
COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

533

Systematic Review of Metrics in Software Agile

Projects

Amrita Raj Mukker
1
, Dr. Latika Singh

2
, Anil Kumar Mishra

3

1
Department of computer science (M.Tech), amritamukker26@gmail.com

2
Department of computer science (Associate Professor), lat ikasingh@itmindia.edu

3
Department of computer science (Assistant Professor), anilkrmishra@itmindia.edu

Abstract: This is a review paper in which things discussed would be about the various software metrics and about agile

methodology. Nowadays Agile practices are increasing popularity in software development communities. This paper is a

summary of the various metrics, agile and agile methodology used in software industries. Further this papers shows how

Extreme Programming practices (XP) could enhance the development and imp lementation of a large -scale and

geographically distributed systems .Adaptation of Extreme Programming practices in the project has increased the

human factor output and its has helped in bringing up promising idea to enhance the conceptualization and

implementation as well as future extensions of large scale projects.

Keywords: Agile, Methodology, Metrics, Quality, XP.

1. Introduction

Software systems are becoming more complex and there

have been a number of methodologies to deal with the

inherent complexity of large software systems, such as

agile development processes and component-based

development.. The agile methodologies have been adopted

rapidly in the last years and have been the dominant

development processes.

Recent development efforts have shown a need to fre-

quently reassess requirements for the intended software

product and, consequently, replan the project, leading to

significant product redesign and refactoring. In this paper I

will be discussing about the quality metrics, effect of agile

on projects. Agile when used with correct metrics then it

leads to a well developed project which satisfies the user

with the best quality product.

2. Experimental S oftware Metrics

A metric is a standard for measuring or evaluating

something. A measure is a quantity, a proportion, or a

qualitative comparison of some kind.

 Quantity: "There are 25 open defect reports on

the application as of today.‖

 Proportion: "This week there are 10 percent

fewer open defect reports than last week.‖

 Qualitative comparison: "The new version of the

software is easier to use than the old version."

Three kinds of metrics:

All the metrics fall under three main categories. They are :

• Informational – tells us what’s going on

• Diagnostic – identifies areas for improvement

• Motivational – influences behaviour

Metrics as indicators

1. Leading Indicator: Suggests future trends or

events.

2. Lagging Indicator: Provides informat ion about

outcomes.

In fact software metrics is a collective term used to

describe the very wide range of activities concerned with

measurement in software engineering. These activities

range from producing numbers that characterise

properties of software code (these are the classic

software ―metrics‖) through to models that help predict

software resource requirements and software quality.

The subject also includes the quantitative aspects of

quality control and assurance - and this covers activities

like record ing and monitoring defects during

development and testing.

Metrics can be categorized under the following types of

metrics.

1. Business Metrics

2. Base Metrics

3. Quality Metrics

4. Product Metrics

5. Process Metrics

ISSN:2320-0790

mailto:anilkrmishra@itmindia.edu

COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

534

6. Testing Metrics

TABLE 1

Software Metrics

Metrics Types Description

Base Metrics 1. LOC

1. Productivity = KLOC /
Person-month

2. Quality = Defects /
KLOC

3. Cost = $ / LOC
4. Documentation = pages

of documentation / KLOC

2. Functional Point FC*VAF(Value

Adjustment Factor)

Business Metrics 1. Business Value
Delivered

They measure what
happened in the last
financial period

2. NPV Summation Ct/(1+r) t̂
C = net cash in period t; r

= cost of capital
3.Customer

satisfaction
This index is surveyed

before product delivery

and after product delivery
(and on-going on a

periodic basis, using
standard questionnaires).

2. Functional Point FC*VAF(Value

Adjustment Factor)

Quality Metrics 1. Complexity CCM= CCCM+ IMCM

2. component

reusability

CRLLOC=reuse(C)/C*10

0%

3. cohesion

4. coupling C(X,Y)=I+N/N+1

N= No of interconnectin

betweeb(X,Y), I= Level

of highest level of
coupling type found

5. maintainability MTTC (Mean time to

change) -- Once error is
found, how much time it
takes to fix it in
production.

6. Integrity Integrity = Summation

[(1 - threat) X (1 -
security)]

7. Reliability Mean time between
failures (MTBF) - Total
operating time divided by

the number of failures.
MTBF is the inverse of
failure rate.

