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Abstract: Measurements of retinal blood vessel morphology have been shown to be related to the risk of 

cardiovascular diseases. The wrong identification of vessels may result in a large variation of these 

measurements, leading to a wrong clinical diagnosis  Both the arteries and veins of the retina are generally 

binary trees, whose properties can be considered either locally or g lobally. Measurable geometrical changes in 

diameter, branching angle, length, or tortuosity, as a result of disease, have been described in retinal blood 

vessels. The detection and measurement of retinal blood vessels can be used to quantify the severity of disease 

such as hypertension, stroke and arteriosclerosis, as part of the process of automated diagnosis of disease or in 

the assessment of the progression of therapy. Thus, a reliable method of vessel detection and quantification 

would be valuable. In this paper, we address the problem of identifying true vessels as a postprocessing step to 

vascular structure segmentation. We model the segmented vascular structure as a vessel segment graph and 

formulate the problem of identifying vessels as one of finding the optimal forest in the graph given a set of 

constraints. 
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                 I. INTRODUCTION 

A retinal image provides a snapshot of 

what is happening inside the human body. In 

particular, the state of the retinal vessels has been 

shown to reflect the cardiovascular condition of the 

body. Measurements to quantify retinal vascular 

structure and properties have shown to provide 

good diagnostic capabilities for the risk of 

cardiovascular diseases. For example, the central 

retinal artery equivalent (CRAE) and the central 

retinal vein equivalent (CRVE) are measurements 

of the diameters of the six largest arteries and veins 

in the retinal image, respectively. These 

measurements are found to have good correlation 

with hypertension, coronary heart disease, and 

stroke. However, they require the accurate 

extraction of distinct vessels  from a retinal image. 

This is a challenging problem due to ambiguities 

caused by vessel bifurcations and crossovers. In 

order to disambiguate between vessels at 

bifurcations and crossovers, we need to figure out 

if linking a vessel segment to one vessel will lead 

to an adjacent vessel being wrongly identified.  

By considering multip le vessels 

simultaneously, informat ion from other vessels can 

be used to better decide on the linking of vessel 

segments. In this paper, we describe a novel 

technique that utilizes the global information of the 

segmented vascular structure to correctly identify 

true vessels in a retinal image. We model the 

segmented vascular structure as a vessel segment 

graph and transform the problem of identify ing true 

vessels to that of finding an optimal forest in the 

graph. An objective function to score forests is 

designed based on directional informat ion. Our 

proposed solution employs candidate generation 

and expert knowledge to prune the search space.   

   

II. LITERATURE SURVEY 

Image processing involves changing the nature of 

an image in order to either improve its pictorial 

informat ion for human interpretation and also for 

autonomous machine perception. Image processing 

is the perception of several algorithms that take an 

image as input and precedes an image as output. 

Retinal vessel extraction involves segmentation of 

vascular structure and identification of d istinct 

vessels by linking up segments in the vascular 

structure to give complete vessels. The work in [9] 

required the user to resolve the connectivity of 

bifurcation and crossover points before vessels 

were indiv idually identified. For [10], a graph 

ISSN:2320-0790 



COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II) 

541 
 

formulat ion was used with Dijkstra’s shortest path 

algorithm to identify the central vein. Similarly, 

Joshi et al. [11] used Dijkstra’s algorithm to 

identify vessels one at-a-time. A l-Diri et al. [12] 

used expert rules to resolve vessel crossovers and 

locally linked up segments at these crossovers to 

give a vascular network . Our work is focused on 

vessel identification as a postprocessing step to 

segmentation. Our approach differs from ex- isting 

works in that we identify mult iple vessels 

simultaneously  and use global structural 

informat ion to figure out if linking  a vessel 

segment to one vessel will lead to an overlapping 

or adjacent vessel being wrongly identified.  

III. VESSEL SEGMENTATION 

A. Pre-processing 
 

Color fundus images often show important lighting 

variations, poor contrast and noise. In order to 

reduce these imperfections and generate images 

more suitable fo r extract ing the pixel features 

demanded in the classification step, a preprocessing 

comprising the following steps is applied: 

1) Vessel Central Light Reflex Removal: Since 

retinal b lood vessels have lower reflectance when 

compared to other retinal surfaces, they appear 

darker than the background. To remove this 

brighter strip, the green plane of the image is  

filtered by applying a morphological opening using 

a three-pixel diameter disc, defined in a square grid 

by using eight-connexity , as structuring element.  

