Mathgraph : A python package to compute energy and topological indices of graphs
Keywords:
MathGraph, Python package, Tulip, Dominating sets, Minimum dominating sets, Minimum dominating energy, Covering sets, Minimum covering sets, Minimum covering energy, Common neighborhood, Laplacian energy, Minimum Laplacian dominating energy, Seidel energy, Maximum degree energy, Atom bond connectivity index, second, fourth and fifth atom bond connectivity indexAbstract
In this paper, we introduce MathGraph, an open-source and cross-platform Python package. As a Python package, MathGraph is easily integrable with graph visualization softwares. This helps researchers in graph theory to either create a graph programmatically using Python program or draw the graph using Graphical User Interface (GUI) tool such as ‘Tulip’ to compute distinct sets, energies and topological indices of graphs.
References
C. Adiga, A. Bayad, I. Gutman, S. A. Srinivas, The minimum covering energy of a graph. Kragujevac J. Sci. 34 (2012), 39-56.
C. Adiga and M. Smitha, On maximum degree energy of a graph, International Journal of Contemporary Mathematical Sciences, 4 (2009), No. 8, 385-396.
Calimli M.H., The Fifth Version of Atom Bond Connectivity Index (ABC5) of an infinite class of dendrimers, Optoelectron. Adv. Mater.- Rapid Commun., Vol.5, No.10, 2011, pp.1091-1092.
J. Chen, J. Liu, X. Guo, Some upper bounds for the atom-bond connectivity index of graphs, Appl. Math. Lett., 25 (2012), 1077-1081.
J. Chen, X. Guo, The atom-bond connectivity index of chemical bicyclic graphs, Appl. Math. j. Chinese Univ., 27 (2012), 243-252.
Dragan Stevanovi´c and Alexander Vasilyev, MathChem: A Python Package For Calculating Topological Indices, MATCH Commun. Math. Comput. Chem., 71 (2014), 657-680.
E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phy. Lett., 463 (2008), 422-425.
E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian Journal of Chemistry, 37A (1998), 849-855.
M. R. Farahani, Computing fourth atom-bond connectivity index of V-Phenylenic Nanotubes and Nanotori. Acta Chimica Slovenica., 60(2), (2013), 429-432.
M. R. Farahani, On the Fourth atom-bond connectivity index of Armchair Polyhex Nanotube, Proc. Rom. Acad., Series B, 15(1), (2013), 3-6.
B. Furtula, A. Gravoc, D. Vukicevic, Atom-bond connectivity index of trees, J. Math. Chem., 48 (2010), 370 - 380.
M. Ghorbani, M. A. Hosseinzadeh, Computing ABC4 index of Nanostar dendrimers. Optoelectron. Adv. MaterRapid commun., 4(9), (2010), 1419-1422.
A. Graovac, M. Ghorbani, A new version of atom-bond connectivity index, Acta. Chim. Slov., 57, (2010), 609-612.
I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz.Graz, 103 (1978), 1-22.
I. Gutman and B. Zhou, Laplacian energy of a graph, Linear Algebra and Its Applications, 414 (2006), 29- 37.
X. Li, Y.Shi and I. Gutman, Graph Energy, Springer, 1 (2010), 266 .
M. R. Rajesh Kanna, B. N. Dharmendra, and G. Sridhara, Minimum dominating energy of a graph, International Journal of Pure and Applied Mathematics, 85 (2013, No. 4, 707-718. [http://dx.doi.org/10.12732/ijpam.v85i4.7]
Willem H. Haemers, Seidel switching and graph energy, MATCH Communications in Mathematical and in Computer Chemistry, 68 (2012), 653-659.
R. Xing, B. Zhou, Z. Du, Further results on atom-bond connectivity index of trees, Discr. Appl. Math., 158 (2010), no. 14, 1536-1545.
R. Xing, B. Zhou, F. Dong, On atom-bond connectivity index of connected graphs, Discr. Appl. Math., in press.
R. Xing, B. Zhou, F. Dong, Extremal trees with fixed degree sequence for atom-bond connectivity index, Filomat, 26 (2012), 683 - 688.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 COMPUSOFT: An International Journal of Advanced Computer Technology
This work is licensed under a Creative Commons Attribution 4.0 International License.
©2023. COMPUSOFT: AN INTERNATIONAL OF ADVANCED COMPUTER TECHNOLOGY by COMPUSOFT PUBLICATION is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at COMPUSOFT: AN INTERNATIONAL OF ADVANCED COMPUTER TECHNOLOGY. Permissions beyond the scope of this license may be available at Creative Commons Attribution 4.0 International Public License.