8. Quality of Testing No of defects found

during Testing/(No of
defects found during

testing + No of
acceptance defects found

after delivery) *100

9. Quality of Testing No. of defects found

during Testing/(No. of
defects found during

testing + No of
acceptance defects found

after delivery) *100

 10. Correctness Defects / KLOC or
Defects / Function points

Product Metrics 1. Product volatility
Ratio of maintenance

fixes,vs. enhancement

requests

2. Defect Density No of Defects / Size (FP
or KLOC)

3. Mean Time to

Failure

It calculates the mean

time between two
failures

4. Customer problem
metrics

PUM(problem per user

menth)= total problem

that customer reported

foa a time period/ total

number of license-month

of the software during the

period.

5. Complexity of

delivered product
Predicted defects and

maintenance costs, based

on complexity measures

6. Defects detected in
production

Defects detected in
production/system size

Testing Metrics 1. RTF curve Running means that the
features are shipped in a
single integrated product.

Tested means that the
features are continuously
passing tests

Features means End-user

features; pieces of the

customer-given
requirements

2. Business value Highest priority is to

satisfy the customer

through early and
continuous delivery of

valuable software.

3. Velocity An empirical observation
of the team’s capacity to
complete work per

iteration.

4. Putting Velocity to

Work: Burn Charts

(Burn-down charts)

1. It shows the estimated

effort against t ime. The
units of time are
generally the iterations

2. It is likely to be more
accurate as at this stage
the user stories should
have been discussed in

detail.
3. It estimations been
refined based on
additional information

Direct Metrics 1. Size Size Planned

2. t ime Size Actual
Time Meeting

3. effort 1. Effort Planning
2. Effort Overview

3. Effort Preperation
4. Effort Meeting
5. Effort Rework

4. Defect 1. Defects Found Major
2. Defects Found Minor

3. Defects Corrected
Major
4. Defects Corrected

COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

535

Minor

Earned value
analysis

1. Planned Value BAC * Planned
Percent Complete

2. Earned Value BAC * Actual
Percent Complete

3. Cost Performance

Index (CPI)

4. Schedule

EV/AC

5. Performance Index

(SPI)

PV/AC

6. ETC (BAC-EV)/CPI

7. EAC BAC/CPI OR

AC+ETC

REQUIREMENTS

QUALITY METRICS

Agile Requirements
Ambiguity

Ambiguity = Number of
Misinterpreted

Requirements / TNR
(Note: Ideal=0;
Extremely
Ambiguous=1)

Agile Requirements

Completeness

Completeness = Number

of Correctly Validated
Requirements/TNR
(Note: Ideal=1; No
Validation=0)

Aspectual Density

Per Sprint

NORASP Density Per

Sprint (NORASP-DPS) =
Σ Number of NORASP /
Σ (Number of NORASP
+ Number of NORARC

+ Number of NORPOL)

Agile Requirements
Maturity Index
(functional)

ARMI Functional (Ri) =
Number of AUCs (Ri) –
(Number of Changed
AUCs (Ri) + Number of

Newly Added AUCs (Ri)
+ Number of Deleted
AUCs (Ri)) / Number of
AUCs (Ri) (Note: Ri is

release i. For functional
requirements only.

3. Agile Methodology

 Many technological ambitious products were designed

with new complex functionality. The demand for functions

establishes a need for new software requirements to

deliver new functionality. Due to the fast alteration and the

high cost of change in the late life cycle phases the agile

software development method becomes more important in

this field of applicat ion. Agile software development

methods like eXtreme programming try to decrease the

cost of change and therewith reduce the overall

development costs. The different cost of change for agile

software development in comparison with traditional

software development according to the project progress is

shown in Figure below.
TABLE II

Agile Methodologies

TYPE

STRENGTH

WEAKNESS

XP

1. Customer ownership of
feature priority, developer
ownership of estimates.

2. Frequent feedback
opportunities.
3. Most widely known

and adopted approach, at
least in the U.S.
4. Strong technical
practices.

1. Requires onsite
customer.
2. Documentation

primarily through verbal
communication and code.
For some teams these are

the only artifacts created,
others create minimal
design and user
documentation.

3. Difficult for new
adopters to determine how
to accommodate
architectural and design

concerns.