2) Background Homogenization: Fundus images 

often contain background intensity variation due to 

non uniform illumination. Consequently, 

background pixels may have different intensity for 

the same image and, although their gray-levels are 

usually higher than those of vessel pixels (in 

relation to green channel    images), the intensity 

values of some background pixels is comparable to 

that of brighter vessel pixels. Since the feature 

vector used to represent a pixel in the classification 

stage is formed by gray-scale values, this effect 

may worsen the performance of the vessel 

segmentation methodology. With the purpose of 

removing these background lightening variations, a 

shade-corrected image is accomplished from a 

background estimate. 

3) Vessel Enhancement: The final pre-processing 

step consists on generating a new vessel-enhanced 

image , which proves more suitable for further 

extraction of moment invariants -based features 

Vessel enhancement is performed by estimating the 

complementary image of the homogenized image  

and subsequently applying the morphological Top-

Hat transformation where a morphological opening 

operation is done by using a disc of eight pixels in 

radius. 

 

B.  Segmentation 
  

Retinal vessel extraction involves segmentation of 

vascular structure and identification of d istinct 

vessels by linking up segments in the vascular 

structure to give complete vessels. One branch of 

works, termed vessel tracking, performs vessel 

segmentation and identification at the same time 

[5]–[8]. These methods require the start points of 

vessels to be predetermined. Each vessel is tracked 

individually by repeatedly finding the next vessel 

point with a scoring function that considers the 

pixel intensity and orientation in the vicinity of the 

current point in the image. Bifurcations and 

crossovers are detected using some intensity 

profile. Tracking fo r the same vessel then continues 

along the most likely path. This approach of 

tracking vessels one-at-a-time does not provide 

sufficient informat ion for disambiguating vessels at 

bifurcations and crossovers. Another branch of 

works treat vessel identificat ion as a post 

processing step to segmentation [9]–[11].The  

Kirsch operator or Kirsch compass kernel is a non-

linear edge detector that finds the maximum edge 

strength in a few predetermined directions. The 

operator takes a single kernel mask and rotates it in 

45 degree. The edge magnitude of the Kirsch 

operator is calculated as the maximum magnitude 

across all d irections. 

 The Kirsch operator is made up of a 

number of templates. Each template focuses on the 

edge strength in one direction. For each voxel, the 

Kirsch algorithm cycles through the desired 

number of directions and assigns an attribute (as 

specified by the parameter ``function'') of the best 

direction to the voxel. The best direction is the 

direction indicat ing the largest edge strength 

(gradient magnitude). The masks of this Kirsch 

technique are  defined by considering a single mask 

and rotating it to eight main compass directions: 

North, Northwest, West, Southwest, South, 

Southeast, East and Northeast. It perform 

segmentation at various image resolutions. The 

main advantage of this technique is its high 

processing speed. Major structures(larger vessels in 

our application domain)are ext racted  from low 

resolution images while fine structures are 

extracted at high resolution. Another advantage is 

the high robustness. The edges in the  image depict 

the topological connectivity of the vessel 

structures. 

  

. 

http://en.wikipedia.org/wiki/Nonlinearity
http://en.wikipedia.org/wiki/Nonlinearity
http://en.wikipedia.org/wiki/Edge_detection
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           IV. GRAPH TRACER 
 

To identify vessels and represent them in the    

form of subsequent vessel measurements. 

 

A.   Identify  Crossover Locations 

 

Vessels in a retinal image frequently cross each 

other at a point or a over a shared segment. 

 Crossover Point: Given the set of white pixels P 

in a line image, a junction J ∈ P is a crossover 

point if and only if the number of segments that are 

adjacent to J is greater than or  equal to 4. The 

lower junction is a crossover point as it has four 

segments adjacent to it. A crossover segment 

occurs when two different vessels share a segment.       

Given the set of  white pixels P of a line     image, a 

segment s∈SP is a candidate crossover segment if 

s <Land∃J ,J ∈ P.L is a parameter to limit 

candidates to short segments . 

 Directional Change Between Segments: Given 

two segments sa and sb that are adjacent to a 

common junction,let pa and pb be the end points of 

sa and sb that are nearest to each other. Let va be a 

vector that starts on sa and ends at pa ,and vb be a 

vector that starts from pb and ends on sb . Then, the 

directional change between sa and sb is given by 

ΔD sa, sb cos− a · vb va vb _where ΔD sa, sb ∈

◦, ◦ .Intuitively, ΔD sa, sb measures the 

magnitude of a change in direction if we were to go 

from sa to sb. 

