Complexity and energy saving in cloud load balancing algorithms: a study
Keywords:
Carbon Dioxide (CO2), Complexity of algorithm, Data Center, Emission, Pay-per-use, Energy Efficient Cloud AlgorithmAbstract
Based on the idea of pay-per-use and on-demand access to shared IT resources, cloud computing is rapidly emerging as a computing model of choice. It holds ample promises for individual users and organizations as well as impacts significantly the IT industry as a whole. Consequently, there is a pertinent demand for large, high performance and efficient data centers. These data centers necessitate energy efficient cloud computing algorithms to reduce energy consumption and diffusion of carbon dioxide. This paper follows a systematic approach to review energy consumption algorithms used in cloud data centers. Although several studies are available in the literature, it is felt that more exhaustive study is required to present the stat-of-the-art in the field. Further, the paper identifies the most common factors such as the technique used by the researchers, resources on which they focused, strength, weakness, the complexity of algorithm and percentage of energy saving resulted by the algorithms and presents a comparative assessment of some select algorithms. This will certainly help the new researchers for a comprehensive understanding of the issues in cloud computing energy saving algorithms and set path for further study.
References
Uchechukwu A, Li K. and Shen Y. 2014 Energy Consumption in Cloud Computing Data Centers, International Journal of Cloud Computing and Services Science
Alzahrani H. 2016 A Brief Survey of Cloud Computing, Global Journal of Computer Science and Technology
Afzal S. and Kavitha G., 2019 Load balancing in cloud computing – A hierarchical taxonomical classification, Journal of Cloud Computing Advance, Systems and Applications, Vol. 8(22): 1-24
Hameed A., Khoshkbarforoushha A., Ranjan R., Jayaraman P.P., Kolodziej J., Balaji P., Zeadally S., Malluhi Q. M., Tziritas N., Vishnu A., Khan S. U., Zomaya A. 2014, A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems, Springer, Vol. 98(7): 751-774
Ala'anzy M., Othman M., 2019, Load balancing and Server Consolidation in Cloud Computing Environments: A Meta-Study, IEEE Access, Vol. 7: 141868-141887
Bajaj S., Malhotra M. 2017, A Comparative Study on Load Balancing and Energy Efficiency Techniques in Cloud Paradigm, International Journal of Research in Electronics And Computer Engineering, Vol. 5(4), 76-81
Mosa A., Paton N. W., 2016, optimizing virtual machine placement for energy and SLA in clouds using utility functions, Journal of Cloud Computing: Advances, Systems and Applications, Vol. 5(17)
Motochi V., Barasa S., Owoche P., Wabwoba F., 2017, The Role of Virtualization towards Green Computing and Environmental Sustainability, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), Vol. 6(6): 851-858
Ala'anzy M., Othman M., 2019, Load Balancing and Server Consolidation in Cloud Computing Environments A Meta-Study, IEEE, Vol. 7: 141868-141887
Motochi V., Barasa S., Owoche P., Wabwoba F., 2017, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), Vol. 6(6): 851-858
Bajaj S., Malhotra M., 2017, A Comparative Study on Load Balancing and Energy Efficiency Techniques in Cloud Paradigm, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), Vol. 5(4): 76-81
Nonde L., Taisir E. H. Gorashi E., Jaafar M. H. Elmirghani, 2015, Energy Efficient Virtual Network Embedding for Cloud Networks, IEEE, Journal of Light wave Technology, Vol. 33(9): 1828-1849
You X., Li Y, Zheng M., Zhu C., Yu L., 2017, A Survey and Taxonomy of Energy Efficiency Relevant Surveys in Cloud-Related Environments, IEEE Access, Vol. 5: 14066- 14078
Shaheen Q., Shiraz M., Khan S., Majeed R., Guizani M., Khan N., And Aseere A. M., 2019, Towards Energy Saving in Computational Clouds: Taxonomy, Review, and Open Challenges, IEEE Access, Vol. 6: 29407-29418
Rahman A. U., Khan F., Jadoon W., 2016, Energy Efficiency techniques in cloud computing, IJCSIS, International Journal of Computer Science and Information Security (IJCSIS), Vol. 14 (6): 317-323
Ullah Q. Z., Khan G. M., Hassan S., 2019, Cloud Infrastructure Estimation and Auto-Scaling Using Recurrent Cartesian Genetic Programming-Based ANN, IEEE, Vol. 8: 17965-17985