SCRUM

1. Complements existing
practices.
2. Self organizing teams
and feedback.

3. Customer participation
and steering.
3. Priorities based on
business value.

4. Only approach here
that has a certification
process.

1. Only provides project
management support,
other disciplines are out of
scope.

2. Does not specify
technical practices.
3. Can take some time to
get the business to provide

unique priorities for each
requirement..

LEAN

1. Complements existing

practices.
2. Focuses on project
ROI.
3. Eliminates all project

waste.
4.Cross-functional teams

1. Does not specify

technical practices.
2. Requires constant
gathering of metrics
which may be difficult for

some environments to
accommodate.
3. Theory of Constraints

can be a complex and
difficult aspect to adopt

FDD

1. Supports multiple
teams working in parallel.
2. All aspects of a project

tracked by feature.
3. Design by feature and
build by feature aspects
are easy to understand

and adopt.
4. Scales to large teams or
projects well.

1. Promotes individual
code ownership as
opposed to shared/team

ownership.
2. Iterations are not as
well defined by the
process as other Agile

methodologies.
3. The model-centric
aspects can have huge
impacts when working on

existing systems that have
no models.

AUP

1. Robust methodology
with many artifacts and
disciplines to choose

from.
2. Scales up very well.
3. Documentation helps
communicate in

distributed environments.
4. Priorities set based on
highest risk. Risk can be a

business or technical risk.

Higher levels of ceremony
may be a hindrance in
smaller projects.

Minimal attention to team
dynamics.
Documentation is much
more formal than most

approaches mentioned
here

Crystal 1. Family of

methodologies designed
to scale by project size
and criticality.

2. Only methodology that
specifically accounts for
life critical projects.
3. As project size grows,

cross-functional teams are
utilized to ensure
consistency.
4. The "human"

1. Expects all team

members to be co-located.
May not work well for
distributed teams.

2. Adjustments are
required from one project
size/structure to another in
order to follow the

prescribed flavor of
Crystal for that project
size/criticality.
3. Moving from one flavor

COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

536

component has been
considered for every
aspect of the project

support structure.
5. An emphasis on testing
is so strong that at least

one tester is expected to
be on each project team.

of Crystal to another in
mid project doesn't work,
as Crystal was not

designed to be upward or
downward compatible.

DSDM

1. An emphasis on testing
is so strong that at least

one tester is expected to
be on each project team.
2. Designed from the
ground up by business

people, so business value
is identified and expected
to be the highest priority
deliverable.

3. Has specific approach
to determining how
important each
requirement is to an

iteration.
4. Sets stakeholder
expectat ions from the

start of the project that not
all requirements will
make it into the final
deliverable.

1. Probably the most
heavyweight project

compared in this survey.
2. Expects continuous user
involvement.
3. Defines several artifacts

and work products for
each phase of the project;
heavier documentation.
4. Access to material is

controlled by a
Consortium, and fees may
be charged just to access
the reference material.

4. Effect of Metrics on Agile Projects

Good metrics should enable the development of models

that are efficient of pred icting process or product

spectrum. Thus, optimal metrics should be:

 Simple, precisely definable—so that it is clear how the

metric can be evaluated;

 Objective, to the greatest extent possible;

 Easily obtainable (i.e., at reasonable cost);

 Valid—the metric should measure what it is intended to

measure; and

 Robust—relatively insensitive to (intuitively)

insignificant changes in the process or product.

4.1. Scrum Tracking Metrics:

In Scrum, various metrics are used to track the progress of

the project and individual performance of team members.

Different metrics are used to track the Scrum project.

1) Velocity: Velocity is a metric that is used to track the

amount of Product Backlog effort that a team completes in

a Single Sprint.

2) Standard violation: The Standard violation metric is

used to track the number of standards violated per Sprint.

3) Business value delivered: Business value can be

measured in terms of story points, number of stories, or an

abstract measure that measures how much value the

business attaches to a feature or story.

4) Defects per iteration: Th is metric is calculated either as

a simple count or count weighted by the severity of defects

that was introduced during a Sprint. Because the Sprint is

of a small duration, defects are very costly in Scrum and

hence should not pile up.

5) Number of stories: This metric is calculated as a simple

count or count weighted by the story complexity, such as

simple, medium, or complex, of the number of stories in a

release or a Sprint.

