with the 

techniques are compared to know their advantages and 

disadvantages. 
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