Identifying True Vessels Using Krisch Edge Segmentation

Authors

  • Nithya KA Research Scholar, Department of Computer Science, Hindustan college of Arts and Science, Coimbatore, India
  • Rajini A Associate professor, Department of Computer Science, Hindustan college of Arts and Science, Coimbatore, India

Keywords:

Ophthalmology, optimal vessel forest, retinal image analysis, simultaneous vessel identification, vascular structure

Abstract

Measurements of retinal blood vessel morphology have been shown to be related to the risk of cardiovascular diseases. The wrong identification of vessels may result in a large variation of these measurements, leading to a wrong clinical diagnosis In this paper, address of the problem identifying true vessels as a post processing step to vascular structure segmentation. These model segmented vascular structure as a vessel segment graph and formulate the problem of identifying vessels as one of finding the optimal forest in the graph given a set of constraints.

References

T.Y.Wong, F. M. A. Islam,R.Klein,B. E.K.Klein,M. F.Cotch,C.Castro,A. R. Sharrett, and E. Shahar, “Retinal vascular caliber, cardiovascular

risk factors, and inflammation: The multi-ethnic study of atherosclerosis (MESA),” Invest Ophthalm. Vis. Sci., vol. 47, no. 6, pp. 2341–2350,

K. McGeechan, G. Liew, P. Macaskill, L. Irwig, R. Klein, B. E. K. Klein,J. J. Wang, P. Mitchell, J. R. Vingerling, P. T. V. M. Dejong, J. C. M.Witteman,M.M. B. Breteler, J. Shaw, P. Zimmet, and T. Y.Wong, “Metaanalysis:Retinal vessel caliber and risk for coronary heart disease,”

Ann.Intern. Med., vol. 151, no. 6, pp. 404–413, 2009.

C. Y.-L. Cheung, Y. Zheng,W. Hsu, M. L. Lee, Q. P. Lau, P. Mitchell, J. J.Wang, R. Klein, and T. Y. Wong, “Retinal vascular tortuosity, blood

pressure,and cardiovascular risk factors,”Ophthalmology, vol. 118, pp. 812–818, 2011.

C. Y.-L. Cheung, W. T. Tay, P. Mitchell, J. J.Wang, W. Hsu, M. L. Lee,Q. P. Lau, A. L. Zhu, R. Klein, S. M. Saw, and T. Y. Wong, “Quantitative

and qualitative retinal microvascular characteristics and blood pressure,”J. Hypertens, vol. 29, no. 7, pp. 1380–1391, 2011.

Y. Tolias and S. Panas, “A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering,” IEEE Trans. Med. Imag., vol.

,no. 2, pp. 263–273, Apr. 1998.

H. Li, W. Hsu, M. L. Lee, and T. Y. Wong,“Automatic grading of retinal vessel caliber,” IEEE Trans. Biomed. Eng., vol. 52, no. 7, pp. 1352–

,Jul. 2005.

E. Grisan, A. Pesce, A. Giani, M. Foracchia, and A. Ruggeri, “A new tracking system for the robust extraction of retinal vessel structure,” in Proc. IEEE Eng. Med. Biol. Soc., Sep. 2004, vol. 1, pp. 1620–1623.

Y.Yin,M.Adel, M. Guillaume, and S. Bourennane, “Aprobabilistic based method for tracking vessels in retinal images,” in Proc. IEEE

Int. Conf.Image Process., Sep. 2010, pp. 4081–4084.

M. Martinez-Perez, A. Highes, A. Stanton, S.Thorn, N. Chapman, A.Bharath, and K. Parker, “Retinal vascular tree morphology: A semiautomatic quantification,” IEEE Trans. Biomed. Eng., vol. 49, no. 8,pp. 912–917, Aug. 2002.

H. Azegrouz and E. Trucco, “Max-min central vein detection in retinal fundus images,” in Proc. IEEE Int. Conf. Image Process., Oct. 2006,pp. 1925–1928.

V. S. Joshi, M. K. Garvin, J. M. Reinhardt, and M. D. Abramoff, “Automated method for the identification and analysis of vascular tree

structures in retinal vessel network,” inProc. SPIEConf.Med. Imag., 2011, vol. 7963,no. 1, pp. 1–11.

B. Al-Diri, A. Hunter,D. Steel, andM.Habib, “Automated analysis of retinal vascular network connectivity,” Comput. Med. Imag. Graph., vol. 34,no. 6, pp. 462–470, 2010.

K. Rothaus, X. Jiang, and P. Rhiem, X. Jiang, and P. Rhiem, “Separation of the retinal vascular graph in arteries and veins based upon structural knowledge,” Imag. Vis. Comput., vol. 27, pp. 864–875, 2009.

R. L. Graham and P. Hell, “On the history of the minimum spanning tree problem,” IEEE Ann. Hist. Comput., vol. 7, no. 1, pp. 43–57, Jan.-Mar.1985.

C. All`ene, J.-Y. Audibert, M. Couprie, and R. Keriven, “Some links between extremum spanning forests, watersheds and min -cuts,” Imag.Vis.Comput., vol. 28, pp. 1460–1471, 2010.

J. Cousty, G. Bertrand, L. Najman, and M. Couprie, “Watershed cuts:Minimum spanning forests and the drop of water principle,” IEEE

Trans.Pattern Anal. Mach. Intell., vol. 31, no. 8, pp. 1362–1374, Aug. 2009.

A. W. P. Foong, S.-M. Saw, J.-L. Loo, S.Shen, S.-C. Loon, M. Rosman, T.Aung, D. T. H. Tan, E. S. Tai, and T.Y.Wong, “Rationale and methodology for a population-based study of eye diseases in Malay people: SiMES,”Ophthalm. Epidemiol., vol. 14, no. 1, pp. 25–35, 2007.

S. Garg, J. swamy, and S. Chandra, “Unsupervised curvature-based retinal vessel segmentation,” in Proc. IEEE Int. Symp. Biomed.

Imaging,Apr. 2007, pp. 344–347.

C. Y.-L. Cheung,W. Hsu, M. L. Lee, J. J.Wang, P. Mitchell, Q. P. Lau, H.Hamzah, M. Ho, and T. Y. Wong, “A new method to measure peripheral retinal vascular caliber over an extended area,” Microcirculation, vol. 17,pp. 1–9, 2010.

W. E. Hart, M. Goldbaum, P. Kube, and M. R. Nelson, “Automated measurement of retinal vascular tortuosity,” in Proc. AMIA Fall Conf., 1997, pp. 459–463.

Downloads

Published

2024-02-26

How to Cite

Nithya, K., & Rajini, A. (2024). Identifying True Vessels Using Krisch Edge Segmentation. COMPUSOFT: An International Journal of Advanced Computer Technology, 3(08), 1053–1058. Retrieved from https://ijact.in/index.php/j/article/view/185

Issue

Section

Original Research Article

Similar Articles

<< < 14 15 16 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.