6) Level of automation: The level of automation in testing

is one of the key success factors of Scrum.

7) Number of tests: A measure of the number of tests that

have been developed, executed, and passed to validate a

story, epic, or the entire release.

Quality metrics are indeed helpful in bringing to focus

defect as they occur and prompt the need to comply with

project requirements thus preventing avoidable rework at a

later stage of the project. Whatever areas a project

management chooses to focus on the project team will

begin to work seriously and shift their emphasis to

perform well against that metrics. There are several

metrics that agile project team must follow to measure the

project progress, at the same time the agile team have to

determine which of the metrics are more important to

project sensor, project team, project manager and other

involved in the project to achieve this it is necessary to

study a few agile pro ject metrics. XP and Scrum are the

most commonly used agile methodologies in the software

industries.

REFACTORING:

To support agile software development and especially

refactoring, mainly source-code based product metrics are

beneficial to increase quality and productivity. Primarily

internal quality attributes have to be ensured to control the

source-code quality and to evaluate refactoring steps. If we

combine refactoring with software measurement we can

give advice about the following aspects:

 Appropriate point in time for necessary

refactoring steps

 Significance of a refactoring step and the

apparent quality effect

 Side effects of refactoring steps

With these three aspects one can ensure quality along

refactoring steps. The metrics should deliver indices for

distinct refactoring steps and they should be easily

interpretable. The measurement results should be a trigger

or activator for useful refactoring steps and they should

avoid quality loss through refactoring steps.

4.2. Method Designs for XP: (critical Factors)

1. Team productivity: SR(success rate) is directly

proportional to (Team productivity).

2. Number of user stories implemented: SR is directly

proportional to (number of user stories implemented).

3. Pair programming percentage: SR is directly

proportional to (Pair programming %)

4. Number of Post-release Defects: SR is inversely

proportional to (Number o f Post-release Defects).

COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

537

5. Customer involvement percentage: SR is directly

proportional to Customer involvement

6. Total work effort: SR is inversely proportional to (Total

work effort).

7. Number of Post-release enhancement suggestions: SR

is directly proportional to (Number of Post-release

enhancement suggestions).
 Two Modelling Approaches for XP:

Figure 1: First approach steps

Figure 2: Second approach steps

4.3. “UnitMetrics” – Measurement Tool

To support agile software development at the origin a tool

was implemented as a Plug-In for an Integrated

Development Environment (IDE). Eclipse, because of the

preconditions and its open source character [Eclipse], was

chosen. Especially because of the many iterations of a

product until it reaches final status the integration in a

development environment instead of a stand-alone

realization is recommendable.

The project was realized as an open source project and

published under sourceforge.net [UnitMetrics]. Since

August 2007 the plug-in was downloaded over 300 times

but empirical information about the usage of the tool is not

yet available [Kunz 2008].

The general goal was to create a measurement tool

which expands the Eclipse-Development-Environment to

provide source-code analysis by the use of appropriate

metrics.

Four major features should be supported:

 Continuous analysis

 Fundamental interpretation

 Interactive visualization

 Extensibility

4.4. NORPLAN (Non-Functional Requirement

planning):

Most of the project management metrics include the actual

value as well as a second value that captures the impact of

that metric. The impact of each metric captures the weight

of how important that metric is to the NORPLAN (Non-

Functional Requirement planning) algorithm used in risk

calculation. The total impact of all metrics combined is

equal to 100 points. For instance, if one metric has a very

high impact and represents a 10% importance compared to

all other metrics, then this metric should be assigned an

impact value of 10 (leaving 90 points of impact for all

other metrics). In this manner, different metrics could be

assigned different weights depending on the specific

nature of the agile team, the project, and the complexity of

the system being developed.

OUTCOME:

This case study involved three experiments that used three

different priority schemes for calculating the requirements

implementation sequence (NORPLAN). The first scheme

was based upon prioritizing requirements according to the

highest business value. The second scheme prioritized

requirements according to the highest calculated technical

and project management risks (riskiest requirements first).

The third scheme was based upon priorit izing

requirements according to the lowest calculated risk (i.e.

riskiest requirements last).

