QUANTUM COMPUTING FOR OPTIMIZATION PROBLEMS: A REVIEW AND FUTURE DIRECTIONS

Authors

  • Shaikh MS
  • Chauhan PS
  • Baig I
  • Ali SI

Keywords:

Quantum Computing, Optimization Problems, Quantum Algorithms, Quantum Approximate Optimization Algorithm, Quantum Annealing

Abstract

Quantum computing, leveraging principles of quantum mechanics, has shown potential in solving complex optimization problems more efficiently than classical approaches. This paper reviews recent advancements in quantum algorithms designed for optimization tasks and evaluates their performance against classical methods. We present a comprehensive analysis of quantum optimization algorithms such as Quantum Approximate Optimization Algorithm (QAOA) and Quantum Annealing, discussing their applications, advantages, and limitations. Future directions are proposed, focusing on improving algorithm efficiency and practical implementation challenges.

Author Biography

Chauhan PS

Quantum computing, leveraging principles of quantum mechanics, has shown potential in solving complex optimization problems more efficiently than classical approaches. This paper reviews recent advancements in quantum algorithms designed for optimization tasks and evaluates their performance against classical methods. We present a comprehensive analysis of quantum optimization algorithms such as Quantum Approximate Optimization Algorithm (QAOA) and Quantum Annealing, discussing their applications, advantages, and limitations. Future directions are proposed, focusing on improving algorithm efficiency and practical implementation challenges.

References

Farhi, E., Goldstone, J., & Gutmann, S. (2014). A Quantum Approximate Optimization Algorithm. arXiv preprint arXiv:1411.4028.

Kadowaki, T., & Nishimori, H. (1998). Quantum Annealing of Ising Spin Glasses. Physical Review E, 58(5), 5355-5363.

Preskill, J. (2018). Quantum Computing in the NISQ Era and Beyond. Quantum, 2, 79. doi:10.22331/q-2018-08-06-79.

Montanaro, A. (2016). Quantum Algorithms: An Overview. npj Quantum Information, 2, 15023. doi:10.1038/npjqi.2015.23.

McClean, J. R., Romero, J., Babbush, R., & Aspuru-Guzik, A. (2016). The Theory of Variational Hybrid Quantum-Classical Algorithms. New Journal of Physics, 18(2), 023023. doi:10.1088/1367-2630/18/2/023023.

Shor, P. W. (1997). Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing, 26(5), 1484-1509. doi:10.1137/S0097539795293172.

Mohseni, M., Read, P., Neven, H., Boixo, S., Denchev, V. S., Babbush, R., ... & Martinis, J. M. (2017). Commercialize Quantum Technologies in Five Years. Nature, 543(7644), 171-174. doi:10.1038/543171a.

Lloyd, S. (1996). Universal Quantum Simulators. Science, 273(5278), 1073-1078. doi:10.1126/science.273.5278.1073.

Albash, T., & Lidar, D. A. (2018). Adiabatic Quantum Computation. Reviews of Modern Physics, 90(1), 015002. doi:10.1103/RevModPhys.90.015002.

Rieffel, E. G., & Polak, W. H. (2011). Quantum Computing: A Gentle Introduction. MIT Press.

Jiang, Z., Chen, H., & Du, S. S. (2021). Quantum Algorithms for Solving Linear Systems of Equations: An Overview. Quantum Information Processing, 20(6), 190. doi:10.1007/s11128-021-03148-x.

Benedetti, M., Garcia-Pintos, D., Perdomo, O., Leyton-Ortega, V., Nam, Y., & Perdomo-Ortiz, A. (2019). A Generative Modeling Approach for Benchmarking and Training Shallow Quantum Circuits. npj Quantum Information, 5, 45. doi:10.1038/s41534-019-0157-8.

Downloads

Published

2022-07-05

How to Cite

Shaikh, M. S., Chauhan, P. S., Baig, I., & Ali, S. I. (2022). QUANTUM COMPUTING FOR OPTIMIZATION PROBLEMS: A REVIEW AND FUTURE DIRECTIONS. COMPUSOFT: An International Journal of Advanced Computer Technology, 11, 3995–3997. Retrieved from https://ijact.in/index.php/j/article/view/625

Issue

Section

Review Article