Huang K., Jiang X., Zhang X., Yan R., Wang K. , Xiong D., and Yan X., 2019, Energy-Efficient Fault-Tolerant Mapping and Scheduling on Heterogeneous Multiprocessor Real-Time Systems, IEEE Access,Vol.6: 57614-57630
Song M., 2018, Minimizing Power Consumption in Video Servers by the Combined Use of Solid-State Disks and Multi-Speed Disks, IEEE Access, Vol. 6: 25737-25746
Saranya D., Maheswari L. S., 2015, Load Balancing Algorithms in Cloud Computing: A Review, International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 5(7): 1107-1111
Khan D. H., Kapgate D., 2014, Efficient Virtual Machine Scheduling in Cloud Computing, International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 3(5): 444-453
Bele S.B., 2018, An Empirical Study on ‘CLOUD COMPUTING’, International Journal of Computer Science and Mobile Computing, Vol.7 (2): 33-41
Xue C.T.S., Xin F.T.W., 2016, Benefits and Challenges Of The Adoption Of Cloud Computing In Business, International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6(6): 1-15
Ahmed M.T., Hussain A., 2013, Survey on EnergyEfficient Cloud Computing Systems, International Journal of Advances in Engineering Research, Vol. No. 5(2): 10-24
Sharma R. M., 2014, The Impact of Virtualization in Cloud Computing, International Journal of Recent Development in Engineering and Technology. Vol. 3(1): 197-202
Wang S., Qian Z., Yuan J. You I., 2017, A DVFS Based Energy-Efficient Tasks Scheduling in a Data Center, IEEE Access, Vol. 5: 13090- 13102
Rayes A., Hamdaoui B., Dabbagh M., Guizaniy M., 2015, Energy-Efficient Resource Allocation and Provisioning Framework for Cloud Data Centers, IEEE Vol. 12(3): 377 – 391
Jason S., Suchithra R., 2019, Energy Efficient Adaptive Depth Optimized Self Cloud Mechanism for VM Migration in Data Centers, International Journal of Engineering and Advanced Technology (IJEAT), Vol. 8(6): 475-482
Sardaraz M., Tahir M., 2019, A Hybrid Algorithm for Scheduling Scientific Workflows in Cloud Computing, IEEE Access, Vol. 7: 186137-186146
Aswal S.M.S., 2019, Energy and SLA-Aware VM Selection Algorithm for Resource Allocation In Cloud Data Centers, International Journal Of Scientific & Technology Research, Vol. 8(12): 3533-3539
Khalil M.I.K, Ahmad I., Almazroi A. A., 2019, Energy Efficient Indivisible Workload Distribution in Geographically Distributed Data Centers, IEEE Access, Vol. 7: 82672-82680
Wen Y., Li Z., Jin S., Lin C., Liu Z., 2017, EnergyEfficient Virtual Resource Dynamic Integration Method in Cloud Computing, IEEE Access, Vol. 5: 12214-12223
Jawad M., Qureshi M. B., Khan M.U.S., Ali S. M., Mehmood A., Khan B., Wang X., and Khan S. U., 2017, A Robust Optimization Technique for Energy Cost Minimization of Cloud Data Centers, IEEE Computer Society, Vol #(#):1-14
Gao Y., Zhang S., and Zhou J., 2018, Adaptive EnergyAware Algorithms for Minimizing Energy Consumption and SLA Violation in Cloud Computing, IEEE Access, Vol. 6: 55923-55936
Ye X., Yin Y., Lan L., 2017, Energy-Efficient ManyObjective Virtual Machine Placement Optimization in a Cloud Computing Environment, IEEE Access, Vol. 5: 16006-16020
Kurdi H.A., Alismail S. M., Hassan M. M., 2018, LACE: A Locust-Inspired Scheduling Algorithm to Reduce Energy Consumption in Cloud Datacenters, IEEE Access, Vol. 6: 35435-35448
Song T., Wang Y., Li G., Pang S., 2019, Server Consolidation Energy-Saving Algorithm Based on Resource Reservation and Resource Allocation Strategy, IEEE Access, Vol. 7: 171452-171460
Raju Y.M.P., Devarakonda Y.,2019, Cluster based Hybrid Approach to Task Scheduling in Cloud Environment, International Journal of Advanced Computer Science and Applications, Vol. 10(4): 425-429
Farahnakian F., Pahikkala T., Liljeberg P., Plosila J., N.T.Hieu,, Tenhunen, 2019, Energy-Aware VM Consolidation in Cloud Data Centers Using Utilization Prediction Model, IEEE, Vol. 7(2): 524-536
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 COMPUSOFT: An International Journal of Advanced Computer Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.
©2023. COMPUSOFT: AN INTERNATIONAL OF ADVANCED COMPUTER TECHNOLOGY by COMPUSOFT PUBLICATION is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at COMPUSOFT: AN INTERNATIONAL OF ADVANCED COMPUTER TECHNOLOGY. Permissions beyond the scope of this license may be available at Creative Commons Attribution 4.0 International Public License.