It resulted that:

 If requirements were to be implemented

according to the originally-requested priority

sequence (highest business value first), it would

take 6 releases (21 sprints),

 When the riskiest requirements were planned and

implemented first, the overall duration of the

implementation was shortened by almost 2

months. In this experiment, only 5 releases (17

sprints) were computed

 When the riskiest requirements were planned and

implemented last, the overall duration of the

implementation was shortened by one month.

Only 5 releases were computed, which was

similar to the second experiment, but it took 19

sprints (1 month longer) instead of 17 sprints.

4.5. Extreme Programming Applied in a Large-scale

Distributed System:

4.5.1 TRAFFIC VIO LATIO N CLEARANCE SYSTEM:

The traffic v iolation clearance system is a web-based

system that integrates with existing state traffic systems

and other violation source mediators to handle over-speed

and red light rushing violations by prohibiting any further

violating vehicle operations on the state server and

sending an SMS to the registered vehicle owner notifying

them about the violations they have committed. When

vehicle owner comes to the annual renewal of their vehicle

license or any other operation on the vehicle, the traffic

authority operator receives a message on the violations

committed for the registered owner of the vehicle, and the

operation cannot be completed until the registered owner

clears their vio lations. When violations are cleared,

vehicle operations are allowed on the state server, and an

SMS will also be sent notifying the registered owner about

the clearance, and subsequently they can complete the

original process he requested from the traffic authorit ies.

4.5.1.1 Environment setup for XP methodology:

COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

538

Having no central repository imposed extra challenges on

how violation clearance has to be approached. The most

challenging issue for the system was to come up with a

suitable design to process violations on such diversified,

geographically distributed environment. Moreover,

bringing together a team of developers and customers to

sit together and form the requirements collectively

imposed another dimension of communication

management and took a significant amount of time in the

start up of the project in order to bring the team to an

alignment with XP practices.

The team had only worked with a discip lined approach

similar to waterfall software development methodology in

their previous projects and it was their first interaction

with XP. They were trained on agile software development

methodologies in general, with extensive consideration for

migrat ion to XP methodology.

On project initiat ion, practices took place such as team

formation where a team of 5 developers and 4 customer

representatives were seated together in an open space large

office. An environment preparation process was taken

place where Client/Server source code control tool "SVN"

was setup in addition to an agile project management tool

"Mingle" and a continuous integration server

"CruiseControl" was installed. The work office space was

organized to fit both teams: developers and customers.
4.5.1.2 Outcome:

When agile methodology was applied to the project the

quality of the project was enhanced. Collaboration and

satisfaction was high. The development team’s interest

(buy-in) was high and the velocity was increased by 3%.

The number of iterat ion was 6 iterat ions and 3 releases.

TABLE IV
 IMPACT OF EXTREME PROGRAMMING PRACTICES ON THE

PROJECT

 Release 3

Code gallery exhibt 4

User stories completed/velocity 40

User stories increase* 3%

Story points 650

Story points increase* 3.7%

*Increase percentage depends on the first column as a baseline

i.e. release 2 user stories increase is calculated by 13/10=1.3, and
story points increase is calculated as 220/140=1.5.

TABLE V
Below is a comparison table of various project.

NAME

TEAM
MEMBERS

DURATION

COMMENTS

INTERNAL PROJECT

Project A

(legacy traffic
system)

12 2 years Large number

of developers
were working
on requirements

gathering

Project B
(foreigners
registration

system)

6 6 months Most of
projects time
was in

requirements
gathering and
no single line of
code was

written

EXTERNAL PROJECTS

Project C
(National
Health
Insurance

Fund)

18 6 months Completed on
time, using
crystal clear
methodology

Project D (
University
registration
and

management
system)

6 3 months Completed
before time
using XP

Furthermore, a comparison has been carried out between

the current project and other company projects accordingly

and information is summarized in Table V.

Thus we conclude the adaptation of XP practices to this

project has enhanced the "buy-in" of all team members,

and as a result the human factor in the development

process was maximized. This led to customer demand on

adoption of the XP Methodology in the current

development of the legacy Traffic d istributed system as

well.

5. MYTHS ABOUT AGILE

Common Myths And Reality:

Myths are widely accepted but mistaken beliefs. There are

some myths about Agile:

 Requires no documentation and works informally

on trust.

 Requires mature teams that are co-located.

 Allows no time for designing.