Crossover Segment: Given a candidate segment 

seg between two junctions J and J , let Si sa ∈

SP adj sa, Ji ∧ sa seg for i ∈ , . Each Si 

contains two segments sharing the same junction as 

one end pixel of seg. Let A seg ∪ S ∪ S and Φ

sa, seg, sb sa ∈S , sb ∈ S . Then seg is a 

crossover segment, i.e., cross seg is true, if all of 

the following conditions are true: 

 

1) ∀s, s ∈ Si, i ∈ , , ΔD s, s > ◦

2) seg ≤ Lθ ⇒

∃sa, sb ∈ S , sc, sd ∈ S ,  

3) seg > Lθ ⇒

∀s ∈ S ∪ S ,ΔD seg, s < θlow 

∨ ∀s ∈ S ∪ S ,ΔD seg, s < θhigh 

∧ sd M φ sd M A −

φ < sd M A

                       φ∈Φ

as the segment where μ s is the mean intensity of 

the pixels in segment s, the bag M S μ s s ∈ S

for a set of segments S, and sd is the standard 

deviation of the numbers in M S .        

 

C. Find the Optimal Forest 
 

Next, we model the segments as a segment graph 

and use constraint optimizat ion to search for the 

best set of vessel trees (forest) from the graph. 

Segment graph:  

Given the set of white p ixels P in a line 

image, a segment graph GP SP ,EP , where each 

vertex in SP is a segment and an edge ei,j si, sj ∈

EP exists if adj si, sj , si, sj∈SP,i j. Identified 

crossover segments. Typically, GP consists of 

disconnected  subgraphs that are independent and 

can be processed in    parallel.W ithout loss of 

generality, we refer to each of   these subgraphs 

graph GP . The goal is to obtain a set of binary trees 

from the segment graph such that each binary tree 

corresponds to a vessel in the retinal image.  
  

 Vessel:  

Given a segment graph GP SP ,EP , a 

vessel is a binary tree, T s , VT ,ET such that 

s is the root node, root T s , VT ⊆ SP , and 

ET ⊆ EP . A set of such binary trees is called a fore 

A binary tree is a natural representation of an actual 

blood vessel as it only bifurcates. Segment end 

points near the inner circle of the zone of interest 

are automatically identified as root pixels. The root 

of each tree corresponds to the root segment that 

contains a unique root pixel.  

Given a segment graph GP SP ,EP , and a set of 

root segments S , let P be the set of al possible 

forests from GP for each root segment in S . The 

optimal forest, F∗ ∈ P that corresponds to vessels 

in GP is given by F ∗ F ∈ P  cost F). 

 

V. EXPERIMENT RESULTS 
 

We evaluate our proposed method on DRIVE 

database. For each image, the edges  of the retinal 

vessels is obtained using the semi automated retinal 

Kirsch Edge Detection. Trained human graders 

then follow a protocol to verify the correctness of 

the vascular structure obtained, e.g., arteries, veins, 

crossover locations, and branch points. We use 

these verified vascular  structures as the gold 

standard and call the corresponding vessel center 

lines as clean line images. The vessel 

measurements CRAE and CRVE, and average 
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curvature tortuosity of arteries (CTa ) and veins 

(CTv) have been found to be correlated with risk 

factors of cardiovascular diseases and are positive 

real numbers. CRAE and CRVE are computed by 

iteratively combin ing the mean widths of 

consecutive pairs of vessels in the Big6 arteries and 

veins [19], respectively, as follows: 

 

       Arteries: ˆ w = 0.88 · (w21 + w22 )12 

       Veins: ˆ w = 0.95 · (w21 + w22 )12 

 

wherew1, w2 is a pair of width values and ˆ w is the 

new combined width value for the next iterat ion. 

Iteration stops when one width value remains.  

 

 
 

  Identified crossover segments indicated by the white   arrows 

 

              VI. CONCLUSION 

 
We have presented a novel technique to identify 

true vessels from ret inal images. The accurate 

identification of vessels is key to obtaining reliable 

vascular morphology measurements for clin ical 

studies. The proposed method is a post processing 

step to vessel segmentation. The problem is 

modeled as finding the optimal vessel forest from a 

graph with constraints on the vessel trees. All 

vessel trees are taken into account when finding the 

optimal forest; therefore, this global approach is 

acutely aware of the mislinking of vessels. 

Experiment results on a large real world population 

study show that the proposed approach leads to 

accurate identificat ion of vessels and is scalable. 
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