Symbolic-numeric approach for solving linear differential equations of the fourth order

Authors

  • Belyaeva IN Belgorod State University, 85, PobedyStreet, Belgorod, 308000, Russia
  • Chekanov NA Belgorod State University, 85, Pobedy Street, Belgorod, 308000, Russia
  • Migal LV Belgorod State University, 85, Pobedy Street, Belgorod, 308000, Russia
  • Bondarev G Belgorod State University, 85, Pobedy Street, Belgorod, 308000, Russia

Keywords:

differential equations of the fourth order, generalized power series, singular regular points

Abstract

This paper presents a symbolic-numeric approach for solving linear differential equations of the fourth order in the form of generalized power series. The working program allows to find solutions to differential equations of the fourth order in the form of power series, generally, of any order, but is limited by capabilities of a given computer. Some examples of solving differential equations of the fourth order are presented, which show the efficiency of the developed program. The results are consistent with the available literature data.

References

Bahvalov, N.S., Dhidkov, N.P., Kobelkov, G.M., 2011. Numerical methods (Chislennyemetody). Binom. Laboratory of knowledge. Moscow, p 640. (in Russian).

Kontorovich, L.V., V.I. Krylov, 1962. Approximate methods of higher analysis. FIZMATGIZ, Moscow, 1962, 5th ed; Engtransl of 3rded, Interscience, New York and Noordhoff, Groniongen 1958.

Collatz, L.: EigenwertaufgabenmittechnischenAnwendungen. Leipzig: AkademischeVerlagsgesellschaftGeest u. Portig K.-G. 1949.

S.

Föppl, August. Drang und zwang. Vol. 2. R. Oldenbourg, 1928.

Forst, W., Hoffmann, D., 2012. Explore function theory with Maple (Funktionentheorieerkundenmit Maple). SpringerVerlag Berlin Heidelberg”.

Easayan, A.P., Chybarikov, V.N., Dobrovolskii, N.M., Martynyuk, Yu.M., 2007. Control structures and data structures in Maple. Tula: Izd-vogos.ped. yn-ta im. L.N. Tolstogo. (in Russian)

Franco Vivaldi, 2018. Experimental Mathematics with Maple. Rome: CRC Press.

Kamke, E., 1965. Manual of ordinary differential equations. Moscow: Nauka. (In Russian)

Ince, E.L., 1939. Differential equations. London: University Press.

Sansone, J., 1948. Ordinary differential equations. V.1. Rome: CRC Press.

Knesckke, A. (1961), F. G. Tricomi, Differential Equations. X + 273 S. London 1961. Blackie & Son Ltd. Preisgeb. 50 s. Z. angew. Math. Mech., 41: 470-470.( Accessed from https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19610 411027)

Belyaeva, I.N., Chekanov, N.A., Chekanova, N.N., 2016. Program of symbol-numeric integration of linear differential equation of four order. Patent of RU, Program for ECM, №2016611952. (in Russian)

Downloads

Published

2024-02-26

How to Cite

Belyaeva, I. N., Chekanov, N. A., Migal, L. V., & Bondarev, V. G. (2024). Symbolic-numeric approach for solving linear differential equations of the fourth order. COMPUSOFT: An International Journal of Advanced Computer Technology, 8(06), 3182–3186. Retrieved from https://ijact.in/index.php/j/article/view/500

Issue

Section

Original Research Article

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.