 Cannot work with CMMI or other process

models.

But the reality is different:

 Agile requires just enough documentation.

 Co-located, mature teams help in communicat ion,

but are not a prerequisite.

 Agile requires iterative, incremental design and

not an all-encompassing rigid design.

 Most CMMI level 5 and ISO cert ified teams use

the agile methodology.

6. CONCLUSIONS AND FUTURE WORK

After the study of various metrics and agile methodology

two main things were concluded:

i. XP and Scrum are the two main methodologies

of Agile which are popular and are used in

most of the software projects.

COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

539

ii. When agile methodology is applied to large

scale and small scale projects then the quality

of the product increases which we can measure

by using quality metrics exp lained in table 1.

Further we will apply agile methodology (XP) to a real

project and compare their quality and productivity by

using quality metrics and product metrics and this would

be the future work.

REFERENCES

[1] Divya Chaudhary* , Prof. Rajender Singh Chhillar,

―International Journal of Advanced Research in

Computer Science and Software Engineering‖,

Volume 3, Issue 7, July 2013, www.ijarcsse.com

[2] Ozgur Aktunc, ―Entropy Metrics for Agile

Development Processes‖, 2012 IEEE 23rd

International Symposium on Software Reliability

Engineering Workshops.

[3] Jean-Marc Desharnais, Buğra Kocatürk, Alain

Abran, ―Using the COSMIC Method to Evaluate the

Quality of the Documentation of Agile User Stories‖,

2011 Joint Conference of the 21st International

Workshop on Software Measurement and the 6th

International Conference on Software Process and

Product Measurement.

[4] Chaelynne M. Wolak, ―Extreme Programming (XP)

Uncovered‖, A paper submitted in fulfillment of the

requirements for DISS 725 – Research Paper Four

DISS 725 Spring 2011

[5] Reiner R. Dumke, Andreas Schmietendorf, Martin

Kunz, Konstantina Gorgieva, ―Software Metrics for

Agile Software Development‖, Source: Gilb, T.:

Estimation or Control? – Thesis paper, URL:

http://www.dasma.org, December 2007.

[6] D. I. Heimann, P. Hennessey, and A. Tripathi, ―A

Bipartite Empirically- Oriented Metrics Process For

Agile Software Development,‖ ASQ Software

Quality Professional, vol. 9, no. 2,2007

[7] Norman E Fenton, Martin Neil, ―Software Metrics:

Roadmap‖, 44 (0)208 530 5981

norman@dcs.qmw.ac.uk, 44 (0)1784 491588

martin@dcs.qmw.ac.uk.

[8] Panos Kourouthanassis
1
, Diomidis Spinellis

1
, George

Roussos
2
, and George M. Giag lis, ―MyGROCER

Ubiquitous Computing Environment‖.

[9] Tor Stålhane
1
, Geir Kjetil Hanssen,―The application

of ISO 9001 to agile software development‖, The

Norwegian University of Science and Technology

SINTEF ICT.

[10] Weam M. Farid, Frank J. Mitropoulous,

―NORPLAN: Non-functional Requirements Planning

for Agile Processes‖, 978-1-4799-0053-4/13/$31.00

©2013 IEEE

[11] Elmuntasir Abdullah, El-Tigani B. Abdelsatir

―Extreme Programming Applied in a Large-scale

Distributed System‖, 2013 INTERNATIONAL

CONFERENCE ON COMPUTING, ELECTRICAL

AND ELECTRONIC ENGINEERING(ICCEEE)

[12] H. Kiwan, Y. L. Morgan, Luigi Benedicenti, “ Two

Mathematical Modeling Approaches For Extreme

Programming‖, 2013 26th IEEE Canadian

Conference Of Electrical And Computer Engineering

(CCECE)

[13] Monika Agarwal, Prof. Rana Majumdar, ―Tracking

Scrum Pro jects Toola, Metrics and Myths about

Agile‖, International Journal of Emerging

Technology and Advanced Engineering Website:

www.ijetae.com (ISSN 2250-2459, Volume 2, Issue

3, March, 2012)

http://www.ijarcsse.com/
mailto:martin@dcs.qmw.ac.uk
mailto:martin@dcs.qmw.ac.uk
mailto:martin@dcs.qmw.ac.uk

